 d0353b6e7b
			
		
	
	
		d0353b6e7b
		
	
	
	
	
		
			
			npcm7xx_timer-test occasionally fails due to the state of the timers from the previous test iteration. Advancing the clock step after the reset resolves this issue. Fixes: https://gitlab.com/qemu-project/qemu/-/issues/1897 Signed-off-by: Chris Rauer <crauer@google.com> Message-ID: <20230929000831.691559-1-crauer@google.com> Signed-off-by: Thomas Huth <thuth@redhat.com>
		
			
				
	
	
		
			562 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			562 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QTest testcase for the Nuvoton NPCM7xx Timer
 | |
|  *
 | |
|  * Copyright 2020 Google LLC
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 | |
|  * for more details.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "libqtest-single.h"
 | |
| 
 | |
| #define TIM_REF_HZ      (25000000)
 | |
| 
 | |
| /* Bits in TCSRx */
 | |
| #define CEN             BIT(30)
 | |
| #define IE              BIT(29)
 | |
| #define MODE_ONESHOT    (0 << 27)
 | |
| #define MODE_PERIODIC   (1 << 27)
 | |
| #define CRST            BIT(26)
 | |
| #define CACT            BIT(25)
 | |
| #define PRESCALE(x)     (x)
 | |
| 
 | |
| /* Registers shared between all timers in a module. */
 | |
| #define TISR    0x18
 | |
| #define WTCR    0x1c
 | |
| # define WTCLK(x)       ((x) << 10)
 | |
| 
 | |
| /* Power-on default; used to re-initialize timers before each test. */
 | |
| #define TCSR_DEFAULT    PRESCALE(5)
 | |
| 
 | |
| /* Register offsets for a timer within a timer block. */
 | |
| typedef struct Timer {
 | |
|     unsigned int tcsr_offset;
 | |
|     unsigned int ticr_offset;
 | |
|     unsigned int tdr_offset;
 | |
| } Timer;
 | |
| 
 | |
| /* A timer block containing 5 timers. */
 | |
| typedef struct TimerBlock {
 | |
|     int irq_base;
 | |
|     uint64_t base_addr;
 | |
| } TimerBlock;
 | |
| 
 | |
| /* Testdata for testing a particular timer within a timer block. */
 | |
| typedef struct TestData {
 | |
|     const TimerBlock *tim;
 | |
|     const Timer *timer;
 | |
| } TestData;
 | |
| 
 | |
| const TimerBlock timer_block[] = {
 | |
|     {
 | |
|         .irq_base   = 32,
 | |
|         .base_addr  = 0xf0008000,
 | |
|     },
 | |
|     {
 | |
|         .irq_base   = 37,
 | |
|         .base_addr  = 0xf0009000,
 | |
|     },
 | |
|     {
 | |
|         .irq_base   = 42,
 | |
|         .base_addr  = 0xf000a000,
 | |
|     },
 | |
| };
 | |
| 
 | |
| const Timer timer[] = {
 | |
|     {
 | |
|         .tcsr_offset    = 0x00,
 | |
|         .ticr_offset    = 0x08,
 | |
|         .tdr_offset     = 0x10,
 | |
|     }, {
 | |
|         .tcsr_offset    = 0x04,
 | |
|         .ticr_offset    = 0x0c,
 | |
|         .tdr_offset     = 0x14,
 | |
|     }, {
 | |
|         .tcsr_offset    = 0x20,
 | |
|         .ticr_offset    = 0x28,
 | |
|         .tdr_offset     = 0x30,
 | |
|     }, {
 | |
|         .tcsr_offset    = 0x24,
 | |
|         .ticr_offset    = 0x2c,
 | |
|         .tdr_offset     = 0x34,
 | |
|     }, {
 | |
|         .tcsr_offset    = 0x40,
 | |
|         .ticr_offset    = 0x48,
 | |
|         .tdr_offset     = 0x50,
 | |
|     },
 | |
| };
 | |
| 
 | |
| /* Returns the index of the timer block. */
 | |
| static int tim_index(const TimerBlock *tim)
 | |
| {
 | |
|     ptrdiff_t diff = tim - timer_block;
 | |
| 
 | |
|     g_assert(diff >= 0 && diff < ARRAY_SIZE(timer_block));
 | |
| 
 | |
|     return diff;
 | |
| }
 | |
| 
 | |
| /* Returns the index of a timer within a timer block. */
 | |
| static int timer_index(const Timer *t)
 | |
| {
 | |
|     ptrdiff_t diff = t - timer;
 | |
| 
 | |
|     g_assert(diff >= 0 && diff < ARRAY_SIZE(timer));
 | |
| 
 | |
|     return diff;
 | |
| }
 | |
| 
 | |
| /* Returns the irq line for a given timer. */
 | |
| static int tim_timer_irq(const TestData *td)
 | |
| {
 | |
|     return td->tim->irq_base + timer_index(td->timer);
 | |
| }
 | |
| 
 | |
| /* Register read/write accessors. */
 | |
| 
 | |
| static void tim_write(const TestData *td,
 | |
|                       unsigned int offset, uint32_t value)
 | |
| {
 | |
|     writel(td->tim->base_addr + offset, value);
 | |
| }
 | |
| 
 | |
| static uint32_t tim_read(const TestData *td, unsigned int offset)
 | |
| {
 | |
|     return readl(td->tim->base_addr + offset);
 | |
| }
 | |
| 
 | |
| static void tim_write_tcsr(const TestData *td, uint32_t value)
 | |
| {
 | |
|     tim_write(td, td->timer->tcsr_offset, value);
 | |
| }
 | |
| 
 | |
| static uint32_t tim_read_tcsr(const TestData *td)
