 73188068d7
			
		
	
	
		73188068d7
		
	
	
	
	
		
			
			In the functions invalidate_and_set_dirty() and cpu_physical_memory_snapshot_and_clear_dirty(), we assume that we are dealing with RAM memory regions. In this case we know that memory_region_get_ram_addr() will succeed. Assert this before we use the returned ram_addr_t in arithmetic. This makes Coverity happier about these functions: it otherwise complains that we might have an arithmetic overflow that stems from the possible -1 return from memory_region_get_ram_addr(). Resolves: Coverity CID 1547629, 1547715 Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Message-id: 20240723170513.1676453-1-peter.maydell@linaro.org
		
			
				
	
	
		
			3939 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3939 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * RAM allocation and memory access
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "exec/page-vary.h"
 | |
| #include "qapi/error.h"
 | |
| 
 | |
| #include "qemu/cutils.h"
 | |
| #include "qemu/cacheflush.h"
 | |
| #include "qemu/hbitmap.h"
 | |
| #include "qemu/madvise.h"
 | |
| #include "qemu/lockable.h"
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
| #include "hw/core/tcg-cpu-ops.h"
 | |
| #endif /* CONFIG_TCG */
 | |
| 
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/page-protection.h"
 | |
| #include "exec/target_page.h"
 | |
| #include "hw/qdev-core.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "hw/boards.h"
 | |
| #include "sysemu/xen.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "sysemu/tcg.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/qemu-print.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/memalign.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/ioport.h"
 | |
| #include "sysemu/dma.h"
 | |
| #include "sysemu/hostmem.h"
 | |
| #include "sysemu/hw_accel.h"
 | |
| #include "sysemu/xen-mapcache.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
 | |
| #include <linux/falloc.h>
 | |
| #endif
 | |
| 
 | |
| #include "qemu/rcu_queue.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "exec/translate-all.h"
 | |
| #include "sysemu/replay.h"
 | |
| 
 | |
| #include "exec/memory-internal.h"
 | |
| #include "exec/ram_addr.h"
 | |
| 
 | |
| #include "qemu/pmem.h"
 | |
| 
 | |
| #include "migration/vmstate.h"
 | |
| 
 | |
| #include "qemu/range.h"
 | |
| #ifndef _WIN32
 | |
| #include "qemu/mmap-alloc.h"
 | |
| #endif
 | |
| 
 | |
| #include "monitor/monitor.h"
 | |
| 
 | |
| #ifdef CONFIG_LIBDAXCTL
 | |
| #include <daxctl/libdaxctl.h>
 | |
| #endif
 | |
| 
 | |
| //#define DEBUG_SUBPAGE
 | |
| 
 | |
| /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 | |
|  * are protected by the ramlist lock.
 | |
|  */
 | |
| RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
 | |
| 
 | |
| static MemoryRegion *system_memory;
 | |
| static MemoryRegion *system_io;
 | |
| 
 | |
| AddressSpace address_space_io;
 | |
| AddressSpace address_space_memory;
 | |
| 
 | |
| static MemoryRegion io_mem_unassigned;
 | |
| 
 | |
| typedef struct PhysPageEntry PhysPageEntry;
 | |
| 
 | |
| struct PhysPageEntry {
 | |
|     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 | |
|     uint32_t skip : 6;
 | |
|      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 | |
|     uint32_t ptr : 26;
 | |
| };
 | |
| 
 | |
| #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 | |
| 
 | |
| /* Size of the L2 (and L3, etc) page tables.  */
 | |
| #define ADDR_SPACE_BITS 64
 | |
| 
 | |
| #define P_L2_BITS 9
 | |
| #define P_L2_SIZE (1 << P_L2_BITS)
 | |
| 
 | |
| #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 | |
| 
 | |
| typedef PhysPageEntry Node[P_L2_SIZE];
 | |
| 
 | |
| typedef struct PhysPageMap {
 | |
|     struct rcu_head rcu;
 | |
| 
 | |
|     unsigned sections_nb;
 | |
|     unsigned sections_nb_alloc;
 | |
|     unsigned nodes_nb;
 | |
|     unsigned nodes_nb_alloc;
 | |
|     Node *nodes;
 | |
|     MemoryRegionSection *sections;
 | |
| } PhysPageMap;
 | |
| 
 | |
| struct AddressSpaceDispatch {
 | |
|     MemoryRegionSection *mru_section;
 | |
|     /* This is a multi-level map on the physical address space.
 | |
|      * The bottom level has pointers to MemoryRegionSections.
