 36ffc122dc
			
		
	
	
		36ffc122dc
		
	
	
	
	
		
			
			Monochrome cursors are still used by Windows guests with the
QXL-WDDM-DOD driver. Such cursor types have one odd feature, inversion
of colors. GDK does not seem to support it, so implement an alternative
solution: fill the inverted pixels and add an outline to make the cursor
more visible. Tested with the text cursor in Notepad and Windows 10.
cursor_set_mono is also used by the vmware GPU, so add a special check
to avoid breaking its 32bpp format (tested with Kubuntu 14.04.4). I was
unable to find a guest which supports the 1bpp format with a vmware GPU.
The old implementation was buggy and removed in v2.10.0-108-g79c5a10cdd
("qxl: drop mono cursor support"), this version improves upon that by
adding bounds validation, clarifying the semantics of the two masks and
adds a workaround for inverted colors support.
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1611984
Signed-off-by: Peter Wu <peter@lekensteyn.nl>
Message-id: 20180903145447.17142-1-peter@lekensteyn.nl
[ kraxel: minor codestyle fix ]
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
		
	
			
		
			
				
	
	
		
			245 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "qemu/osdep.h"
 | |
| #include "qemu-common.h"
 | |
| #include "ui/console.h"
 | |
| 
 | |
| #include "cursor_hidden.xpm"
 | |
| #include "cursor_left_ptr.xpm"
 | |
| 
 | |
| /* for creating built-in cursors */
 | |
| static QEMUCursor *cursor_parse_xpm(const char *xpm[])
 | |
| {
 | |
|     QEMUCursor *c;
 | |
|     uint32_t ctab[128];
 | |
|     unsigned int width, height, colors, chars;
 | |
|     unsigned int line = 0, i, r, g, b, x, y, pixel;
 | |
|     char name[16];
 | |
|     uint8_t idx;
 | |
| 
 | |
|     /* parse header line: width, height, #colors, #chars */
 | |
|     if (sscanf(xpm[line], "%u %u %u %u",
 | |
|                &width, &height, &colors, &chars) != 4) {
 | |
|         fprintf(stderr, "%s: header parse error: \"%s\"\n",
 | |
|                 __func__, xpm[line]);
 | |
|         return NULL;
 | |
|     }
 | |
|     if (chars != 1) {
 | |
|         fprintf(stderr, "%s: chars != 1 not supported\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
|     line++;
 | |
| 
 | |
|     /* parse color table */
 | |
|     for (i = 0; i < colors; i++, line++) {
 | |
|         if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) {
 | |
|             if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) {
 | |
|                 ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r;
 | |
|                 continue;
 | |
|             }
 | |
|             if (strcmp(name, "None") == 0) {
 | |
|                 ctab[idx] = 0x00000000;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         fprintf(stderr, "%s: color parse error: \"%s\"\n",
 | |
|                 __func__, xpm[line]);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* parse pixel data */
 | |
|     c = cursor_alloc(width, height);
 | |
|     for (pixel = 0, y = 0; y < height; y++, line++) {
 | |
|         for (x = 0; x < height; x++, pixel++) {
 | |
|             idx = xpm[line][x];
 | |
|             c->data[pixel] = ctab[idx];
 | |
|         }
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| /* nice for debugging */
 | |
| void cursor_print_ascii_art(QEMUCursor *c, const char *prefix)
 | |
| {
 | |
|     uint32_t *data = c->data;
 | |
|     int x,y;
 | |
| 
 | |
|     for (y = 0; y < c->height; y++) {
 | |
|         fprintf(stderr, "%s: %2d: |", prefix, y);
 | |
|         for (x = 0; x < c->width; x++, data++) {
 | |
|             if ((*data & 0xff000000) != 0xff000000) {
 | |
|                 fprintf(stderr, " "); /* transparent */
 | |
|             } else if ((*data & 0x00ffffff) == 0x00ffffff) {
 | |
|                 fprintf(stderr, "."); /* white */
 | |
|             } else if ((*data & 0x00ffffff) == 0x00000000) {
 | |
|                 fprintf(stderr, "X"); /* black */
 | |
|             } else {
 | |
|                 fprintf(stderr, "o"); /* other */
 | |
|             }
 | |
|         }
 | |
|         fprintf(stderr, "|\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| QEMUCursor *cursor_builtin_hidden(void)
 | |
| {
 | |
|     return cursor_parse_xpm(cursor_hidden_xpm);
 | |
| }
 | |
| 
 | |
| QEMUCursor *cursor_builtin_left_ptr(void)
 | |
| {
 | |
|     return cursor_parse_xpm(cursor_left_ptr_xpm);
 | |
| }
 | |
| 
 | |
| QEMUCursor *cursor_alloc(int width, int height)
 | |
| {
 | |
|     QEMUCursor *c;
 | |
|     int datasize = width * height * sizeof(uint32_t);
 | |
| 
 | |
|     c = g_malloc0(sizeof(QEMUCursor) + datasize);
 | |
|     c->width  = width;
 | |
|     c->height = height;
 | |
|     c->refcount = 1;
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| void cursor_get(QEMUCursor *c)
 | |
| {
