 7a21bee2aa
			
		
	
	
		7a21bee2aa
		
	
	
	
	
		
			
			Signed-off-by: Daniel P. Berrangé <berrange@redhat.com> Message-Id: <20220707163720.1421716-5-berrange@redhat.com> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Thomas Huth <thuth@redhat.com>
		
			
				
	
	
		
			1166 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1166 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM GICv3 emulation: Redistributor
 | |
|  *
 | |
|  * Copyright (c) 2015 Huawei.
 | |
|  * Copyright (c) 2016 Linaro Limited.
 | |
|  * Written by Shlomo Pongratz, Peter Maydell
 | |
|  *
 | |
|  * This code is licensed under the GPL, version 2 or (at your option)
 | |
|  * any later version.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "trace.h"
 | |
| #include "gicv3_internal.h"
 | |
| 
 | |
| static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
 | |
| {
 | |
|     /* Return a 32-bit mask which should be applied for this set of 32
 | |
|      * interrupts; each bit is 1 if access is permitted by the
 | |
|      * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
 | |
|      * not affect config register accesses, unlike GICD_NSACR.)
 | |
|      */
 | |
|     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 | |
|         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
 | |
|         return cs->gicr_igroupr0;
 | |
|     }
 | |
|     return 0xFFFFFFFFU;
 | |
| }
 | |
| 
 | |
| static int gicr_ns_access(GICv3CPUState *cs, int irq)
 | |
| {
 | |
|     /* Return the 2 bit NSACR.NS_access field for this SGI */
 | |
|     assert(irq < 16);
 | |
|     return extract32(cs->gicr_nsacr, irq * 2, 2);
 | |
| }
 | |
| 
 | |
| static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
 | |
|                                       uint32_t *reg, uint32_t val)
 | |
| {
 | |
|     /* Helper routine to implement writing to a "set-bitmap" register */
 | |
|     val &= mask_group(cs, attrs);
 | |
|     *reg |= val;
 | |
|     gicv3_redist_update(cs);
 | |
| }
 | |
| 
 | |
| static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
 | |
|                                         uint32_t *reg, uint32_t val)
 | |
| {
 | |
|     /* Helper routine to implement writing to a "clear-bitmap" register */
 | |
|     val &= mask_group(cs, attrs);
 | |
|     *reg &= ~val;
 | |
|     gicv3_redist_update(cs);
 | |
| }
 | |
| 
 | |
| static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
 | |
|                                      uint32_t reg)
 | |
| {
 | |
|     reg &= mask_group(cs, attrs);
 | |
|     return reg;
 | |
| }
 | |
| 
 | |
| static bool vcpu_resident(GICv3CPUState *cs, uint64_t vptaddr)
 | |
| {
 | |
|     /*
 | |
|      * Return true if a vCPU is resident, which is defined by
 | |
|      * whether the GICR_VPENDBASER register is marked VALID and
 | |
|      * has the right virtual pending table address.
 | |
|      */
 | |
|     if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
 | |
|         return false;
 | |
|     }
 | |
|     return vptaddr == (cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_for_one_lpi: Update pending information if this LPI is better
 | |
|  *
 | |
|  * @cs: GICv3CPUState
 | |
|  * @irq: interrupt to look up in the LPI Configuration table
 | |
|  * @ctbase: physical address of the LPI Configuration table to use
 | |
|  * @ds: true if priority value should not be shifted
 | |
|  * @hpp: points to pending information to update
 | |
|  *
 | |
|  * Look up @irq in the Configuration table specified by @ctbase
 | |
|  * to see if it is enabled and what its priority is. If it is an
 | |
|  * enabled interrupt with a higher priority than that currently
 | |
|  * recorded in @hpp, update @hpp.
 | |
|  */
 | |
| static void update_for_one_lpi(GICv3CPUState *cs, int irq,
 | |
|                                uint64_t ctbase, bool ds, PendingIrq *hpp)
 | |
| {
 | |
|     uint8_t lpite;
 | |
|     uint8_t prio;
 | |
| 
 | |
|     address_space_read(&cs->gic->dma_as,
 | |
|                        ctbase + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)),
 | |
|                        MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite));
 | |
| 
 | |
|     if (!(lpite & LPI_CTE_ENABLED)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (ds) {
 | |
|         prio = lpite & LPI_PRIORITY_MASK;
 | |
|     } else {
 | |
|         prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
 | |
|     }
 | |
| 
 | |
|     if ((prio < hpp->prio) ||
 | |
|         ((prio == hpp->prio) && (irq <= hpp->irq))) {
 | |
|         hpp->irq = irq;
 | |
|         hpp->prio = prio;
 | |
|         /* LPIs and vLPIs are always non-secure Grp1 interrupts */
 | |
|         hpp->grp = GICV3_G1NS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_for_all_lpis: Fully scan LPI tables and find best pending LPI
 | |
|  *
 | |
|  * @cs: GICv3CPUState
 | |
|  * @ptbase: physical address of LPI Pending table
 | |
|  * @ctbase: physical address of LPI Configuration table
 | |
|  * @ptsizebits: size of tables, specified as number of interrupt ID bits minus 1
 | |
|  * @ds: true if priority value should not be shifted
 | |
|  * @hpp: points to pending information to set
 | |
|  *
 | |
|  * Recalculate the highest priority pending enabled LPI from scratch,
 | |
|  * and set @hpp accordingly.