 | |
|      */
 | |
|     PhysPageEntry phys_map;
 | |
|     PhysPageMap map;
 | |
| };
 | |
| 
 | |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | |
| typedef struct subpage_t {
 | |
|     MemoryRegion iomem;
 | |
|     FlatView *fv;
 | |
|     hwaddr base;
 | |
|     uint16_t sub_section[];
 | |
| } subpage_t;
 | |
| 
 | |
| #define PHYS_SECTION_UNASSIGNED 0
 | |
| 
 | |
| static void io_mem_init(void);
 | |
| static void memory_map_init(void);
 | |
| static void tcg_log_global_after_sync(MemoryListener *listener);
 | |
| static void tcg_commit(MemoryListener *listener);
 | |
| 
 | |
| /**
 | |
|  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 | |
|  * @cpu: the CPU whose AddressSpace this is
 | |
|  * @as: the AddressSpace itself
 | |
|  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 | |
|  * @tcg_as_listener: listener for tracking changes to the AddressSpace
 | |
|  */
 | |
| typedef struct CPUAddressSpace {
 | |
|     CPUState *cpu;
 | |
|     AddressSpace *as;
 | |
|     struct AddressSpaceDispatch *memory_dispatch;
 | |
|     MemoryListener tcg_as_listener;
 | |
| } CPUAddressSpace;
 | |
| 
 | |
| struct DirtyBitmapSnapshot {
 | |
|     ram_addr_t start;
 | |
|     ram_addr_t end;
 | |
|     unsigned long dirty[];
 | |
| };
 | |
| 
 | |
| static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 | |
| {
 | |
|     static unsigned alloc_hint = 16;
 | |
|     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 | |
|         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
 | |
|         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 | |
|         alloc_hint = map->nodes_nb_alloc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 | |
| {
 | |
|     unsigned i;
 | |
|     uint32_t ret;
 | |
|     PhysPageEntry e;
 | |
|     PhysPageEntry *p;
 | |
| 
 | |
|     ret = map->nodes_nb++;
 | |
|     p = map->nodes[ret];
 | |
|     assert(ret != PHYS_MAP_NODE_NIL);
 | |
|     assert(ret != map->nodes_nb_alloc);
 | |
| 
 | |
|     e.skip = leaf ? 0 : 1;
 | |
|     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 | |
|     for (i = 0; i < P_L2_SIZE; ++i) {
 | |
|         memcpy(&p[i], &e, sizeof(e));
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 | |
|                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
 | |
|                                 int level)
 | |
| {
 | |
|     PhysPageEntry *p;
 | |
|     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 | |
| 
 | |
|     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 | |
|         lp->ptr = phys_map_node_alloc(map, level == 0);
 | |
|     }
 | |
|     p = map->nodes[lp->ptr];
 | |
|     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 | |
| 
 | |
|     while (*nb && lp < &p[P_L2_SIZE]) {
 | |
|         if ((*index & (step - 1)) == 0 && *nb >= step) {
 | |
|             lp->skip = 0;
 | |
|             lp->ptr = leaf;
 | |
|             *index += step;
 | |
|             *nb -= step;
 | |
|         } else {
 | |
|             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 | |
|         }
 | |
|         ++lp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_page_set(AddressSpaceDispatch *d,
 | |
|                           hwaddr index, uint64_t nb,
 | |
|                           uint16_t leaf)
 | |
| {
 | |
|     /* Wildly overreserve - it doesn't matter much. */
 | |
|     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 | |
| 
 | |
|     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 | |
| }
 | |
| 
 | |
| /* Compact a non leaf page entry. Simply detect that the entry has a single child,
 | |
|  * and update our entry so we can skip it and go directly to the destination.
 | |
|  */
 | |
| static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 | |
| {
 | |
|     unsigned valid_ptr = P_L2_SIZE;
 | |
|     int valid = 0;
 | |
|     PhysPageEntry *p;
 | |
|     int i;
 | |
| 
 | |
|     if (lp->ptr == PHYS_MAP_NODE_NIL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     p = nodes[lp->ptr];
 | |
|     for (i = 0; i < P_L2_SIZE; i++) {
 | |
|         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         valid_ptr = i;
 | |
|         valid++;
 | |
|         if (p[i].skip) {
 | |
|             phys_page_compact(&p[i], nodes);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We can only compress if there's only one child. */
 | |
|     if (valid != 1) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert(valid_ptr < P_L2_SIZE);
 | |
| 
 | |
|     /* Don't compress if it won't fit in the # of bits we have. */
 | |
|     if (P_L2_LEVELS >= (1 << 6) &&
 | |
|         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     lp->ptr = p[valid_ptr].ptr;
 | |
|     if (!p[valid_ptr].skip) {
 | |
|         /* If our only child is a leaf, make this a leaf. */
 | |
|         /* By design, we should have made this node a leaf to begin with so we
 | |
|          * should never reach here.
 | |
|          * But since it's so simple to handle this, let's do it just in case we
 | |
|          * change this rule.
 | |
|          */
 | |
|         lp->skip = 0;
 | |
|     } else {
 | |
|         lp->skip += p[valid_ptr].skip;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void address_space_dispatch_compact(AddressSpaceDispatch *d)
 | |
| {
 | |
|     if (d->phys_map.skip) {
 | |
|         phys_page_compact(&d->phys_map, d->map.nodes);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline bool section_covers_addr(const MemoryRegionSection *section,
 | |
|                                        hwaddr addr)
 | |
| {
 | |
|     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 | |
|      * the section must cover the entire address space.
 | |
|      */
 | |
|     return int128_gethi(section->size) ||
 | |
|            range_covers_byte(section->offset_within_address_space,
 | |
|                              int128_getlo(section->size), addr);
 | |
| }
 | |
| 
 | |
| static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 | |
| {
 | |
|     PhysPageEntry lp = d->phys_map, *p;
 | |
|     Node *nodes = d->map.nodes;
 | |
|     MemoryRegionSection *sections = d->map.sections;
 | |
|     hwaddr index = addr >> TARGET_PAGE_BITS;
 | |
|     int i;
 | |
| 
 | |
|     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 | |
|         if (lp.ptr == PHYS_MAP_NODE_NIL) {
 | |
|             return §ions[PHYS_SECTION_UNASSIGNED];
 | |
|         }
 | |
|         p = nodes[lp.ptr];
 | |
|         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 | |
|     }
 | |
| 
 | |
|     if (section_covers_addr(§ions[lp.ptr], addr)) {
 | |
|         return §ions[lp.ptr];
 | |
|     } else {
 | |
|         return §ions[PHYS_SECTION_UNASSIGNED];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 | |
|                                                         hwaddr addr,
 | |
|                                                         bool resolve_subpage)
 | |
| {
 | |
|     MemoryRegionSection *section = qatomic_read(&d->mru_section);
 | |
|     subpage_t *subpage;
 | |
| 
 | |
|     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 | |
|         !section_covers_addr(section, addr)) {
 | |
|         section = phys_page_find(d, addr);
 | |
|         qatomic_set(&d->mru_section, section);
 | |
|     }
 | |
|     if (resolve_subpage && section->mr->subpage) {
 | |
|         subpage = container_of(section->mr, subpage_t, iomem);
 | |
|         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 | |
|     }
 | |
|     return section;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| static MemoryRegionSection *
 | |
| address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 | |
|                                  hwaddr *plen, bool resolve_subpage)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     Int128 diff;
 | |
| 
 | |
|     section = address_space_lookup_region(d, addr, resolve_subpage);
 | |
|     /* Compute offset within MemoryRegionSection */
 | |
|     addr -= section->offset_within_address_space;
 | |
| 
 | |
|     /* Compute offset within MemoryRegion */
 | |
|     *xlat = addr + section->offset_within_region;
 | |
| 
 | |
|     mr = section->mr;
 | |
| 
 | |
|     /* MMIO registers can be expected to perform full-width accesses based only
 | |
|      * on their address, without considering adjacent registers that could
 | |
|      * decode to completely different MemoryRegions.  When such registers
 | |
|      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 | |
|      * regions overlap wildly.  For this reason we cannot clamp the accesses
 | |
|      * here.
