fpu/softfloat: re-factor mul
We can now add float16_mul and use the common decompose and canonicalize functions to have a single implementation for float16/32/64 versions. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
		
							parent
							
								
									6fff216769
								
							
						
					
					
						commit
						74d707e2cc
					
				
							
								
								
									
										209
									
								
								fpu/softfloat.c
									
									
									
									
									
								
							
							
						
						
									
										209
									
								
								fpu/softfloat.c
									
									
									
									
									
								
							@ -735,6 +735,87 @@ float64 __attribute__((flatten)) float64_sub(float64 a, float64 b,
 | 
			
		||||
    return float64_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Returns the result of multiplying the floating-point values `a' and
 | 
			
		||||
 * `b'. The operation is performed according to the IEC/IEEE Standard
 | 
			
		||||
 * for Binary Floating-Point Arithmetic.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
 | 
			
		||||
{
 | 
			
		||||
    bool sign = a.sign ^ b.sign;
 | 
			
		||||
 | 
			
		||||
    if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | 
			
		||||
        uint64_t hi, lo;
 | 
			
		||||
        int exp = a.exp + b.exp;
 | 
			
		||||
 | 
			
		||||
        mul64To128(a.frac, b.frac, &hi, &lo);
 | 
			
		||||
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
 | 
			
		||||
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
 | 
			
		||||
            shift64RightJamming(lo, 1, &lo);
 | 
			
		||||
            exp += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* Re-use a */
 | 
			
		||||
        a.exp = exp;
 | 
			
		||||
        a.sign = sign;
 | 
			
		||||
        a.frac = lo;
 | 
			
		||||
        return a;
 | 
			
		||||
    }
 | 
			
		||||
    /* handle all the NaN cases */
 | 
			
		||||
    if (is_nan(a.cls) || is_nan(b.cls)) {
 | 
			
		||||
        return pick_nan(a, b, s);
 | 
			
		||||
    }
 | 
			
		||||
    /* Inf * Zero == NaN */
 | 
			
		||||
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
 | 
			
		||||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
 | 
			
		||||
        s->float_exception_flags |= float_flag_invalid;
 | 
			
		||||
        a.cls = float_class_dnan;
 | 
			
		||||
        a.sign = sign;
 | 
			
		||||
        return a;
 | 
			
		||||
    }
 | 
			
		||||
    /* Multiply by 0 or Inf */
 | 
			
		||||
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
 | 
			
		||||
        a.sign = sign;
 | 
			
		||||
        return a;
 | 
			
		||||
    }
 | 
			
		||||
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
 | 
			
		||||
        b.sign = sign;
 | 
			
		||||
        return b;
 | 
			
		||||
    }
 | 
			
		||||
    g_assert_not_reached();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float16 __attribute__((flatten)) float16_mul(float16 a, float16 b,
 | 
			
		||||
                                             float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
			
		||||
    FloatParts pb = float16_unpack_canonical(b, status);
 | 
			
		||||
    FloatParts pr = mul_floats(pa, pb, status);
 | 
			
		||||
 | 
			
		||||
    return float16_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float32 __attribute__((flatten)) float32_mul(float32 a, float32 b,
 | 
			
		||||
                                             float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
			
		||||
    FloatParts pb = float32_unpack_canonical(b, status);
 | 
			
		||||
    FloatParts pr = mul_floats(pa, pb, status);
 | 
			
		||||
 | 
			
		||||
    return float32_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
 | 
			
		||||
                                             float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
			
		||||
    FloatParts pb = float64_unpack_canonical(b, status);
 | 
			
		||||
    FloatParts pr = mul_floats(pa, pb, status);
 | 
			
		||||
 | 
			
		||||
    return float64_round_pack_canonical(pr, status);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | 
			
		||||
| and 7, and returns the properly rounded 32-bit integer corresponding to the
 | 
			
		||||
@ -2546,70 +2627,6 @@ float32 float32_round_to_int(float32 a, float_status *status)
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the result of multiplying the single-precision floating-point values
 | 
			
		||||
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | 
			
		||||
| for Binary Floating-Point Arithmetic.
 | 
			
		||||
*----------------------------------------------------------------------------*/
 | 
			
		||||
 | 
			
		||||
float32 float32_mul(float32 a, float32 b, float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    flag aSign, bSign, zSign;
 | 
			