 | |
|  *
 | |
|  * We scan the LPI pending table @ptbase; for each pending LPI, we read the
 | |
|  * corresponding entry in the LPI configuration table @ctbase to extract
 | |
|  * the priority and enabled information.
 | |
|  *
 | |
|  * We take @ptsizebits in the form idbits-1 because this is the way that
 | |
|  * LPI table sizes are architecturally specified in GICR_PROPBASER.IDBits
 | |
|  * and in the VMAPP command's VPT_size field.
 | |
|  */
 | |
| static void update_for_all_lpis(GICv3CPUState *cs, uint64_t ptbase,
 | |
|                                 uint64_t ctbase, unsigned ptsizebits,
 | |
|                                 bool ds, PendingIrq *hpp)
 | |
| {
 | |
|     AddressSpace *as = &cs->gic->dma_as;
 | |
|     uint8_t pend;
 | |
|     uint32_t pendt_size = (1ULL << (ptsizebits + 1));
 | |
|     int i, bit;
 | |
| 
 | |
|     hpp->prio = 0xff;
 | |
| 
 | |
|     for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
 | |
|         address_space_read(as, ptbase + i, MEMTXATTRS_UNSPECIFIED, &pend, 1);
 | |
|         while (pend) {
 | |
|             bit = ctz32(pend);
 | |
|             update_for_one_lpi(cs, i * 8 + bit, ctbase, ds, hpp);
 | |
|             pend &= ~(1 << bit);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_lpi_pending_bit: Set or clear pending bit for an LPI
 | |
|  *
 | |
|  * @cs: GICv3CPUState
 | |
|  * @ptbase: physical address of LPI Pending table
 | |
|  * @irq: LPI to change pending state for
 | |
|  * @level: false to clear pending state, true to set
 | |
|  *
 | |
|  * Returns true if we needed to do something, false if the pending bit
 | |
|  * was already at @level.
 | |
|  */
 | |
| static bool set_pending_table_bit(GICv3CPUState *cs, uint64_t ptbase,
 | |
|                                   int irq, bool level)
 | |
| {
 | |
|     AddressSpace *as = &cs->gic->dma_as;
 | |
|     uint64_t addr = ptbase + irq / 8;
 | |
|     uint8_t pend;
 | |
| 
 | |
|     address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
 | |
|     if (extract32(pend, irq % 8, 1) == level) {
 | |
|         /* Bit already at requested state, no action required */
 | |
|         return false;
 | |
|     }
 | |
|     pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
 | |
|     address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
 | |
|                                     int irq)
 | |
| {
 | |
|     /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
 | |
|      * honouring security state (these are RAZ/WI for Group 0 or Secure
 | |
|      * Group 1 interrupts).
 | |
|      */
 | |
|     uint32_t prio;
 | |
| 
 | |
|     prio = cs->gicr_ipriorityr[irq];
 | |
| 
 | |
|     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 | |
|         if (!(cs->gicr_igroupr0 & (1U << irq))) {
 | |
|             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
 | |
|             return 0;
 | |
|         }
 | |
|         /* NS view of the interrupt priority */
 | |
|         prio = (prio << 1) & 0xff;
 | |
|     }
 | |
|     return prio;
 | |
| }
 | |
| 
 | |
| static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
 | |
|                                   uint8_t value)
 | |
| {
 | |
|     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
 | |
|      * honouring security state (these are RAZ/WI for Group 0 or Secure
 | |
|      * Group 1 interrupts).
 | |
|      */
 | |
|     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 | |
|         if (!(cs->gicr_igroupr0 & (1U << irq))) {
 | |
|             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
 | |
|             return;
 | |
|         }
 | |
|         /* NS view of the interrupt priority */
 | |
|         value = 0x80 | (value >> 1);
 | |
|     }
 | |
|     cs->gicr_ipriorityr[irq] = value;
 | |
| }
 | |
| 
 | |
| static void gicv3_redist_update_vlpi_only(GICv3CPUState *cs)
 | |
| {
 | |
|     uint64_t ptbase, ctbase, idbits;
 | |
| 
 | |
|     if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
 | |
|         cs->hppvlpi.prio = 0xff;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ptbase = cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK;
 | |
|     ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
 | |
|     idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
 | |
| 
 | |
|     update_for_all_lpis(cs, ptbase, ctbase, idbits, true, &cs->hppvlpi);
 | |
| }
 | |
| 
 | |
| static void gicv3_redist_update_vlpi(GICv3CPUState *cs)
 | |
| {
 | |
|     gicv3_redist_update_vlpi_only(cs);
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
| }
 | |
| 
 | |
| static void gicr_write_vpendbaser(GICv3CPUState *cs, uint64_t newval)
 | |
| {
 | |
|     /* Write @newval to GICR_VPENDBASER, handling its effects */
 | |
|     bool oldvalid = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID);
 | |
|     bool newvalid = FIELD_EX64(newval, GICR_VPENDBASER, VALID);
 | |
|     bool pendinglast;
 | |
| 
 | |
|     /*
 | |
|      * The DIRTY bit is read-only and for us is always zero;
 | |
|      * other fields are writable.