 | |
|      *
 | |
|      * If the length is small (as is the case for address_space_ldl/stl),
 | |
|      * everything works fine.  If the incoming length is large, however,
 | |
|      * the caller really has to do the clamping through memory_access_size.
 | |
|      */
 | |
|     if (memory_region_is_ram(mr)) {
 | |
|         diff = int128_sub(section->size, int128_make64(addr));
 | |
|         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 | |
|     }
 | |
|     return section;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * address_space_translate_iommu - translate an address through an IOMMU
 | |
|  * memory region and then through the target address space.
 | |
|  *
 | |
|  * @iommu_mr: the IOMMU memory region that we start the translation from
 | |
|  * @addr: the address to be translated through the MMU
 | |
|  * @xlat: the translated address offset within the destination memory region.
 | |
|  *        It cannot be %NULL.
 | |
|  * @plen_out: valid read/write length of the translated address. It
 | |
|  *            cannot be %NULL.
 | |
|  * @page_mask_out: page mask for the translated address. This
 | |
|  *            should only be meaningful for IOMMU translated
 | |
|  *            addresses, since there may be huge pages that this bit
 | |
|  *            would tell. It can be %NULL if we don't care about it.
 | |
|  * @is_write: whether the translation operation is for write
 | |
|  * @is_mmio: whether this can be MMIO, set true if it can
 | |
|  * @target_as: the address space targeted by the IOMMU
 | |
|  * @attrs: transaction attributes
 | |
|  *
 | |
|  * This function is called from RCU critical section.  It is the common
 | |
|  * part of flatview_do_translate and address_space_translate_cached.
 | |
|  */
 | |
| static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 | |
|                                                          hwaddr *xlat,
 | |
|                                                          hwaddr *plen_out,
 | |
|                                                          hwaddr *page_mask_out,
 | |
|                                                          bool is_write,
 | |
|                                                          bool is_mmio,
 | |
|                                                          AddressSpace **target_as,
 | |
|                                                          MemTxAttrs attrs)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     hwaddr page_mask = (hwaddr)-1;
 | |
| 
 | |
|     do {
 | |
|         hwaddr addr = *xlat;
 | |
|         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 | |
|         int iommu_idx = 0;
 | |
|         IOMMUTLBEntry iotlb;
 | |
| 
 | |
|         if (imrc->attrs_to_index) {
 | |
|             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 | |
|         }
 | |
| 
 | |
|         iotlb = imrc->translate(iommu_mr, addr, is_write ?
 | |
|                                 IOMMU_WO : IOMMU_RO, iommu_idx);
 | |
| 
 | |
|         if (!(iotlb.perm & (1 << is_write))) {
 | |
|             goto unassigned;
 | |
|         }
 | |
| 
 | |
|         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 | |
|                 | (addr & iotlb.addr_mask));
 | |
|         page_mask &= iotlb.addr_mask;
 | |
|         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 | |
|         *target_as = iotlb.target_as;
 | |
| 
 | |
|         section = address_space_translate_internal(
 | |
|                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
 | |
|                 plen_out, is_mmio);
 | |
| 
 | |
|         iommu_mr = memory_region_get_iommu(section->mr);
 | |
|     } while (unlikely(iommu_mr));
 | |
| 
 | |
|     if (page_mask_out) {
 | |
|         *page_mask_out = page_mask;
 | |
|     }
 | |
|     return *section;
 | |
| 
 | |
| unassigned:
 | |
|     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * flatview_do_translate - translate an address in FlatView
 | |
|  *
 | |
|  * @fv: the flat view that we want to translate on
 | |
|  * @addr: the address to be translated in above address space
 | |
|  * @xlat: the translated address offset within memory region. It
 | |
|  *        cannot be @NULL.
 | |
|  * @plen_out: valid read/write length of the translated address. It
 | |
|  *            can be @NULL when we don't care about it.
 | |
|  * @page_mask_out: page mask for the translated address. This
 | |
|  *            should only be meaningful for IOMMU translated
 | |
|  *            addresses, since there may be huge pages that this bit
 | |
|  *            would tell. It can be @NULL if we don't care about it.
 | |
|  * @is_write: whether the translation operation is for write
 | |
|  * @is_mmio: whether this can be MMIO, set true if it can
 | |
|  * @target_as: the address space targeted by the IOMMU
 | |
|  * @attrs: memory transaction attributes
 | |
|  *
 | |
|  * This function is called from RCU critical section
 | |
|  */
 | |
| static MemoryRegionSection flatview_do_translate(FlatView *fv,
 | |
|                                                  hwaddr addr,
 | |
|                                                  hwaddr *xlat,
 | |
|                                                  hwaddr *plen_out,
 | |
|                                                  hwaddr *page_mask_out,
 | |
|                                                  bool is_write,
 | |
|                                                  bool is_mmio,
 | |
|                                                  AddressSpace **target_as,
 | |
|                                                  MemTxAttrs attrs)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     IOMMUMemoryRegion *iommu_mr;
 | |
|     hwaddr plen = (hwaddr)(-1);
 | |
| 
 | |
|     if (!plen_out) {
 | |
|         plen_out = &plen;
 | |
|     }
 | |
| 
 | |
|     section = address_space_translate_internal(
 | |
|             flatview_to_dispatch(fv), addr, xlat,
 | |
|             plen_out, is_mmio);
 | |
| 
 | |
|     iommu_mr = memory_region_get_iommu(section->mr);
 | |
|     if (unlikely(iommu_mr)) {
 | |
|         return address_space_translate_iommu(iommu_mr, xlat,
 | |
|                                              plen_out, page_mask_out,
 | |
|                                              is_write, is_mmio,
 | |
|                                              target_as, attrs);
 | |
|     }
 | |
|     if (page_mask_out) {
 | |
|         /* Not behind an IOMMU, use default page size. */
 | |
|         *page_mask_out = ~TARGET_PAGE_MASK;
 | |
|     }
 | |
| 
 | |
|     return *section;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 | |
|                                             bool is_write, MemTxAttrs attrs)
 | |
| {
 | |
|     MemoryRegionSection section;
 | |
|     hwaddr xlat, page_mask;
 | |
| 
 | |
|     /*
 | |
|      * This can never be MMIO, and we don't really care about plen,
 | |
|      * but page mask.