		||||
    int aExp, bExp, zExp;
 | 
			
		||||
    uint32_t aSig, bSig;
 | 
			
		||||
    uint64_t zSig64;
 | 
			
		||||
    uint32_t zSig;
 | 
			
		||||
 | 
			
		||||
    a = float32_squash_input_denormal(a, status);
 | 
			
		||||
    b = float32_squash_input_denormal(b, status);
 | 
			
		||||
 | 
			
		||||
    aSig = extractFloat32Frac( a );
 | 
			
		||||
    aExp = extractFloat32Exp( a );
 | 
			
		||||
    aSign = extractFloat32Sign( a );
 | 
			
		||||
    bSig = extractFloat32Frac( b );
 | 
			
		||||
    bExp = extractFloat32Exp( b );
 | 
			
		||||
    bSign = extractFloat32Sign( b );
 | 
			
		||||
    zSign = aSign ^ bSign;
 | 
			
		||||
    if ( aExp == 0xFF ) {
 | 
			
		||||
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | 
			
		||||
            return propagateFloat32NaN(a, b, status);
 | 
			
		||||
        }
 | 
			
		||||
        if ( ( bExp | bSig ) == 0 ) {
 | 
			
		||||
            float_raise(float_flag_invalid, status);
 | 
			
		||||
            return float32_default_nan(status);
 | 
			
		||||
        }
 | 
			
		||||
        return packFloat32( zSign, 0xFF, 0 );
 | 
			
		||||
    }
 | 
			
		||||
    if ( bExp == 0xFF ) {
 | 
			
		||||
        if (bSig) {
 | 
			
		||||
            return propagateFloat32NaN(a, b, status);
 | 
			
		||||
        }
 | 
			
		||||
        if ( ( aExp | aSig ) == 0 ) {
 | 
			
		||||
            float_raise(float_flag_invalid, status);
 | 
			
		||||
            return float32_default_nan(status);
 | 
			
		||||
        }
 | 
			
		||||
        return packFloat32( zSign, 0xFF, 0 );
 | 
			
		||||
    }
 | 
			
		||||
    if ( aExp == 0 ) {
 | 
			
		||||
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | 
			
		||||
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
			
		||||
    }
 | 
			
		||||
    if ( bExp == 0 ) {
 | 
			
		||||
        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 | 
			
		||||
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | 
			
		||||
    }
 | 
			
		||||
    zExp = aExp + bExp - 0x7F;
 | 
			
		||||
    aSig = ( aSig | 0x00800000 )<<7;
 | 
			
		||||
    bSig = ( bSig | 0x00800000 )<<8;
 | 
			
		||||
    shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
 | 
			
		||||
    zSig = zSig64;
 | 
			
		||||
    if ( 0 <= (int32_t) ( zSig<<1 ) ) {
 | 
			
		||||
        zSig <<= 1;
 | 
			
		||||
        --zExp;
 | 
			
		||||
    }
 | 
			
		||||
    return roundAndPackFloat32(zSign, zExp, zSig, status);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the result of dividing the single-precision floating-point value `a'
 | 
			
		||||
@ -4142,70 +4159,6 @@ float64 float64_trunc_to_int(float64 a, float_status *status)
 | 
			
		||||
    return res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the result of multiplying the double-precision floating-point values
 | 
			
		||||
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | 
			
		||||
| for Binary Floating-Point Arithmetic.
 | 
			
		||||
*----------------------------------------------------------------------------*/
 | 
			
		||||
 | 
			
		||||
float64 float64_mul(float64 a, float64 b, float_status *status)
 | 
			
		||||
{
 | 
			
		||||
    flag aSign, bSign, zSign;
 | 
			
		||||
    int aExp, bExp, zExp;
 | 
			
		||||
    uint64_t aSig, bSig, zSig0, zSig1;
 | 
			
		||||
 | 
			
		||||
    a = float64_squash_input_denormal(a, status);
 | 
			
		||||
    b = float64_squash_input_denormal(b, status);
 | 
			
		||||
 | 
			
		||||
    aSig = extractFloat64Frac( a );
 | 
			
		||||
    aExp = extractFloat64Exp( a );
 | 
			
		||||
    aSign = extractFloat64Sign( a );
 | 
			
		||||
    bSig = extractFloat64Frac( b );
 | 
			
		||||
    bExp = extractFloat64Exp( b );
 | 
			
		||||
    bSign = extractFloat64Sign( b );
 | 
			
		||||
    zSign = aSign ^ bSign;
 | 
			
		||||
    if ( aExp == 0x7FF ) {
 | 
			
		||||
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | 
			
		||||
            return propagateFloat64NaN(a, b, status);
 | 
			
		||||
        }
 | 
			
		||||
        if ( ( bExp | bSig ) == 0 ) {
 | 
			
		||||
            float_raise(float_flag_invalid, status);
 | 
			
		||||
            return float64_default_nan(status);
 | 
			
		||||
        }
 | 
			
		||||
        return packFloat64( zSign, 0x7FF, 0 );
 | 
			
		||||
    }
 | 
			
		||||
    if ( bExp == 0x7FF ) {
 | 
			
		||||
        if (bSig) {
 | 
			
		||||
            return propagateFloat64NaN(a, b, status);
 | 
			
		||||
        }
 | 
			
		||||
        if ( ( aExp | aSig ) == 0 ) {
 | 
			
		||||
            float_raise(float_flag_invalid, status);
 | 
			
		||||
            return float64_default_nan(status);
 | 
			
		||||
        }
 | 
			
		||||
        return packFloat64( zSign, 0x7FF, 0 );
 | 
			
		||||
    }
 | 
			
		||||
    if ( aExp == 0 ) {
 | 
			
		||||
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | 
			
		||||
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
			
		||||
    }
 | 
			
		||||
    if ( bExp == 0 ) {
 | 
			
		||||
        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
 | 
			
		||||
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | 
			
		||||
    }
 | 
			
		||||
    zExp = aExp + bExp - 0x3FF;
 | 
			
		||||
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | 
			
		||||
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | 
			
		||||
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | 
			
		||||
    zSig0 |= ( zSig1 != 0 );
 | 
			
		||||
    if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
 | 
			
		||||
        zSig0 <<= 1;
 | 
			
		||||
        --zExp;
 | 
			
		||||
    }
 | 
			
		||||
    return roundAndPackFloat64(zSign, zExp, zSig0, status);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*----------------------------------------------------------------------------
 | 
			
		||||
| Returns the result of dividing the double-precision floating-point value `a'
 | 
			
		||||
| by the corresponding value `b'.  The operation is performed according to
 | 
			
		||||
 | 
			
		||||
@ -239,6 +239,7 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status);
 | 
			
		||||
 | 
			
		||||
float16 float16_add(float16, float16, float_status *status);
 | 
			
		||||
float16 float16_sub(float16, float16, float_status *status);
 | 
			
		||||
float16 float16_mul(float16, float16, float_status *status);
 | 
			
		||||
 | 
			
		||||
int float16_is_quiet_nan(float16, float_status *status);
 | 
			
		||||
int float16_is_signaling_nan(float16, float_status *status);
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user