 | |
|      */
 | |
|     newval &= R_GICR_VPENDBASER_INNERCACHE_MASK |
 | |
|         R_GICR_VPENDBASER_SHAREABILITY_MASK |
 | |
|         R_GICR_VPENDBASER_PHYADDR_MASK |
 | |
|         R_GICR_VPENDBASER_OUTERCACHE_MASK |
 | |
|         R_GICR_VPENDBASER_PENDINGLAST_MASK |
 | |
|         R_GICR_VPENDBASER_IDAI_MASK |
 | |
|         R_GICR_VPENDBASER_VALID_MASK;
 | |
| 
 | |
|     if (oldvalid && newvalid) {
 | |
|         /*
 | |
|          * Changing other fields while VALID is 1 is UNPREDICTABLE;
 | |
|          * we choose to log and ignore the write.
 | |
|          */
 | |
|         if (cs->gicr_vpendbaser ^ newval) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "%s: Changing GICR_VPENDBASER when VALID=1 "
 | |
|                           "is UNPREDICTABLE\n", __func__);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     if (!oldvalid && !newvalid) {
 | |
|         cs->gicr_vpendbaser = newval;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (newvalid) {
 | |
|         /*
 | |
|          * Valid going from 0 to 1: update hppvlpi from tables.
 | |
|          * If IDAI is 0 we are allowed to use the info we cached in
 | |
|          * the IMPDEF area of the table.
 | |
|          * PendingLast is RES1 when we make this transition.
 | |
|          */
 | |
|         pendinglast = true;
 | |
|     } else {
 | |
|         /*
 | |
|          * Valid going from 1 to 0:
 | |
|          * Set PendingLast if there was a pending enabled interrupt
 | |
|          * for the vPE that was just descheduled.
 | |
|          * If we cache info in the IMPDEF area, write it out here.
 | |
|          */
 | |
|         pendinglast = cs->hppvlpi.prio != 0xff;
 | |
|     }
 | |
| 
 | |
|     newval = FIELD_DP64(newval, GICR_VPENDBASER, PENDINGLAST, pendinglast);
 | |
|     cs->gicr_vpendbaser = newval;
 | |
|     gicv3_redist_update_vlpi(cs);
 | |
| }
 | |
| 
 | |
| static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
 | |
|                               uint64_t *data, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 | |
|         *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
 | |
|                                uint64_t value, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 | |
|         gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
 | |
|         gicv3_redist_update(cs);
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
 | |
|                               uint64_t *data, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case GICR_CTLR:
 | |
|         *data = cs->gicr_ctlr;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_IIDR:
 | |
|         *data = gicv3_iidr();
 | |
|         return MEMTX_OK;
 | |
|     case GICR_TYPER:
 | |
|         *data = extract64(cs->gicr_typer, 0, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_TYPER + 4:
 | |
|         *data = extract64(cs->gicr_typer, 32, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_STATUSR:
 | |
|         /* RAZ/WI for us (this is an optional register and our implementation
 | |
|          * does not track RO/WO/reserved violations to report them to the guest)
 | |
|          */
 | |
|         *data = 0;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_WAKER:
 | |
|         *data = cs->gicr_waker;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PROPBASER:
 | |
|         *data = extract64(cs->gicr_propbaser, 0, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PROPBASER + 4:
 | |
|         *data = extract64(cs->gicr_propbaser, 32, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PENDBASER:
 | |
|         *data = extract64(cs->gicr_pendbaser, 0, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PENDBASER + 4:
 | |
|         *data = extract64(cs->gicr_pendbaser, 32, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_IGROUPR0:
 | |
|         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 | |
|             *data = 0;
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         *data = cs->gicr_igroupr0;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ISENABLER0:
 | |
|     case GICR_ICENABLER0:
 | |
|         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ISPENDR0:
 | |
|     case GICR_ICPENDR0:
 | |
|     {
 | |
|         /* The pending register reads as the logical OR of the pending
 | |
|          * latch and the input line level for level-triggered interrupts.
 | |
|          */
 | |
|         uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
 | |
|         *data = gicr_read_bitmap_reg(cs, attrs, val);
 | |
|         return MEMTX_OK;
 | |
|     }
 | |
|     case GICR_ISACTIVER0:
 | |
|     case GICR_ICACTIVER0:
 | |
|         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 | |
|     {
 | |
|         int i, irq = offset - GICR_IPRIORITYR;
 | |
|         uint32_t value = 0;
 | |
| 
 | |
|         for (i = irq + 3; i >= irq; i--) {
 | |
|             value <<= 8;
 | |
|             value |= gicr_read_ipriorityr(cs, attrs, i);
 | |
|         }
 | |
|         *data = value;
 | |
|         return MEMTX_OK;
 | |
|     }
 | |
|     case GICR_ICFGR0:
 | |
|     case GICR_ICFGR1:
 | |
|     {
 | |
|         /* Our edge_trigger bitmap is one bit per irq; take the correct
 | |
|          * half of it, and spread it out into the odd bits.