 | |
|      */
 | |
|     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 | |
|                                     NULL, &page_mask, is_write, false, &as,
 | |
|                                     attrs);
 | |
| 
 | |
|     /* Illegal translation */
 | |
|     if (section.mr == &io_mem_unassigned) {
 | |
|         goto iotlb_fail;
 | |
|     }
 | |
| 
 | |
|     /* Convert memory region offset into address space offset */
 | |
|     xlat += section.offset_within_address_space -
 | |
|         section.offset_within_region;
 | |
| 
 | |
|     return (IOMMUTLBEntry) {
 | |
|         .target_as = as,
 | |
|         .iova = addr & ~page_mask,
 | |
|         .translated_addr = xlat & ~page_mask,
 | |
|         .addr_mask = page_mask,
 | |
|         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 | |
|         .perm = IOMMU_RW,
 | |
|     };
 | |
| 
 | |
| iotlb_fail:
 | |
|     return (IOMMUTLBEntry) {0};
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 | |
|                                  hwaddr *plen, bool is_write,
 | |
|                                  MemTxAttrs attrs)
 | |
| {
 | |
|     MemoryRegion *mr;
 | |
|     MemoryRegionSection section;
 | |
|     AddressSpace *as = NULL;
 | |
| 
 | |
|     /* This can be MMIO, so setup MMIO bit. */
 | |
|     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 | |
|                                     is_write, true, &as, attrs);
 | |
|     mr = section.mr;
 | |
| 
 | |
|     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 | |
|         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 | |
|         *plen = MIN(page, *plen);
 | |
|     }
 | |
| 
 | |
|     return mr;
 | |
| }
 | |
| 
 | |
| typedef struct TCGIOMMUNotifier {
 | |
|     IOMMUNotifier n;
 | |
|     MemoryRegion *mr;
 | |
|     CPUState *cpu;
 | |
|     int iommu_idx;
 | |
|     bool active;
 | |
| } TCGIOMMUNotifier;
 | |
| 
 | |
| static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 | |
| {
 | |
|     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 | |
| 
 | |
|     if (!notifier->active) {
 | |
|         return;
 | |
|     }
 | |
|     tlb_flush(notifier->cpu);
 | |
|     notifier->active = false;
 | |
|     /* We leave the notifier struct on the list to avoid reallocating it later.
 | |
|      * Generally the number of IOMMUs a CPU deals with will be small.
 | |
|      * In any case we can't unregister the iommu notifier from a notify
 | |
|      * callback.
 | |
|      */
 | |
| }
 | |
| 
 | |
| static void tcg_register_iommu_notifier(CPUState *cpu,
 | |
|                                         IOMMUMemoryRegion *iommu_mr,
 | |
|                                         int iommu_idx)
 | |
| {
 | |
|     /* Make sure this CPU has an IOMMU notifier registered for this
 | |
|      * IOMMU/IOMMU index combination, so that we can flush its TLB
 | |
|      * when the IOMMU tells us the mappings we've cached have changed.
 | |
|      */
 | |
|     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 | |
|     TCGIOMMUNotifier *notifier = NULL;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 | |
|         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 | |
|         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (i == cpu->iommu_notifiers->len) {
 | |
|         /* Not found, add a new entry at the end of the array */
 | |
|         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 | |
|         notifier = g_new0(TCGIOMMUNotifier, 1);
 | |
|         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
 | |
| 
 | |
|         notifier->mr = mr;
 | |
|         notifier->iommu_idx = iommu_idx;
 | |
|         notifier->cpu = cpu;
 | |
|         /* Rather than trying to register interest in the specific part
 | |
|          * of the iommu's address space that we've accessed and then
 | |
|          * expand it later as subsequent accesses touch more of it, we
 | |
|          * just register interest in the whole thing, on the assumption
 | |
|          * that iommu reconfiguration will be rare.
 | |
|          */
 | |
|         iommu_notifier_init(¬ifier->n,
 | |
|                             tcg_iommu_unmap_notify,
 | |
|                             IOMMU_NOTIFIER_UNMAP,
 | |
|                             0,
 | |
|                             HWADDR_MAX,
 | |
|                             iommu_idx);
 | |
|         memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
 | |
|                                               &error_fatal);
 | |
|     }
 | |
| 
 | |
|     if (!notifier->active) {
 | |
|         notifier->active = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tcg_iommu_free_notifier_list(CPUState *cpu)
 | |
| {
 | |
|     /* Destroy the CPU's notifier list */
 | |
|     int i;
 | |
|     TCGIOMMUNotifier *notifier;
 | |
| 
 | |
|     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 | |
|         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 | |
|         memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
 | |
|         g_free(notifier);
 | |
|     }
 | |
|     g_array_free(cpu->iommu_notifiers, true);
 | |
| }
 | |
| 
 | |
| void tcg_iommu_init_notifier_list(CPUState *cpu)
 | |
| {
 | |
|     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| MemoryRegionSection *
 | |
| address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
 | |
|                                   hwaddr *xlat, hwaddr *plen,
 | |
|                                   MemTxAttrs attrs, int *prot)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     IOMMUMemoryRegion *iommu_mr;
 | |
|     IOMMUMemoryRegionClass *imrc;
 | |
|     IOMMUTLBEntry iotlb;
 | |
|     int iommu_idx;
 | |
|     hwaddr addr = orig_addr;
 | |
|     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
 | |
| 
 | |
|     for (;;) {
 | |
|         section = address_space_translate_internal(d, addr, &addr, plen, false);
 | |
| 
 | |
|         iommu_mr = memory_region_get_iommu(section->mr);
 | |
|         if (!iommu_mr) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 | |
| 
 | |
|         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 | |
|         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 | |
|         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 | |
|          * doesn't short-cut its translation table walk.