 | |
|     c->refcount++;
 | |
| }
 | |
| 
 | |
| void cursor_put(QEMUCursor *c)
 | |
| {
 | |
|     if (c == NULL)
 | |
|         return;
 | |
|     c->refcount--;
 | |
|     if (c->refcount)
 | |
|         return;
 | |
|     g_free(c);
 | |
| }
 | |
| 
 | |
| int cursor_get_mono_bpl(QEMUCursor *c)
 | |
| {
 | |
|     return DIV_ROUND_UP(c->width, 8);
 | |
| }
 | |
| 
 | |
| void cursor_set_mono(QEMUCursor *c,
 | |
|                      uint32_t foreground, uint32_t background, uint8_t *image,
 | |
|                      int transparent, uint8_t *mask)
 | |
| {
 | |
|     uint32_t *data = c->data;
 | |
|     uint8_t bit;
 | |
|     int x,y,bpl;
 | |
|     bool expand_bitmap_only = image == mask;
 | |
|     bool has_inverted_colors = false;
 | |
|     const uint32_t inverted = 0x80000000;
 | |
| 
 | |
|     /*
 | |
|      * Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask':
 | |
|      * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers
 | |
|      */
 | |
|     bpl = cursor_get_mono_bpl(c);
 | |
|     for (y = 0; y < c->height; y++) {
 | |
|         bit = 0x80;
 | |
|         for (x = 0; x < c->width; x++, data++) {
 | |
|             if (transparent && mask[x/8] & bit) {
 | |
|                 if (!expand_bitmap_only && image[x / 8] & bit) {
 | |
|                     *data = inverted;
 | |
|                     has_inverted_colors = true;
 | |
|                 } else {
 | |
|                     *data = 0x00000000;
 | |
|                 }
 | |
|             } else if (!transparent && !(mask[x/8] & bit)) {
 | |
|                 *data = 0x00000000;
 | |
|             } else if (image[x/8] & bit) {
 | |
|                 *data = 0xff000000 | foreground;
 | |
|             } else {
 | |
|                 *data = 0xff000000 | background;
 | |
|             }
 | |
|             bit >>= 1;
 | |
|             if (bit == 0) {
 | |
|                 bit = 0x80;
 | |
|             }
 | |
|         }
 | |
|         mask  += bpl;
 | |
|         image += bpl;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If there are any pixels with inverted colors, create an outline (fill
 | |
|      * transparent neighbors with the background color) and use the foreground
 | |
|      * color as "inverted" color.
 | |
|      */
 | |
|     if (has_inverted_colors) {
 | |
|         data = c->data;
 | |
|         for (y = 0; y < c->height; y++) {
 | |
|             for (x = 0; x < c->width; x++, data++) {
 | |
|                 if (*data == 0 /* transparent */ &&
 | |
|                         ((x > 0 && data[-1] == inverted) ||
 | |
|                          (x + 1 < c->width && data[1] == inverted) ||
 | |
|                          (y > 0 && data[-c->width] == inverted) ||
 | |
|                          (y + 1 < c->height && data[c->width] == inverted))) {
 | |
|                     *data = 0xff000000 | background;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         data = c->data;
 | |
|         for (x = 0; x < c->width * c->height; x++, data++) {
 | |
|             if (*data == inverted) {
 | |
|                 *data = 0xff000000 | foreground;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cursor_get_mono_image(QEMUCursor *c, int foreground, uint8_t *image)
 | |
| {
 | |
|     uint32_t *data = c->data;
 | |
|     uint8_t bit;
 | |
|     int x,y,bpl;
 | |
| 
 | |
|     bpl = cursor_get_mono_bpl(c);
 | |
|     memset(image, 0, bpl * c->height);
 | |
|     for (y = 0; y < c->height; y++) {
 | |
|         bit = 0x80;
 | |
|         for (x = 0; x < c->width; x++, data++) {
 | |
|             if (((*data & 0xff000000) == 0xff000000) &&
 | |
|                 ((*data & 0x00ffffff) == foreground)) {
 | |
|                 image[x/8] |= bit;
 | |
|             }
 | |
|             bit >>= 1;
 | |
|             if (bit == 0) {
 | |
|                 bit = 0x80;
 | |
|             }
 | |
|         }
 | |
|         image += bpl;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask)
 | |
| {
 | |
|     uint32_t *data = c->data;
 | |
|     uint8_t bit;
 | |
|     int x,y,bpl;
 | |
| 
 | |
|     bpl = cursor_get_mono_bpl(c);
 | |
|     memset(mask, 0, bpl * c->height);
 | |
|     for (y = 0; y < c->height; y++) {
 | |
|         bit = 0x80;
 | |
|         for (x = 0; x < c->width; x++, data++) {
 | |
|             if ((*data & 0xff000000) != 0xff000000) {
 | |
|                 if (transparent != 0) {
 | |
|                     mask[x/8] |= bit;
 | |
|                 }
 | |
|             } else {
 | |
|                 if (transparent == 0) {
 | |
|                     mask[x/8] |= bit;
 | |
|                 }
 | |
|             }
 | |
|             bit >>= 1;
 | |
|             if (bit == 0) {
 | |
|                 bit = 0x80;
 | |
|             }
 | |
|         }
 | |
|         mask += bpl;
 | |
|     }
 | |
| }
 |