 | |
|          */
 | |
|         uint32_t value;
 | |
| 
 | |
|         value = cs->edge_trigger & mask_group(cs, attrs);
 | |
|         value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
 | |
|         value = half_shuffle32(value) << 1;
 | |
|         *data = value;
 | |
|         return MEMTX_OK;
 | |
|     }
 | |
|     case GICR_IGRPMODR0:
 | |
|         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 | |
|             /* RAZ/WI if security disabled, or if
 | |
|              * security enabled and this is an NS access
 | |
|              */
 | |
|             *data = 0;
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         *data = cs->gicr_igrpmodr0;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_NSACR:
 | |
|         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 | |
|             /* RAZ/WI if security disabled, or if
 | |
|              * security enabled and this is an NS access
 | |
|              */
 | |
|             *data = 0;
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         *data = cs->gicr_nsacr;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
 | |
|         *data = gicv3_idreg(cs->gic, offset - GICR_IDREGS, GICV3_PIDR0_REDIST);
 | |
|         return MEMTX_OK;
 | |
|         /*
 | |
|          * VLPI frame registers. We don't need a version check for
 | |
|          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
 | |
|          * prevent pre-v4 GIC from passing us offsets this high.
 | |
|          */
 | |
|     case GICR_VPROPBASER:
 | |
|         *data = extract64(cs->gicr_vpropbaser, 0, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPROPBASER + 4:
 | |
|         *data = extract64(cs->gicr_vpropbaser, 32, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPENDBASER:
 | |
|         *data = extract64(cs->gicr_vpendbaser, 0, 32);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPENDBASER + 4:
 | |
|         *data = extract64(cs->gicr_vpendbaser, 32, 32);
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
 | |
|                                uint64_t value, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case GICR_CTLR:
 | |
|         /* For our implementation, GICR_TYPER.DPGS is 0 and so all
 | |
|          * the DPG bits are RAZ/WI. We don't do anything asynchronously,
 | |
|          * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
 | |
|          * implement LPIs) so Enable_LPIs is programmable.
 | |
|          */
 | |
|         if (cs->gicr_typer & GICR_TYPER_PLPIS) {
 | |
|             if (value & GICR_CTLR_ENABLE_LPIS) {
 | |
|                 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
 | |
|                 /* Check for any pending interr in pending table */
 | |
|                 gicv3_redist_update_lpi(cs);
 | |
|             } else {
 | |
|                 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
 | |
|                 /* cs->hppi might have been an LPI; recalculate */
 | |
|                 gicv3_redist_update(cs);
 | |
|             }
 | |
|         }
 | |
|         return MEMTX_OK;
 | |
|     case GICR_STATUSR:
 | |
|         /* RAZ/WI for our implementation */
 | |
|         return MEMTX_OK;
 | |
|     case GICR_WAKER:
 | |
|         /* Only the ProcessorSleep bit is writable. When the guest sets
 | |
|          * it, it requests that we transition the channel between the
 | |
|          * redistributor and the cpu interface to quiescent, and that
 | |
|          * we set the ChildrenAsleep bit once the inteface has reached the
 | |
|          * quiescent state.
 | |
|          * Setting the ProcessorSleep to 0 reverses the quiescing, and
 | |
|          * ChildrenAsleep is cleared once the transition is complete.
 | |
|          * Since our interface is not asynchronous, we complete these
 | |
|          * transitions instantaneously, so we set ChildrenAsleep to the
 | |
|          * same value as ProcessorSleep here.
 | |
|          */
 | |
|         value &= GICR_WAKER_ProcessorSleep;
 | |
|         if (value & GICR_WAKER_ProcessorSleep) {
 | |
|             value |= GICR_WAKER_ChildrenAsleep;
 | |
|         }
 | |
|         cs->gicr_waker = value;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PROPBASER:
 | |
|         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PROPBASER + 4:
 | |
|         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PENDBASER:
 | |
|         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PENDBASER + 4:
 | |
|         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_IGROUPR0:
 | |
|         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         cs->gicr_igroupr0 = value;
 | |
|         gicv3_redist_update(cs);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ISENABLER0:
 | |
|         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ICENABLER0:
 | |
|         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ISPENDR0:
 | |
|         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ICPENDR0:
 | |
|         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ISACTIVER0:
 | |
|         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ICACTIVER0:
 | |
|         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
 | |
|     {
 | |
|         int i, irq = offset - GICR_IPRIORITYR;
 | |
| 
 | |
|         for (i = irq; i < irq + 4; i++, value >>= 8) {
 | |
|             gicr_write_ipriorityr(cs, attrs, i, value);
 | |
|         }
 | |
|         gicv3_redist_update(cs);
 | |
|         return MEMTX_OK;
 | |
|     }
 | |
|     case GICR_ICFGR0:
 | |
|         /* Register is all RAZ/WI or RAO/WI bits */
 | |
|         return MEMTX_OK;
 | |
|     case GICR_ICFGR1:
 | |
|     {
 | |
|         uint32_t mask;
 | |
| 
 | |
|         /* Since our edge_trigger bitmap is one bit per irq, our input
 | |
|          * 32-bits will compress down into 16 bits which we need
 | |
|          * to write into the bitmap.