 | |
|          */
 | |
|         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 | |
|         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 | |
|                 | (addr & iotlb.addr_mask));
 | |
|         /* Update the caller's prot bits to remove permissions the IOMMU
 | |
|          * is giving us a failure response for. If we get down to no
 | |
|          * permissions left at all we can give up now.
 | |
|          */
 | |
|         if (!(iotlb.perm & IOMMU_RO)) {
 | |
|             *prot &= ~(PAGE_READ | PAGE_EXEC);
 | |
|         }
 | |
|         if (!(iotlb.perm & IOMMU_WO)) {
 | |
|             *prot &= ~PAGE_WRITE;
 | |
|         }
 | |
| 
 | |
|         if (!*prot) {
 | |
|             goto translate_fail;
 | |
|         }
 | |
| 
 | |
|         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 | |
|     }
 | |
| 
 | |
|     assert(!memory_region_is_iommu(section->mr));
 | |
|     *xlat = addr;
 | |
|     return section;
 | |
| 
 | |
| translate_fail:
 | |
|     /*
 | |
|      * We should be given a page-aligned address -- certainly
 | |
|      * tlb_set_page_with_attrs() does so.  The page offset of xlat
 | |
|      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
 | |
|      * The page portion of xlat will be logged by memory_region_access_valid()
 | |
|      * when this memory access is rejected, so use the original untranslated
 | |
|      * physical address.
 | |
|      */
 | |
|     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
 | |
|     *xlat = orig_addr;
 | |
|     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 | |
| }
 | |
| 
 | |
| void cpu_address_space_init(CPUState *cpu, int asidx,
 | |
|                             const char *prefix, MemoryRegion *mr)
 | |
| {
 | |
|     CPUAddressSpace *newas;
 | |
|     AddressSpace *as = g_new0(AddressSpace, 1);
 | |
|     char *as_name;
 | |
| 
 | |
|     assert(mr);
 | |
|     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 | |
|     address_space_init(as, mr, as_name);
 | |
|     g_free(as_name);
 | |
| 
 | |
|     /* Target code should have set num_ases before calling us */
 | |
|     assert(asidx < cpu->num_ases);
 | |
| 
 | |
|     if (asidx == 0) {
 | |
|         /* address space 0 gets the convenience alias */
 | |
|         cpu->as = as;
 | |
|     }
 | |
| 
 | |
|     /* KVM cannot currently support multiple address spaces. */
 | |
|     assert(asidx == 0 || !kvm_enabled());
 | |
| 
 | |
|     if (!cpu->cpu_ases) {
 | |
|         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 | |
|         cpu->cpu_ases_count = cpu->num_ases;
 | |
|     }
 | |
| 
 | |
|     newas = &cpu->cpu_ases[asidx];
 | |
|     newas->cpu = cpu;
 | |
|     newas->as = as;
 | |
|     if (tcg_enabled()) {
 | |
|         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
 | |
|         newas->tcg_as_listener.commit = tcg_commit;
 | |
|         newas->tcg_as_listener.name = "tcg";
 | |
|         memory_listener_register(&newas->tcg_as_listener, as);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_address_space_destroy(CPUState *cpu, int asidx)
 | |
| {
 | |
|     CPUAddressSpace *cpuas;
 | |
| 
 | |
|     assert(cpu->cpu_ases);
 | |
|     assert(asidx >= 0 && asidx < cpu->num_ases);
 | |
|     /* KVM cannot currently support multiple address spaces. */
 | |
|     assert(asidx == 0 || !kvm_enabled());
 | |
| 
 | |
|     cpuas = &cpu->cpu_ases[asidx];
 | |
|     if (tcg_enabled()) {
 | |
|         memory_listener_unregister(&cpuas->tcg_as_listener);
 | |
|     }
 | |
| 
 | |
|     address_space_destroy(cpuas->as);
 | |
|     g_free_rcu(cpuas->as, rcu);
 | |
| 
 | |
|     if (asidx == 0) {
 | |
|         /* reset the convenience alias for address space 0 */
 | |
|         cpu->as = NULL;
 | |
|     }
 | |
| 
 | |
|     if (--cpu->cpu_ases_count == 0) {
 | |
|         g_free(cpu->cpu_ases);
 | |
|         cpu->cpu_ases = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 | |
| {
 | |
|     /* Return the AddressSpace corresponding to the specified index */
 | |
|     return cpu->cpu_ases[asidx].as;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     block = qatomic_rcu_read(&ram_list.mru_block);
 | |
|     if (block && addr - block->offset < block->max_length) {
 | |
|         return block;
 | |
|     }
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         if (addr - block->offset < block->max_length) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
| found:
 | |
|     /* It is safe to write mru_block outside the BQL.  This
 | |
|      * is what happens:
 | |
|      *
 | |
|      *     mru_block = xxx
 | |
|      *     rcu_read_unlock()
 | |
|      *                                        xxx removed from list
 | |
|      *                  rcu_read_lock()
 | |
|      *                  read mru_block
 | |
|      *                                        mru_block = NULL;
 | |
|      *                                        call_rcu(reclaim_ramblock, xxx);
 | |
|      *                  rcu_read_unlock()
 | |
|      *
 | |
|      * qatomic_rcu_set is not needed here.  The block was already published
 | |
|      * when it was placed into the list.  Here we're just making an extra
 | |
|      * copy of the pointer.