 | |
| {
 | |
|     return tim_read(td, td->timer->tcsr_offset);
 | |
| }
 | |
| 
 | |
| static void tim_write_ticr(const TestData *td, uint32_t value)
 | |
| {
 | |
|     tim_write(td, td->timer->ticr_offset, value);
 | |
| }
 | |
| 
 | |
| static uint32_t tim_read_ticr(const TestData *td)
 | |
| {
 | |
|     return tim_read(td, td->timer->ticr_offset);
 | |
| }
 | |
| 
 | |
| static uint32_t tim_read_tdr(const TestData *td)
 | |
| {
 | |
|     return tim_read(td, td->timer->tdr_offset);
 | |
| }
 | |
| 
 | |
| /* Returns the number of nanoseconds to count the given number of cycles. */
 | |
| static int64_t tim_calculate_step(uint32_t count, uint32_t prescale)
 | |
| {
 | |
|     return (1000000000LL / TIM_REF_HZ) * count * (prescale + 1);
 | |
| }
 | |
| 
 | |
| /* Returns a bitmask corresponding to the timer under test. */
 | |
| static uint32_t tim_timer_bit(const TestData *td)
 | |
| {
 | |
|     return BIT(timer_index(td->timer));
 | |
| }
 | |
| 
 | |
| /* Resets all timers to power-on defaults. */
 | |
| static void tim_reset(const TestData *td)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     /* Reset all the timers, in case a previous test left a timer running. */
 | |
|     for (i = 0; i < ARRAY_SIZE(timer_block); i++) {
 | |
|         for (j = 0; j < ARRAY_SIZE(timer); j++) {
 | |
|             writel(timer_block[i].base_addr + timer[j].tcsr_offset,
 | |
|                    CRST | TCSR_DEFAULT);
 | |
|         }
 | |
|         writel(timer_block[i].base_addr + TISR, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Verifies the reset state of a timer. */
 | |
| static void test_reset(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
 | |
|     g_assert_cmphex(tim_read_ticr(td), ==, 0);
 | |
|     g_assert_cmphex(tim_read_tdr(td), ==, 0);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
|     g_assert_cmphex(tim_read(td, WTCR), ==, WTCLK(1));
 | |
| }
 | |
| 
 | |
| /* Verifies that CRST wins if both CEN and CRST are set. */
 | |
| static void test_reset_overrides_enable(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     /* CRST should force CEN to 0 */
 | |
|     tim_write_tcsr(td, CEN | CRST | TCSR_DEFAULT);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
 | |
|     g_assert_cmphex(tim_read_tdr(td), ==, 0);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
| }
 | |
| 
 | |
| /* Verifies the behavior when CEN is set and then cleared. */
 | |
| static void test_oneshot_enable_then_disable(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     /* Enable the timer with zero initial count, then disable it again. */
 | |
|     tim_write_tcsr(td, CEN | TCSR_DEFAULT);
 | |
|     tim_write_tcsr(td, TCSR_DEFAULT);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, TCSR_DEFAULT);
 | |
|     g_assert_cmphex(tim_read_tdr(td), ==, 0);
 | |
|     /* Timer interrupt flag should be set, but interrupts are not enabled. */
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| }
 | |
| 
 | |
| /* Verifies that a one-shot timer fires when expected with prescaler 5. */
 | |
| static void test_oneshot_ps5(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 256;
 | |
|     unsigned int ps = 5;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, CEN | PRESCALE(ps));
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count);
 | |
| 
 | |
|     clock_step(tim_calculate_step(count, ps) - 1);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), <, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
| 
 | |
|     clock_step(1);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| 
 | |
|     /* Clear the interrupt flag. */
 | |
|     tim_write(td, TISR, tim_timer_bit(td));
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| 
 | |
|     /* Verify that this isn't a periodic timer. */
 | |
|     clock_step(2 * tim_calculate_step(count, ps));
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| }
 | |
| 
 | |
| /* Verifies that a one-shot timer fires when expected with prescaler 0. */
 | |
| static void test_oneshot_ps0(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 1;
 | |
|     unsigned int ps = 0;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, CEN | PRESCALE(ps));
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count);
 | |
| 
 | |
|     clock_step(tim_calculate_step(count, ps) - 1);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), <, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
| 
 | |
|     clock_step(1);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| }