 | |
|          */
 | |
|         value = half_unshuffle32(value >> 1) << 16;
 | |
|         mask = mask_group(cs, attrs) & 0xffff0000U;
 | |
| 
 | |
|         cs->edge_trigger &= ~mask;
 | |
|         cs->edge_trigger |= (value & mask);
 | |
| 
 | |
|         gicv3_redist_update(cs);
 | |
|         return MEMTX_OK;
 | |
|     }
 | |
|     case GICR_IGRPMODR0:
 | |
|         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 | |
|             /* RAZ/WI if security disabled, or if
 | |
|              * security enabled and this is an NS access
 | |
|              */
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         cs->gicr_igrpmodr0 = value;
 | |
|         gicv3_redist_update(cs);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_NSACR:
 | |
|         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 | |
|             /* RAZ/WI if security disabled, or if
 | |
|              * security enabled and this is an NS access
 | |
|              */
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         cs->gicr_nsacr = value;
 | |
|         /* no update required as this only affects access permission checks */
 | |
|         return MEMTX_OK;
 | |
|     case GICR_IIDR:
 | |
|     case GICR_TYPER:
 | |
|     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
 | |
|         /* RO registers, ignore the write */
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "%s: invalid guest write to RO register at offset "
 | |
|                       TARGET_FMT_plx "\n", __func__, offset);
 | |
|         return MEMTX_OK;
 | |
|         /*
 | |
|          * VLPI frame registers. We don't need a version check for
 | |
|          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
 | |
|          * prevent pre-v4 GIC from passing us offsets this high.
 | |
|          */
 | |
|     case GICR_VPROPBASER:
 | |
|         cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 0, 32, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPROPBASER + 4:
 | |
|         cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 32, 32, value);
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPENDBASER:
 | |
|         gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 0, 32, value));
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPENDBASER + 4:
 | |
|         gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 32, 32, value));
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
 | |
|                                uint64_t *data, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case GICR_TYPER:
 | |
|         *data = cs->gicr_typer;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PROPBASER:
 | |
|         *data = cs->gicr_propbaser;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PENDBASER:
 | |
|         *data = cs->gicr_pendbaser;
 | |
|         return MEMTX_OK;
 | |
|         /*
 | |
|          * VLPI frame registers. We don't need a version check for
 | |
|          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
 | |
|          * prevent pre-v4 GIC from passing us offsets this high.
 | |
|          */
 | |
|     case GICR_VPROPBASER:
 | |
|         *data = cs->gicr_vpropbaser;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPENDBASER:
 | |
|         *data = cs->gicr_vpendbaser;
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
 | |
|                                 uint64_t value, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case GICR_PROPBASER:
 | |
|         cs->gicr_propbaser = value;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_PENDBASER:
 | |
|         cs->gicr_pendbaser = value;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_TYPER:
 | |
|         /* RO register, ignore the write */
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "%s: invalid guest write to RO register at offset "
 | |
|                       TARGET_FMT_plx "\n", __func__, offset);
 | |
|         return MEMTX_OK;
 | |
|         /*
 | |
|          * VLPI frame registers. We don't need a version check for
 | |
|          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
 | |
|          * prevent pre-v4 GIC from passing us offsets this high.
 | |
|          */
 | |
|     case GICR_VPROPBASER:
 | |
|         cs->gicr_vpropbaser = value;
 | |
|         return MEMTX_OK;
 | |
|     case GICR_VPENDBASER:
 | |
|         gicr_write_vpendbaser(cs, value);
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
 | |
|                               unsigned size, MemTxAttrs attrs)
 | |
| {
 | |
|     GICv3RedistRegion *region = opaque;
 | |
|     GICv3State *s = region->gic;
 | |
|     GICv3CPUState *cs;
 | |
|     MemTxResult r;
 | |
|     int cpuidx;
 | |
| 
 | |
|     assert((offset & (size - 1)) == 0);
 | |
| 
 | |
|     /*
 | |
|      * There are (for GICv3) two 64K redistributor pages per CPU.
 | |
|      * In some cases the redistributor pages for all CPUs are not
 | |
|      * contiguous (eg on the virt board they are split into two
 | |
|      * parts if there are too many CPUs to all fit in the same place
 | |
|      * in the memory map); if so then the GIC has multiple MemoryRegions
 | |
|      * for the redistributors.