 | |
|      */
 | |
|     ram_list.mru_block = block;
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
 | |
| {
 | |
|     CPUState *cpu;
 | |
|     ram_addr_t start1;
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t end;
 | |
| 
 | |
|     assert(tcg_enabled());
 | |
|     end = TARGET_PAGE_ALIGN(start + length);
 | |
|     start &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     block = qemu_get_ram_block(start);
 | |
|     assert(block == qemu_get_ram_block(end - 1));
 | |
|     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
 | |
|     CPU_FOREACH(cpu) {
 | |
|         tlb_reset_dirty(cpu, start1, length);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Note: start and end must be within the same ram block.  */
 | |
| bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
 | |
|                                               ram_addr_t length,
 | |
|                                               unsigned client)
 | |
| {
 | |
|     DirtyMemoryBlocks *blocks;
 | |
|     unsigned long end, page, start_page;
 | |
|     bool dirty = false;
 | |
|     RAMBlock *ramblock;
 | |
|     uint64_t mr_offset, mr_size;
 | |
| 
 | |
|     if (length == 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 | |
|     start_page = start >> TARGET_PAGE_BITS;
 | |
|     page = start_page;
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 | |
|         ramblock = qemu_get_ram_block(start);
 | |
|         /* Range sanity check on the ramblock */
 | |
|         assert(start >= ramblock->offset &&
 | |
|                start + length <= ramblock->offset + ramblock->used_length);
 | |
| 
 | |
|         while (page < end) {
 | |
|             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 | |
|             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 | |
|             unsigned long num = MIN(end - page,
 | |
|                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
 | |
| 
 | |
|             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
 | |
|                                                   offset, num);
 | |
|             page += num;
 | |
|         }
 | |
| 
 | |
|         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
 | |
|         mr_size = (end - start_page) << TARGET_PAGE_BITS;
 | |
|         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
 | |
|     }
 | |
| 
 | |
|     if (dirty) {
 | |
|         cpu_physical_memory_dirty_bits_cleared(start, length);
 | |
|     }
 | |
| 
 | |
|     return dirty;
 | |
| }
 | |
| 
 | |
| DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
 | |
|     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
 | |
| {
 | |
|     DirtyMemoryBlocks *blocks;
 | |
|     ram_addr_t start, first, last;
 | |
|     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
 | |
|     DirtyBitmapSnapshot *snap;
 | |
|     unsigned long page, end, dest;
 | |
| 
 | |
|     start = memory_region_get_ram_addr(mr);
 | |
|     /* We know we're only called for RAM MemoryRegions */
 | |
|     assert(start != RAM_ADDR_INVALID);
 | |
|     start += offset;
 | |
| 
 | |
|     first = QEMU_ALIGN_DOWN(start, align);
 | |
|     last  = QEMU_ALIGN_UP(start + length, align);
 | |
| 
 | |
|     snap = g_malloc0(sizeof(*snap) +
 | |
|                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
 | |
|     snap->start = first;
 | |
|     snap->end   = last;
 | |
| 
 | |
|     page = first >> TARGET_PAGE_BITS;
 | |
|     end  = last  >> TARGET_PAGE_BITS;
 | |
|     dest = 0;
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 | |
| 
 | |
|         while (page < end) {
 | |
|             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 | |
|             unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
 | |
|             unsigned long num = MIN(end - page,
 | |
|                                     DIRTY_MEMORY_BLOCK_SIZE - ofs);
 | |
| 
 | |
|             assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
 | |
|             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
 | |
|             ofs >>= BITS_PER_LEVEL;
 | |
| 
 | |
|             bitmap_copy_and_clear_atomic(snap->dirty + dest,
 | |
|                                          blocks->blocks[idx] + ofs,
 | |
|                                          num);
 | |
|             page += num;
 | |
|             dest += num >> BITS_PER_LEVEL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cpu_physical_memory_dirty_bits_cleared(start, length);
 | |
| 
 | |
|     memory_region_clear_dirty_bitmap(mr, offset, length);
 | |
| 
 | |
|     return snap;
 | |
| }
 | |
| 
 | |
| bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
 | |
|                                             ram_addr_t start,
 | |
|                                             ram_addr_t length)
 | |
| {
 | |
|     unsigned long page, end;
 | |
| 
 | |
|     assert(start >= snap->start);
 | |
|     assert(start + length <= snap->end);
 | |
| 
 | |
|     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
 | |
|     page = (start - snap->start) >> TARGET_PAGE_BITS;
 | |
| 
 | |
|     while (page < end) {
 | |
|         if (test_bit(page, snap->dirty)) {
 | |
|             return true;
 | |
|         }
 | |
|         page++;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| hwaddr memory_region_section_get_iotlb(CPUState *cpu,
 | |
|                                        MemoryRegionSection *section)
 | |
| {
 | |
|     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
 | |
|     return section - d->map.sections;
 | |
| }
 | |
| 
 | |
| static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                             uint16_t section);
 | |
| static subpage_t *subpage_init(FlatView *fv, hwaddr base);
 | |
| 
 | |
| static uint16_t phys_section_add(PhysPageMap *map,
 | |
|                                  MemoryRegionSection *section)
 | |
| {
 | |
|     /* The physical section number is ORed with a page-aligned
 | |
|      * pointer to produce the iotlb entries.  Thus it should
 | |
|      * never overflow into the page-aligned value.