 | |
| 
 | |
| /* Verifies that a one-shot timer fires when expected with highest prescaler. */
 | |
| static void test_oneshot_ps255(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = (1U << 24) - 1;
 | |
|     unsigned int ps = 255;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, CEN | PRESCALE(ps));
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count);
 | |
| 
 | |
|     clock_step(tim_calculate_step(count, ps) - 1);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, CEN | CACT | PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), <, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
| 
 | |
|     clock_step(1);
 | |
| 
 | |
|     g_assert_cmphex(tim_read_tcsr(td), ==, PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| }
 | |
| 
 | |
| /* Verifies that a oneshot timer fires an interrupt when expected. */
 | |
| static void test_oneshot_interrupt(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 256;
 | |
|     unsigned int ps = 7;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
| 
 | |
|     clock_step_next();
 | |
| 
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|     g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verifies that the timer can be paused and later resumed, and it still fires
 | |
|  * at the right moment.
 | |
|  */
 | |
| static void test_pause_resume(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 256;
 | |
|     unsigned int ps = 1;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
| 
 | |
|     /* Pause the timer halfway to expiration. */
 | |
|     clock_step(tim_calculate_step(count / 2, ps));
 | |
|     tim_write_tcsr(td, IE | MODE_ONESHOT | PRESCALE(ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
 | |
| 
 | |
|     /* Counter should not advance during the following step. */
 | |
|     clock_step(2 * tim_calculate_step(count, ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| 
 | |
|     /* Resume the timer and run _almost_ to expiration. */
 | |
|     tim_write_tcsr(td, IE | CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
|     clock_step(tim_calculate_step(count / 2, ps) - 1);
 | |
|     g_assert_cmpuint(tim_read_tdr(td), <, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
|     g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| 
 | |
|     /* Now, run the rest of the way and verify that the interrupt fires. */
 | |
|     clock_step(1);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|     g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| }
 | |
| 
 | |
| /* Verifies that the prescaler can be changed while the timer is running. */
 | |
| static void test_prescaler_change(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 256;
 | |
|     unsigned int ps = 5;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
| 
 | |
|     /* Run a quarter of the way, and change the prescaler. */
 | |
|     clock_step(tim_calculate_step(count / 4, ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, 3 * count / 4);
 | |
|     ps = 2;
 | |
|     tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
|     /* The counter must not change. */
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, 3 * count / 4);
 | |
| 
 | |
|     /* Run another quarter of the way, and change the prescaler again. */
 | |
|     clock_step(tim_calculate_step(count / 4, ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
 | |
|     ps = 8;
 | |
|     tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
|     /* The counter must not change. */
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count / 2);
 | |
| 
 | |
|     /* Run another quarter of the way, and change the prescaler again. */
 | |
|     clock_step(tim_calculate_step(count / 4, ps));
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count / 4);
 | |
|     ps = 0;
 | |
|     tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
|     /* The counter must not change. */
 | |
|     g_assert_cmpuint(tim_read_tdr(td), ==, count / 4);
 | |
| 
 | |
|     /* Run almost to expiration, and verify the timer didn't fire yet. */
 | |
|     clock_step(tim_calculate_step(count / 4, ps) - 1);
 | |
|     g_assert_cmpuint(tim_read_tdr(td), <, count);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
| 
 | |
|     /* Now, run the rest of the way and verify that the timer fires. */
 | |
|     clock_step(1);
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
| }
 | |
| 
 | |
| /* Verifies that a periodic timer automatically restarts after expiration. */