 | |
|      */
 | |
|     cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
 | |
|     offset %= gicv3_redist_size(s);
 | |
| 
 | |
|     cs = &s->cpu[cpuidx];
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         r = gicr_readb(cs, offset, data, attrs);
 | |
|         break;
 | |
|     case 4:
 | |
|         r = gicr_readl(cs, offset, data, attrs);
 | |
|         break;
 | |
|     case 8:
 | |
|         r = gicr_readll(cs, offset, data, attrs);
 | |
|         break;
 | |
|     default:
 | |
|         r = MEMTX_ERROR;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (r != MEMTX_OK) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "%s: invalid guest read at offset " TARGET_FMT_plx
 | |
|                       " size %u\n", __func__, offset, size);
 | |
|         trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
 | |
|                                    size, attrs.secure);
 | |
|         /* The spec requires that reserved registers are RAZ/WI;
 | |
|          * so use MEMTX_ERROR returns from leaf functions as a way to
 | |
|          * trigger the guest-error logging but don't return it to
 | |
|          * the caller, or we'll cause a spurious guest data abort.
 | |
|          */
 | |
|         r = MEMTX_OK;
 | |
|         *data = 0;
 | |
|     } else {
 | |
|         trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
 | |
|                                 size, attrs.secure);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
 | |
|                                unsigned size, MemTxAttrs attrs)
 | |
| {
 | |
|     GICv3RedistRegion *region = opaque;
 | |
|     GICv3State *s = region->gic;
 | |
|     GICv3CPUState *cs;
 | |
|     MemTxResult r;
 | |
|     int cpuidx;
 | |
| 
 | |
|     assert((offset & (size - 1)) == 0);
 | |
| 
 | |
|     /*
 | |
|      * There are (for GICv3) two 64K redistributor pages per CPU.
 | |
|      * In some cases the redistributor pages for all CPUs are not
 | |
|      * contiguous (eg on the virt board they are split into two
 | |
|      * parts if there are too many CPUs to all fit in the same place
 | |
|      * in the memory map); if so then the GIC has multiple MemoryRegions
 | |
|      * for the redistributors.
 | |
|      */
 | |
|     cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
 | |
|     offset %= gicv3_redist_size(s);
 | |
| 
 | |
|     cs = &s->cpu[cpuidx];
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         r = gicr_writeb(cs, offset, data, attrs);
 | |
|         break;
 | |
|     case 4:
 | |
|         r = gicr_writel(cs, offset, data, attrs);
 | |
|         break;
 | |
|     case 8:
 | |
|         r = gicr_writell(cs, offset, data, attrs);
 | |
|         break;
 | |
|     default:
 | |
|         r = MEMTX_ERROR;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (r != MEMTX_OK) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "%s: invalid guest write at offset " TARGET_FMT_plx
 | |
|                       " size %u\n", __func__, offset, size);
 | |
|         trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
 | |
|                                     size, attrs.secure);
 | |
|         /* The spec requires that reserved registers are RAZ/WI;
 | |
|          * so use MEMTX_ERROR returns from leaf functions as a way to
 | |
|          * trigger the guest-error logging but don't return it to
 | |
|          * the caller, or we'll cause a spurious guest data abort.
 | |
|          */
 | |
|         r = MEMTX_OK;
 | |
|     } else {
 | |
|         trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
 | |
|                                  size, attrs.secure);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
 | |
| {
 | |
|     uint64_t lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
 | |
| 
 | |
|     update_for_one_lpi(cs, irq, lpict_baddr,
 | |
|                        cs->gic->gicd_ctlr & GICD_CTLR_DS,
 | |
|                        &cs->hpplpi);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * This function scans the LPI pending table and for each pending
 | |
|      * LPI, reads the corresponding entry from LPI configuration table
 | |
|      * to extract the priority info and determine if the current LPI
 | |
|      * priority is lower than the last computed high priority lpi interrupt.
 | |
|      * If yes, replace current LPI as the new high priority lpi interrupt.
 | |
|      */
 | |
|     uint64_t lpipt_baddr, lpict_baddr;
 | |
|     uint64_t idbits;
 | |
| 
 | |
|     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
 | |
|                  GICD_TYPER_IDBITS);
 | |
| 
 | |
|     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
 | |
|     lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
 | |
| 
 | |
|     update_for_all_lpis(cs, lpipt_baddr, lpict_baddr, idbits,
 | |
|                         cs->gic->gicd_ctlr & GICD_CTLR_DS, &cs->hpplpi);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_update_lpi(GICv3CPUState *cs)
 | |
| {
 | |
|     gicv3_redist_update_lpi_only(cs);
 | |
|     gicv3_redist_update(cs);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
 | |
| {
 | |
|     /*
 | |
|      * This function updates the pending bit in lpi pending table for
 | |
|      * the irq being activated or deactivated.