 | |
|      */
 | |
|     assert(map->sections_nb < TARGET_PAGE_SIZE);
 | |
| 
 | |
|     if (map->sections_nb == map->sections_nb_alloc) {
 | |
|         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
 | |
|         map->sections = g_renew(MemoryRegionSection, map->sections,
 | |
|                                 map->sections_nb_alloc);
 | |
|     }
 | |
|     map->sections[map->sections_nb] = *section;
 | |
|     memory_region_ref(section->mr);
 | |
|     return map->sections_nb++;
 | |
| }
 | |
| 
 | |
| static void phys_section_destroy(MemoryRegion *mr)
 | |
| {
 | |
|     bool have_sub_page = mr->subpage;
 | |
| 
 | |
|     memory_region_unref(mr);
 | |
| 
 | |
|     if (have_sub_page) {
 | |
|         subpage_t *subpage = container_of(mr, subpage_t, iomem);
 | |
|         object_unref(OBJECT(&subpage->iomem));
 | |
|         g_free(subpage);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_sections_free(PhysPageMap *map)
 | |
| {
 | |
|     while (map->sections_nb > 0) {
 | |
|         MemoryRegionSection *section = &map->sections[--map->sections_nb];
 | |
|         phys_section_destroy(section->mr);
 | |
|     }
 | |
|     g_free(map->sections);
 | |
|     g_free(map->nodes);
 | |
| }
 | |
| 
 | |
| static void register_subpage(FlatView *fv, MemoryRegionSection *section)
 | |
| {
 | |
|     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
 | |
|     subpage_t *subpage;
 | |
|     hwaddr base = section->offset_within_address_space
 | |
|         & TARGET_PAGE_MASK;
 | |
|     MemoryRegionSection *existing = phys_page_find(d, base);
 | |
|     MemoryRegionSection subsection = {
 | |
|         .offset_within_address_space = base,
 | |
|         .size = int128_make64(TARGET_PAGE_SIZE),
 | |
|     };
 | |
|     hwaddr start, end;
 | |
| 
 | |
|     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
 | |
| 
 | |
|     if (!(existing->mr->subpage)) {
 | |
|         subpage = subpage_init(fv, base);
 | |
|         subsection.fv = fv;
 | |
|         subsection.mr = &subpage->iomem;
 | |
|         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
 | |
|                       phys_section_add(&d->map, &subsection));
 | |
|     } else {
 | |
|         subpage = container_of(existing->mr, subpage_t, iomem);
 | |
|     }
 | |
|     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
 | |
|     end = start + int128_get64(section->size) - 1;
 | |
|     subpage_register(subpage, start, end,
 | |
|                      phys_section_add(&d->map, section));
 | |
| }
 | |
| 
 | |
| 
 | |
| static void register_multipage(FlatView *fv,
 | |
|                                MemoryRegionSection *section)
 | |
| {
 | |
|     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
 | |
|     hwaddr start_addr = section->offset_within_address_space;
 | |
|     uint16_t section_index = phys_section_add(&d->map, section);
 | |
|     uint64_t num_pages = int128_get64(int128_rshift(section->size,
 | |
|                                                     TARGET_PAGE_BITS));
 | |
| 
 | |
|     assert(num_pages);
 | |
|     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The range in *section* may look like this:
 | |
|  *
 | |
|  *      |s|PPPPPPP|s|
 | |
|  *
 | |
|  * where s stands for subpage and P for page.
 | |
|  */
 | |
| void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
 | |
| {
 | |
|     MemoryRegionSection remain = *section;
 | |
|     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
 | |
| 
 | |
|     /* register first subpage */
 | |
|     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
 | |
|         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
 | |
|                         - remain.offset_within_address_space;
 | |
| 
 | |
|         MemoryRegionSection now = remain;
 | |
|         now.size = int128_min(int128_make64(left), now.size);
 | |
|         register_subpage(fv, &now);
 | |
|         if (int128_eq(remain.size, now.size)) {
 | |
|             return;
 | |
|         }
 | |
|         remain.size = int128_sub(remain.size, now.size);
 | |
|         remain.offset_within_address_space += int128_get64(now.size);
 | |
|         remain.offset_within_region += int128_get64(now.size);
 | |
|     }
 | |
| 
 | |
|     /* register whole pages */
 | |
|     if (int128_ge(remain.size, page_size)) {
 | |
|         MemoryRegionSection now = remain;
 | |
|         now.size = int128_and(now.size, int128_neg(page_size));
 | |
|         register_multipage(fv, &now);
 | |
|         if (int128_eq(remain.size, now.size)) {
 | |
|             return;
 | |
|         }
 | |
|         remain.size = int128_sub(remain.size, now.size);
 | |
|         remain.offset_within_address_space += int128_get64(now.size);
 | |
|         remain.offset_within_region += int128_get64(now.size);
 | |
|     }
 | |
| 
 | |
|     /* register last subpage */
 | |
|     register_subpage(fv, &remain);
 | |
| }
 | |
| 
 | |
| void qemu_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_flush_coalesced_mmio_buffer();
 | |
| }
 | |
| 
 | |
| void qemu_mutex_lock_ramlist(void)
 | |
| {
 | |
|     qemu_mutex_lock(&ram_list.mutex);
 | |
| }
 | |
| 
 | |
| void qemu_mutex_unlock_ramlist(void)
 | |
| {
 | |
|     qemu_mutex_unlock(&ram_list.mutex);
 | |
| }
 | |
| 
 | |
| GString *ram_block_format(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     char *psize;
 | |
|     GString *buf = g_string_new("");
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
 | |
|                            "Block Name", "PSize", "Offset", "Used", "Total",
 | |
|                            "HVA", "RO");
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         psize = size_to_str(block->page_size);
 | |
|         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
 | |
|                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
 | |
|                                block->idstr, psize,
 | |
|                                (uint64_t)block->offset,
 | |
|                                (uint64_t)block->used_length,
 | |
|                                (uint64_t)block->max_length,
 | |
|                                (uint64_t)(uintptr_t)block->host,
 | |
|                                block->mr->readonly ? "ro" : "rw");
 | |
| 
 | |
|         g_free(psize);
 | |
|     }
 | |
| 
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| static int find_min_backend_pagesize(Object *obj, void *opaque)
 | |
| {
 | |
|     long *hpsize_min = opaque;
 | |
| 
 | |
|     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
 | |
|         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
 | |
|         long hpsize = host_memory_backend_pagesize(backend);
 | |
| 
 | |
|         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
 | |
|             *hpsize_min = hpsize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int find_max_backend_pagesize(Object *obj, void *opaque)
 | |
| {
 | |
|     long *hpsize_max = opaque;
 | |
| 
 | |
|     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
 | |
|         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
 | |
|         long hpsize = host_memory_backend_pagesize(backend);
 | |
| 
 | |
|         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
 | |
|             *hpsize_max = hpsize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO: We assume right now that all mapped host memory backends are
 | |
|  * used as RAM, however some might be used for different purposes.