 | |
| static void test_periodic_no_interrupt(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 2;
 | |
|     unsigned int ps = 3;
 | |
|     int i;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, CEN | MODE_PERIODIC | PRESCALE(ps));
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         clock_step_next();
 | |
| 
 | |
|         g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|         g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| 
 | |
|         tim_write(td, TISR, tim_timer_bit(td));
 | |
| 
 | |
|         g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
|         g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Verifies that a periodict timer fires an interrupt every time it expires. */
 | |
| static void test_periodic_interrupt(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 65535;
 | |
|     unsigned int ps = 2;
 | |
|     int i;
 | |
| 
 | |
|     tim_reset(td);
 | |
|     clock_step_next();
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, CEN | IE | MODE_PERIODIC | PRESCALE(ps));
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         clock_step_next();
 | |
| 
 | |
|         g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
|         g_assert_true(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
| 
 | |
|         tim_write(td, TISR, tim_timer_bit(td));
 | |
| 
 | |
|         g_assert_cmphex(tim_read(td, TISR), ==, 0);
 | |
|         g_assert_false(qtest_get_irq(global_qtest, tim_timer_irq(td)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verifies that the timer behaves correctly when disabled right before and
 | |
|  * exactly when it's supposed to expire.
 | |
|  */
 | |
| static void test_disable_on_expiration(gconstpointer test_data)
 | |
| {
 | |
|     const TestData *td = test_data;
 | |
|     unsigned int count = 8;
 | |
|     unsigned int ps = 255;
 | |
| 
 | |
|     tim_reset(td);
 | |
| 
 | |
|     tim_write_ticr(td, count);
 | |
|     tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
| 
 | |
|     clock_step(tim_calculate_step(count, ps) - 1);
 | |
| 
 | |
|     tim_write_tcsr(td, MODE_ONESHOT | PRESCALE(ps));
 | |
|     tim_write_tcsr(td, CEN | MODE_ONESHOT | PRESCALE(ps));
 | |
|     clock_step(1);
 | |
|     tim_write_tcsr(td, MODE_ONESHOT | PRESCALE(ps));
 | |
|     g_assert_cmphex(tim_read(td, TISR), ==, tim_timer_bit(td));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructs a name that includes the timer block, timer and testcase name,
 | |
|  * and adds the test to the test suite.
 | |
|  */
 | |
| static void tim_add_test(const char *name, const TestData *td, GTestDataFunc fn)
 | |
| {
 | |
|     g_autofree char *full_name = g_strdup_printf(
 | |
|         "npcm7xx_timer/tim[%d]/timer[%d]/%s", tim_index(td->tim),
 | |
|         timer_index(td->timer), name);
 | |
|     qtest_add_data_func(full_name, td, fn);
 | |
| }
 | |
| 
 | |
| /* Convenience macro for adding a test with a predictable function name. */
 | |
| #define add_test(name, td) tim_add_test(#name, td, test_##name)
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
|     TestData testdata[ARRAY_SIZE(timer_block) * ARRAY_SIZE(timer)];
 | |
|     int ret;
 | |
|     int i, j;
 | |
| 
 | |
|     g_test_init(&argc, &argv, NULL);
 | |
|     g_test_set_nonfatal_assertions();
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(timer_block); i++) {
 | |
|         for (j = 0; j < ARRAY_SIZE(timer); j++) {
 | |
|             TestData *td = &testdata[i * ARRAY_SIZE(timer) + j];
 | |
|             td->tim = &timer_block[i];
 | |
|             td->timer = &timer[j];
 | |
| 
 | |
|             add_test(reset, td);
 | |
|             add_test(reset_overrides_enable, td);
 | |
|             add_test(oneshot_enable_then_disable, td);
 | |
|             add_test(oneshot_ps5, td);
 | |
|             add_test(oneshot_ps0, td);
 | |
|             add_test(oneshot_ps255, td);
 | |
|             add_test(oneshot_interrupt, td);
 | |
|             add_test(pause_resume, td);
 | |
|             add_test(prescaler_change, td);
 | |
|             add_test(periodic_no_interrupt, td);
 | |
|             add_test(periodic_interrupt, td);
 | |
|             add_test(disable_on_expiration, td);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qtest_start("-machine npcm750-evb");
 | |
|     qtest_irq_intercept_in(global_qtest, "/machine/soc/a9mpcore/gic");
 | |
|     ret = g_test_run();
 | |
|     qtest_end();
 | |
| 
 | |
|     return ret;
 | |
| }
 |