 01d9442a88
			
		
	
	
		01d9442a88
		
	
	
	
	
		
			
			Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20231221031652.119827-31-richard.henderson@linaro.org>
		
			
				
	
	
		
			301 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			301 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU SMBus EEPROM device
 | |
|  *
 | |
|  * Copyright (c) 2007 Arastra, Inc.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/boards.h"
 | |
| #include "hw/i2c/i2c.h"
 | |
| #include "hw/i2c/smbus_slave.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "migration/vmstate.h"
 | |
| #include "hw/i2c/smbus_eeprom.h"
 | |
| #include "qom/object.h"
 | |
| 
 | |
| //#define DEBUG
 | |
| 
 | |
| #define TYPE_SMBUS_EEPROM "smbus-eeprom"
 | |
| 
 | |
| OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice, SMBUS_EEPROM)
 | |
| 
 | |
| #define SMBUS_EEPROM_SIZE 256
 | |
| 
 | |
| struct SMBusEEPROMDevice {
 | |
|     SMBusDevice smbusdev;
 | |
|     uint8_t data[SMBUS_EEPROM_SIZE];
 | |
|     uint8_t *init_data;
 | |
|     uint8_t offset;
 | |
|     bool accessed;
 | |
| };
 | |
| 
 | |
| static uint8_t eeprom_receive_byte(SMBusDevice *dev)
 | |
| {
 | |
|     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
 | |
|     uint8_t *data = eeprom->data;
 | |
|     uint8_t val = data[eeprom->offset++];
 | |
| 
 | |
|     eeprom->accessed = true;
 | |
| #ifdef DEBUG
 | |
|     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
 | |
|            dev->i2c.address, val);
 | |
| #endif
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
 | |
| {
 | |
|     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
 | |
|     uint8_t *data = eeprom->data;
 | |
| 
 | |
|     eeprom->accessed = true;
 | |
| #ifdef DEBUG
 | |
|     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
 | |
|            dev->i2c.address, buf[0], buf[1]);
 | |
| #endif
 | |
|     /* len is guaranteed to be > 0 */
 | |
|     eeprom->offset = buf[0];
 | |
|     buf++;
 | |
|     len--;
 | |
| 
 | |
|     for (; len > 0; len--) {
 | |
|         data[eeprom->offset] = *buf++;
 | |
|         eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool smbus_eeprom_vmstate_needed(void *opaque)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 | |
|     SMBusEEPROMDevice *eeprom = opaque;
 | |
| 
 | |
|     return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
 | |
|         !mc->smbus_no_migration_support;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_smbus_eeprom = {
 | |
|     .name = "smbus-eeprom",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = smbus_eeprom_vmstate_needed,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
 | |
|         VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
 | |
|         VMSTATE_UINT8(offset, SMBusEEPROMDevice),
 | |
|         VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Reset the EEPROM contents to the initial state on a reset.  This
 | |
|  * isn't really how an EEPROM works, of course, but the general
 | |
|  * principle of QEMU is to restore function on reset to what it would
 | |
|  * be if QEMU was stopped and started.
 | |
|  *
 | |
|  * The proper thing to do would be to have a backing blockdev to hold
 | |
|  * the contents and restore that on startup, and not do this on reset.
 | |
|  * But until that time, act as if we had been stopped and restarted.
 | |
|  */
 | |
| static void smbus_eeprom_reset(DeviceState *dev)
 | |
| {
 | |
|     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
 | |
| 
 | |
|     memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
 | |
|     eeprom->offset = 0;
 | |
| }
 | |
| 
 | |
| static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
 | |
| 
 | |
|     smbus_eeprom_reset(dev);
 | |
|     if (eeprom->init_data == NULL) {
 | |
|         error_setg(errp, "init_data cannot be NULL");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
 | |
| 
 | |
|     dc->realize = smbus_eeprom_realize;
 | |
|     dc->reset = smbus_eeprom_reset;
 | |
|     sc->receive_byte = eeprom_receive_byte;
 | |
|     sc->write_data = eeprom_write_data;
 | |
|     dc->vmsd = &vmstate_smbus_eeprom;
 | |
|     /* Reason: init_data */
 | |
|     dc->user_creatable = false;
 | |
| }
 | |
| 
 | |
| static const TypeInfo smbus_eeprom_info = {
 | |
|     .name          = TYPE_SMBUS_EEPROM,
 | |
|     .parent        = TYPE_SMBUS_DEVICE,
 | |
|     .instance_size = sizeof(SMBusEEPROMDevice),
 | |
|     .class_init    = smbus_eeprom_class_initfn,
 | |
| };
 | |
| 
 | |
| static void smbus_eeprom_register_types(void)
 | |
| {
 | |
|     type_register_static(&smbus_eeprom_info);
 | |
| }
 | |
| 
 | |
| type_init(smbus_eeprom_register_types)
 | |
| 
 | |
| void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
 | |
| {
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     dev = qdev_new(TYPE_SMBUS_EEPROM);
