 acf2f8595a
			
		
	
	
		acf2f8595a
		
	
	
	
	
		
			
			This had been pulled in from tcg/tcg.h, via exec/cpu_ldst.h, via exec/exec-all.h, but the include of tcg.h will be removed. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			361 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU AVR CPU helpers
 | |
|  *
 | |
|  * Copyright (c) 2016-2020 Michael Rolnik
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see
 | |
|  * <http://www.gnu.org/licenses/lgpl-2.1.html>
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "cpu.h"
 | |
| #include "hw/core/tcg-cpu-ops.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "exec/helper-proto.h"
 | |
| 
 | |
| bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 | |
| {
 | |
|     AVRCPU *cpu = AVR_CPU(cs);
 | |
|     CPUAVRState *env = &cpu->env;
 | |
| 
 | |
|     /*
 | |
|      * We cannot separate a skip from the next instruction,
 | |
|      * as the skip would not be preserved across the interrupt.
 | |
|      * Separating the two insn normally only happens at page boundaries.
 | |
|      */
 | |
|     if (env->skip) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (interrupt_request & CPU_INTERRUPT_RESET) {
 | |
|         if (cpu_interrupts_enabled(env)) {
 | |
|             cs->exception_index = EXCP_RESET;
 | |
|             avr_cpu_do_interrupt(cs);
 | |
| 
 | |
|             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
 | |
|             int index = ctz32(env->intsrc);
 | |
|             cs->exception_index = EXCP_INT(index);
 | |
|             avr_cpu_do_interrupt(cs);
 | |
| 
 | |
|             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
 | |
|             if (!env->intsrc) {
 | |
|                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void avr_cpu_do_interrupt(CPUState *cs)
 | |
| {
 | |
|     AVRCPU *cpu = AVR_CPU(cs);
 | |
|     CPUAVRState *env = &cpu->env;
 | |
| 
 | |
|     uint32_t ret = env->pc_w;
 | |
|     int vector = 0;
 | |
|     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
 | |
|     int base = 0;
 | |
| 
 | |
|     if (cs->exception_index == EXCP_RESET) {
 | |
|         vector = 0;
 | |
|     } else if (env->intsrc != 0) {
 | |
|         vector = ctz32(env->intsrc) + 1;
 | |
|     }
 | |
| 
 | |
|     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
 | |
|         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
 | |
|         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
 | |
|         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
 | |
|     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
 | |
|         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
 | |
|         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
 | |
|     } else {
 | |
|         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
 | |
|     }
 | |
| 
 | |
|     env->pc_w = base + vector * size;
 | |
|     env->sregI = 0; /* clear Global Interrupt Flag */
 | |
| 
 | |
|     cs->exception_index = -1;
 | |
| }
 | |
| 
 | |
| hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 | |
| {
 | |
|     return addr; /* I assume 1:1 address correspondence */
 | |
| }
 | |
| 
 | |
| bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 | |
|                       MMUAccessType access_type, int mmu_idx,
 | |
|                       bool probe, uintptr_t retaddr)
 | |
| {
 | |
|     int prot, page_size = TARGET_PAGE_SIZE;
 | |
|     uint32_t paddr;
 | |
| 
 | |
|     address &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     if (mmu_idx == MMU_CODE_IDX) {
 | |
|         /* Access to code in flash. */
 | |
|         paddr = OFFSET_CODE + address;
 | |
|         prot = PAGE_READ | PAGE_EXEC;
 | |
|         if (paddr >= OFFSET_DATA) {
 | |
|             /*
 | |
|              * This should not be possible via any architectural operations.
 | |
|              * There is certainly not an exception that we can deliver.
 | |
|              * Accept probing that might come from generic code.
 | |
|              */
 | |
|             if (probe) {
 | |
|                 return false;
 | |
|             }
 | |
|             error_report("execution left flash memory");
 | |
|             abort();
 | |
|         }
 | |
|     } else {
 | |
|         /* Access to memory. */
 | |
|         paddr = OFFSET_DATA + address;
 | |
|         prot = PAGE_READ | PAGE_WRITE;
 | |
|         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 | |
|             /*
 | |
|              * Access to CPU registers, exit and rebuilt this TB to use
 | |
|              * full access in case it touches specially handled registers
 | |
|              * like SREG or SP.  For probing, set page_size = 1, in order
 | |
|              * to force tlb_fill to be called for the next access.
 | |
|              */
 | |
|             if (probe) {
 | |
|                 page_size = 1;
 | |
|             } else {
 | |
|                 AVRCPU *cpu = AVR_CPU(cs);
 | |
|                 CPUAVRState *env = &cpu->env;
 | |
|                 env->fullacc = 1;
 | |
|                 cpu_loop_exit_restore(cs, retaddr);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  helpers
 | |
|  */
 | |
| 
 | |
| void helper_sleep(CPUAVRState *env)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     cs->exception_index = EXCP_HLT;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void helper_unsupported(CPUAVRState *env)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     /*
 | |
|      *  I count not find what happens on the real platform, so
 | |
|      *  it's EXCP_DEBUG for meanwhile
 | |
|      */
 | |
|     cs->exception_index = EXCP_DEBUG;
 | |
|     if (qemu_loglevel_mask(LOG_UNIMP)) {
 | |
|         qemu_log("UNSUPPORTED\n");
 | |
|         cpu_dump_state(cs, stderr, 0);
 | |
|     }