 | |
|      */
 | |
|     uint64_t lpipt_baddr;
 | |
| 
 | |
|     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
 | |
|     if (!set_pending_table_bit(cs, lpipt_baddr, irq, level)) {
 | |
|         /* no change in the value of pending bit, return */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * check if this LPI is better than the current hpplpi, if yes
 | |
|      * just set hpplpi.prio and .irq without doing a full rescan
 | |
|      */
 | |
|     if (level) {
 | |
|         gicv3_redist_check_lpi_priority(cs, irq);
 | |
|         gicv3_redist_update(cs);
 | |
|     } else {
 | |
|         if (irq == cs->hpplpi.irq) {
 | |
|             gicv3_redist_update_lpi(cs);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
 | |
| {
 | |
|     uint64_t idbits;
 | |
| 
 | |
|     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
 | |
|                  GICD_TYPER_IDBITS);
 | |
| 
 | |
|     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
 | |
|         (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* set/clear the pending bit for this irq */
 | |
|     gicv3_redist_lpi_pending(cs, irq, level);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_inv_lpi(GICv3CPUState *cs, int irq)
 | |
| {
 | |
|     /*
 | |
|      * The only cached information for LPIs we have is the HPPLPI.
 | |
|      * We could be cleverer about identifying when we don't need
 | |
|      * to do a full rescan of the pending table, but until we find
 | |
|      * this is a performance issue, just always recalculate.
 | |
|      */
 | |
|     gicv3_redist_update_lpi(cs);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq)
 | |
| {
 | |
|     /*
 | |
|      * Move the specified LPI's pending state from the source redistributor
 | |
|      * to the destination.
 | |
|      *
 | |
|      * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
 | |
|      * we choose to NOP. If LPIs are disabled on source there's nothing
 | |
|      * to be transferred anyway.
 | |
|      */
 | |
|     uint64_t idbits;
 | |
|     uint32_t pendt_size;
 | |
|     uint64_t src_baddr;
 | |
| 
 | |
|     if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
 | |
|         !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
 | |
|                  GICD_TYPER_IDBITS);
 | |
|     idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
 | |
|                  idbits);
 | |
| 
 | |
|     pendt_size = 1ULL << (idbits + 1);
 | |
|     if ((irq / 8) >= pendt_size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
 | |
| 
 | |
|     if (!set_pending_table_bit(src, src_baddr, irq, 0)) {
 | |
|         /* Not pending on source, nothing to do */
 | |
|         return;
 | |
|     }
 | |
|     if (irq == src->hpplpi.irq) {
 | |
|         /*
 | |
|          * We just made this LPI not-pending so only need to update
 | |
|          * if it was previously the highest priority pending LPI
 | |
|          */
 | |
|         gicv3_redist_update_lpi(src);
 | |
|     }
 | |
|     /* Mark it pending on the destination */
 | |
|     gicv3_redist_lpi_pending(dest, irq, 1);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest)
 | |
| {
 | |
|     /*
 | |
|      * We must move all pending LPIs from the source redistributor
 | |
|      * to the destination. That is, for every pending LPI X on
 | |
|      * src, we must set it not-pending on src and pending on dest.
 | |
|      * LPIs that are already pending on dest are not cleared.
 | |
|      *
 | |
|      * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
 | |
|      * we choose to NOP. If LPIs are disabled on source there's nothing
 | |
|      * to be transferred anyway.
 | |
|      */
 | |
|     AddressSpace *as = &src->gic->dma_as;
 | |
|     uint64_t idbits;
 | |
|     uint32_t pendt_size;
 | |
|     uint64_t src_baddr, dest_baddr;
 | |
|     int i;
 | |
| 
 | |
|     if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
 | |
|         !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
 | |
|                  GICD_TYPER_IDBITS);
 | |
|     idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
 | |
|                  idbits);
 | |
| 
 | |
|     pendt_size = 1ULL << (idbits + 1);
 | |
|     src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
 | |
|     dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
 | |
| 
 | |
|     for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
 | |
|         uint8_t src_pend, dest_pend;
 | |
| 
 | |
|         address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
 | |
|                            &src_pend, sizeof(src_pend));
 | |
|         if (!src_pend) {
 | |
|             continue;
 | |
|         }
 | |
|         address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
 | |
|                            &dest_pend, sizeof(dest_pend));
 | |
|         dest_pend |= src_pend;
 | |
|         src_pend = 0;
 | |
|         address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
 | |
|                             &src_pend, sizeof(src_pend));
 | |
|         address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
 | |
|                             &dest_pend, sizeof(dest_pend));
 | |
|     }
 | |
| 
 | |
|     gicv3_redist_update_lpi(src);
 | |
|     gicv3_redist_update_lpi(dest);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_vlpi_pending(GICv3CPUState *cs, int irq, int level)
 | |
| {
 | |
|     /*
 | |
|      * Change the pending state of the specified vLPI.
 | |
|      * Unlike gicv3_redist_process_vlpi(), we know here that the
 | |
|      * vCPU is definitely resident on this redistributor, and that
 | |
|      * the irq is in range.