 | |
|     qdev_prop_set_uint8(dev, "address", address);
 | |
|     /* FIXME: use an array of byte or block backend property? */
 | |
|     SMBUS_EEPROM(dev)->init_data = eeprom_buf;
 | |
|     qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal);
 | |
| }
 | |
| 
 | |
| void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
 | |
|                        const uint8_t *eeprom_spd, int eeprom_spd_size)
 | |
| {
 | |
|     int i;
 | |
|      /* XXX: make this persistent */
 | |
| 
 | |
|     assert(nb_eeprom <= 8);
 | |
|     uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
 | |
|     if (eeprom_spd_size > 0) {
 | |
|         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < nb_eeprom; i++) {
 | |
|         smbus_eeprom_init_one(smbus, 0x50 + i,
 | |
|                               eeprom_buf + (i * SMBUS_EEPROM_SIZE));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Generate SDRAM SPD EEPROM data describing a module of type and size */
 | |
| uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size)
 | |
| {
 | |
|     uint8_t *spd;
 | |
|     uint8_t nbanks;
 | |
|     uint16_t density;
 | |
|     uint32_t size;
 | |
|     int min_log2, max_log2, sz_log2;
 | |
|     int i;
 | |
| 
 | |
|     switch (type) {
 | |
|     case SDR:
 | |
|         min_log2 = 2;
 | |
|         max_log2 = 9;
 | |
|         break;
 | |
|     case DDR:
 | |
|         min_log2 = 5;
 | |
|         max_log2 = 12;
 | |
|         break;
 | |
|     case DDR2:
 | |
|         min_log2 = 7;
 | |
|         max_log2 = 14;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     size = ram_size >> 20; /* work in terms of megabytes */
 | |
|     sz_log2 = 31 - clz32(size);
 | |
|     size = 1U << sz_log2;
 | |
|     assert(ram_size == size * MiB);
 | |
|     assert(sz_log2 >= min_log2);
 | |
| 
 | |
|     nbanks = 1;
 | |
|     while (sz_log2 > max_log2 && nbanks < 8) {
 | |
|         sz_log2--;
 | |
|         nbanks *= 2;
 | |
|     }
 | |
| 
 | |
|     assert(size == (1ULL << sz_log2) * nbanks);
 | |
| 
 | |
|     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
 | |
|     if (nbanks == 1 && sz_log2 > min_log2) {
 | |
|         sz_log2--;
 | |
|         nbanks++;
 | |
|     }
 | |
| 
 | |
|     density = 1ULL << (sz_log2 - 2);
 | |
|     switch (type) {
 | |
|     case DDR2:
 | |
|         density = (density & 0xe0) | (density >> 8 & 0x1f);
 | |
|         break;
 | |
|     case DDR:
 | |
|         density = (density & 0xf8) | (density >> 8 & 0x07);
 | |
|         break;
 | |
|     case SDR:
 | |
|     default:
 | |
|         density &= 0xff;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     spd = g_malloc0(256);
 | |
|     spd[0] = 128;   /* data bytes in EEPROM */
 | |
|     spd[1] = 8;     /* log2 size of EEPROM */
 | |
|     spd[2] = type;
 | |
|     spd[3] = 13;    /* row address bits */
 | |
|     spd[4] = 10;    /* column address bits */
 | |
|     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
 | |
|     spd[6] = 64;    /* module data width */
 | |
|                     /* reserved / data width high */
 | |
|     spd[8] = 4;     /* interface voltage level */
 | |
|     spd[9] = 0x25;  /* highest CAS latency */
 | |
|     spd[10] = 1;    /* access time */
 | |
|                     /* DIMM configuration 0 = non-ECC */
 | |
|     spd[12] = 0x82; /* refresh requirements */
 | |
|     spd[13] = 8;    /* primary SDRAM width */
 | |
|                     /* ECC SDRAM width */
 | |
|     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
 | |
|     spd[16] = 12;   /* burst lengths supported */
 | |
|     spd[17] = 4;    /* banks per SDRAM device */
 | |
|     spd[18] = 12;   /* ~CAS latencies supported */
 | |
|     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
 | |
|     spd[20] = 2;    /* DIMM type / ~WE latencies */
 | |
|     spd[21] = (type < DDR2 ? 0x20 : 0); /* module features */
 | |
|                     /* memory chip features */
 | |
|     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
 | |
|                     /* data access time */
 | |
|                     /* clock cycle time @ short CAS latency */
 | |
|                     /* data access time */
 | |
|     spd[27] = 20;   /* min. row precharge time */
 | |
|     spd[28] = 15;   /* min. row active row delay */
 | |
|     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
 | |
|     spd[30] = 45;   /* min. active to precharge time */
 | |
|     spd[31] = density;
 | |
|     spd[32] = 20;   /* addr/cmd setup time */
 | |
|     spd[33] = 8;    /* addr/cmd hold time */
 | |
|     spd[34] = 20;   /* data input setup time */
 | |
|     spd[35] = 8;    /* data input hold time */
 | |
| 
 | |
|     /* checksum */
 | |
|     for (i = 0; i < 63; i++) {
 | |
|         spd[63] += spd[i];
 | |
|     }
 | |
|     return spd;
 | |
| }
 |