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void helper_debug(CPUAVRState *env)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     cs->exception_index = EXCP_DEBUG;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void helper_break(CPUAVRState *env)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     cs->exception_index = EXCP_DEBUG;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void helper_wdr(CPUAVRState *env)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function implements IN instruction
 | |
|  *
 | |
|  * It does the following
 | |
|  * a.  if an IO register belongs to CPU, its value is read and returned
 | |
|  * b.  otherwise io address is translated to mem address and physical memory
 | |
|  *     is read.
 | |
|  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 | |
|  *
 | |
|  */
 | |
| target_ulong helper_inb(CPUAVRState *env, uint32_t port)
 | |
| {
 | |
|     target_ulong data = 0;
 | |
| 
 | |
|     switch (port) {
 | |
|     case 0x38: /* RAMPD */
 | |
|         data = 0xff & (env->rampD >> 16);
 | |
|         break;
 | |
|     case 0x39: /* RAMPX */
 | |
|         data = 0xff & (env->rampX >> 16);
 | |
|         break;
 | |
|     case 0x3a: /* RAMPY */
 | |
|         data = 0xff & (env->rampY >> 16);
 | |
|         break;
 | |
|     case 0x3b: /* RAMPZ */
 | |
|         data = 0xff & (env->rampZ >> 16);
 | |
|         break;
 | |
|     case 0x3c: /* EIND */
 | |
|         data = 0xff & (env->eind >> 16);
 | |
|         break;
 | |
|     case 0x3d: /* SPL */
 | |
|         data = env->sp & 0x00ff;
 | |
|         break;
 | |
|     case 0x3e: /* SPH */
 | |
|         data = env->sp >> 8;
 | |
|         break;
 | |
|     case 0x3f: /* SREG */
 | |
|         data = cpu_get_sreg(env);
 | |
|         break;
 | |
|     default:
 | |
|         /* not a special register, pass to normal memory access */
 | |
|         data = address_space_ldub(&address_space_memory,
 | |
|                                   OFFSET_IO_REGISTERS + port,
 | |
|                                   MEMTXATTRS_UNSPECIFIED, NULL);
 | |
|     }
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  This function implements OUT instruction
 | |
|  *
 | |
|  *  It does the following
 | |
|  *  a.  if an IO register belongs to CPU, its value is written into the register
 | |
|  *  b.  otherwise io address is translated to mem address and physical memory
 | |
|  *      is written.
 | |
|  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 | |
|  *
 | |
|  */
 | |
| void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
 | |
| {
 | |
|     data &= 0x000000ff;
 | |
| 
 | |
|     switch (port) {
 | |
|     case 0x38: /* RAMPD */
 | |
|         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
 | |
|             env->rampD = (data & 0xff) << 16;
 | |
|         }
 | |
|         break;
 | |
|     case 0x39: /* RAMPX */
 | |
|         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
 | |
|             env->rampX = (data & 0xff) << 16;
 | |
|         }
 | |
|         break;
 | |
|     case 0x3a: /* RAMPY */
 | |
|         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
 | |
|             env->rampY = (data & 0xff) << 16;
 | |
|         }
 | |
|         break;
 | |
|     case 0x3b: /* RAMPZ */
 | |
|         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
 | |
|             env->rampZ = (data & 0xff) << 16;
 | |
|         }
 | |
|         break;
 | |
|     case 0x3c: /* EIDN */
 | |
|         env->eind = (data & 0xff) << 16;
 | |
|         break;
 | |
|     case 0x3d: /* SPL */
 | |
|         env->sp = (env->sp & 0xff00) | (data);
 | |
|         break;
 | |
|     case 0x3e: /* SPH */
 | |
|         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
 | |
|             env->sp = (env->sp & 0x00ff) | (data << 8);
 | |
|         }
 | |
|         break;
 | |
|     case 0x3f: /* SREG */
 | |
|         cpu_set_sreg(env, data);
 | |
|         break;
 | |
|     default:
 | |
|         /* not a special register, pass to normal memory access */
 | |
|         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
 | |
|                           data, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  this function implements LD instruction when there is a possibility to read
 | |
|  *  from a CPU register
 | |
|  */
 | |
| target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
 | |
| {
 | |
|     uint8_t data;
 | |
| 
 | |
|     env->fullacc = false;
 | |
| 
 | |
|     if (addr < NUMBER_OF_CPU_REGISTERS) {
 | |
|         /* CPU registers */
 | |
|         data = env->r[addr];
 | |
|     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 | |
|         /* IO registers */
 | |
|         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
 | |
|     } else {
 | |
|         /* memory */
 | |
|         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
 | |
|                                   MEMTXATTRS_UNSPECIFIED, NULL);
 | |
|     }
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  this function implements ST instruction when there is a possibility to write
 | |
|  *  into a CPU register
 | |
|  */
 | |
| void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
 | |
| {
 | |
|     env->fullacc = false;
 | |
| 
 | |
|     /* Following logic assumes this: */
 | |
|     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
 | |
|     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
 | |
|                                   NUMBER_OF_CPU_REGISTERS);
 | |
| 
 | |
|     if (addr < NUMBER_OF_CPU_REGISTERS) {
 | |
|         /* CPU registers */
 | |
|         env->r[addr] = data;
 | |
|     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 | |
|         /* IO registers */
 | |
|         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
 | |
|     } else {
 | |
|         /* memory */
 | |
|         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
 | |
|                           MEMTXATTRS_UNSPECIFIED, NULL);
 | |
|     }
 | |
| }
 |