 | |
|      */
 | |
|     uint64_t vptbase, ctbase;
 | |
| 
 | |
|     vptbase = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, PHYADDR) << 16;
 | |
| 
 | |
|     if (set_pending_table_bit(cs, vptbase, irq, level)) {
 | |
|         if (level) {
 | |
|             /* Check whether this vLPI is now the best */
 | |
|             ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
 | |
|             update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
 | |
|             gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
|         } else {
 | |
|             /* Only need to recalculate if this was previously the best vLPI */
 | |
|             if (irq == cs->hppvlpi.irq) {
 | |
|                 gicv3_redist_update_vlpi(cs);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void gicv3_redist_process_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr,
 | |
|                                int doorbell, int level)
 | |
| {
 | |
|     bool bit_changed;
 | |
|     bool resident = vcpu_resident(cs, vptaddr);
 | |
|     uint64_t ctbase;
 | |
| 
 | |
|     if (resident) {
 | |
|         uint32_t idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
 | |
|         if (irq >= (1ULL << (idbits + 1))) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bit_changed = set_pending_table_bit(cs, vptaddr, irq, level);
 | |
|     if (resident && bit_changed) {
 | |
|         if (level) {
 | |
|             /* Check whether this vLPI is now the best */
 | |
|             ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
 | |
|             update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
 | |
|             gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
|         } else {
 | |
|             /* Only need to recalculate if this was previously the best vLPI */
 | |
|             if (irq == cs->hppvlpi.irq) {
 | |
|                 gicv3_redist_update_vlpi(cs);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!resident && level && doorbell != INTID_SPURIOUS &&
 | |
|         (cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
 | |
|         /* vCPU is not currently resident: ring the doorbell */
 | |
|         gicv3_redist_process_lpi(cs, doorbell, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void gicv3_redist_mov_vlpi(GICv3CPUState *src, uint64_t src_vptaddr,
 | |
|                            GICv3CPUState *dest, uint64_t dest_vptaddr,
 | |
|                            int irq, int doorbell)
 | |
| {
 | |
|     /*
 | |
|      * Move the specified vLPI's pending state from the source redistributor
 | |
|      * to the destination.
 | |
|      */
 | |
|     if (!set_pending_table_bit(src, src_vptaddr, irq, 0)) {
 | |
|         /* Not pending on source, nothing to do */
 | |
|         return;
 | |
|     }
 | |
|     if (vcpu_resident(src, src_vptaddr) && irq == src->hppvlpi.irq) {
 | |
|         /*
 | |
|          * Update src's cached highest-priority pending vLPI if we just made
 | |
|          * it not-pending
 | |
|          */
 | |
|         gicv3_redist_update_vlpi(src);
 | |
|     }
 | |
|     /*
 | |
|      * Mark the vLPI pending on the destination (ringing the doorbell
 | |
|      * if the vCPU isn't resident)
 | |
|      */
 | |
|     gicv3_redist_process_vlpi(dest, irq, dest_vptaddr, doorbell, irq);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr)
 | |
| {
 | |
|     if (!vcpu_resident(cs, vptaddr)) {
 | |
|         /* We don't have anything cached if the vCPU isn't resident */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Otherwise, our only cached information is the HPPVLPI info */
 | |
|     gicv3_redist_update_vlpi(cs);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_inv_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr)
 | |
| {
 | |
|     /*
 | |
|      * The only cached information for LPIs we have is the HPPLPI.
 | |
|      * We could be cleverer about identifying when we don't need
 | |
|      * to do a full rescan of the pending table, but until we find
 | |
|      * this is a performance issue, just always recalculate.
 | |
|      */
 | |
|     gicv3_redist_vinvall(cs, vptaddr);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
 | |
| {
 | |
|     /* Update redistributor state for a change in an external PPI input line */
 | |
|     if (level == extract32(cs->level, irq, 1)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
 | |
| 
 | |
|     cs->level = deposit32(cs->level, irq, 1, level);
 | |
| 
 | |
|     if (level) {
 | |
|         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
 | |
|         if (extract32(cs->edge_trigger, irq, 1)) {
 | |
|             cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     gicv3_redist_update(cs);
 | |
| }
 | |
| 
 | |
| void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
 | |
| {
 | |
|     /* Update redistributor state for a generated SGI */
 | |
|     int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
 | |
| 
 | |
|     /* If we are asked for a Secure Group 1 SGI and it's actually
 | |
|      * configured as Secure Group 0 this is OK (subject to the usual
 | |
|      * NSACR checks).
 | |
|      */
 | |
|     if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
 | |
|         grp = GICV3_G0;
 | |
|     }
 | |
| 
 | |
|     if (grp != irqgrp) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
 | |
|         /* If security is enabled we must test the NSACR bits */
 | |
|         int nsaccess = gicr_ns_access(cs, irq);
 | |
| 
 | |
|         if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
 | |
|             (irqgrp == GICV3_G1 && nsaccess < 2)) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* OK, we can accept the SGI */
 | |
|     trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
 | |
|     cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
 | |
|     gicv3_redist_update(cs);
 | |
| }
 |