 | |
|  */
 | |
| long qemu_minrampagesize(void)
 | |
| {
 | |
|     long hpsize = LONG_MAX;
 | |
|     Object *memdev_root = object_resolve_path("/objects", NULL);
 | |
| 
 | |
|     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
 | |
|     return hpsize;
 | |
| }
 | |
| 
 | |
| long qemu_maxrampagesize(void)
 | |
| {
 | |
|     long pagesize = 0;
 | |
|     Object *memdev_root = object_resolve_path("/objects", NULL);
 | |
| 
 | |
|     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
 | |
|     return pagesize;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_POSIX
 | |
| static int64_t get_file_size(int fd)
 | |
| {
 | |
|     int64_t size;
 | |
| #if defined(__linux__)
 | |
|     struct stat st;
 | |
| 
 | |
|     if (fstat(fd, &st) < 0) {
 | |
|         return -errno;
 | |
|     }
 | |
| 
 | |
|     /* Special handling for devdax character devices */
 | |
|     if (S_ISCHR(st.st_mode)) {
 | |
|         g_autofree char *subsystem_path = NULL;
 | |
|         g_autofree char *subsystem = NULL;
 | |
| 
 | |
|         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
 | |
|                                          major(st.st_rdev), minor(st.st_rdev));
 | |
|         subsystem = g_file_read_link(subsystem_path, NULL);
 | |
| 
 | |
|         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
 | |
|             g_autofree char *size_path = NULL;
 | |
|             g_autofree char *size_str = NULL;
 | |
| 
 | |
|             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
 | |
|                                     major(st.st_rdev), minor(st.st_rdev));
 | |
| 
 | |
|             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
 | |
|                 return g_ascii_strtoll(size_str, NULL, 0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif /* defined(__linux__) */
 | |
| 
 | |
|     /* st.st_size may be zero for special files yet lseek(2) works */
 | |
|     size = lseek(fd, 0, SEEK_END);
 | |
|     if (size < 0) {
 | |
|         return -errno;
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| static int64_t get_file_align(int fd)
 | |
| {
 | |
|     int64_t align = -1;
 | |
| #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
 | |
|     struct stat st;
 | |
| 
 | |
|     if (fstat(fd, &st) < 0) {
 | |
|         return -errno;
 | |
|     }
 | |
| 
 | |
|     /* Special handling for devdax character devices */
 | |
|     if (S_ISCHR(st.st_mode)) {
 | |
|         g_autofree char *path = NULL;
 | |
|         g_autofree char *rpath = NULL;
 | |
|         struct daxctl_ctx *ctx;
 | |
|         struct daxctl_region *region;
 | |
|         int rc = 0;
 | |
| 
 | |
|         path = g_strdup_printf("/sys/dev/char/%d:%d",
 | |
|                     major(st.st_rdev), minor(st.st_rdev));
 | |
|         rpath = realpath(path, NULL);
 | |
|         if (!rpath) {
 | |
|             return -errno;
 | |
|         }
 | |
| 
 | |
|         rc = daxctl_new(&ctx);
 | |
|         if (rc) {
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         daxctl_region_foreach(ctx, region) {
 | |
|             if (strstr(rpath, daxctl_region_get_path(region))) {
 | |
|                 align = daxctl_region_get_align(region);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         daxctl_unref(ctx);
 | |
|     }
 | |
| #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
 | |
| 
 | |
|     return align;
 | |
| }
 | |
| 
 | |
| static int file_ram_open(const char *path,
 | |
|                          const char *region_name,
 | |
|                          bool readonly,
 | |
|                          bool *created)
 | |
| {
 | |
|     char *filename;
 | |
|     char *sanitized_name;
 | |
|     char *c;
 | |
|     int fd = -1;
 | |
| 
 | |
|     *created = false;
 | |
|     for (;;) {
 | |
|         fd = open(path, readonly ? O_RDONLY : O_RDWR);
 | |
|         if (fd >= 0) {
 | |
|             /*
 | |
|              * open(O_RDONLY) won't fail with EISDIR. Check manually if we
 | |
|              * opened a directory and fail similarly to how we fail ENOENT
 | |
|              * in readonly mode. Note that mkstemp() would imply O_RDWR.
 | |
|              */
 | |
|             if (readonly) {
 | |
|                 struct stat file_stat;
 | |
| 
 | |
|                 if (fstat(fd, &file_stat)) {
 | |
|                     close(fd);
 | |
|                     if (errno == EINTR) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     return -errno;
 | |
|                 } else if (S_ISDIR(file_stat.st_mode)) {
 | |
|                     close(fd);
 | |
|                     return -EISDIR;
 | |
|                 }
 | |
|             }
 | |
|             /* @path names an existing file, use it */
 | |
|             break;
 | |
|         }
 | |
|         if (errno == ENOENT) {
 | |
|             if (readonly) {
 | |
|                 /* Refuse to create new, readonly files. */
 | |
|                 return -ENOENT;
 | |
|             }
 | |
|             /* @path names a file that doesn't exist, create it */
 | |
|             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
 | |
|             if (fd >= 0) {
 | |
|                 *created = true;
 | |
|                 break;
 | |
|             }
 | |
|         } else if (errno == EISDIR) {
 | |
|             /* @path names a directory, create a file there */
 | |
|             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
 | |
|             sanitized_name = g_strdup(region_name);
 | |
|             for (c = sanitized_name; *c != '\0'; c++) {
 | |
|                 if (*c == '/') {
 | |
|                     *c = '_';
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
 | |
|                                        sanitized_name);
 | |
|             g_free(sanitized_name);
 | |
| 
 | |
|             fd = mkstemp(filename);
 | |
|             if (fd >= 0) {
 | |
|                 unlink(filename);
 | |
|                 g_free(filename);
 | |
|                 break;
 | |
|             }
 | |
|             g_free(filename);
 | |
|         }
 | |
|         if (errno != EEXIST && errno != EINTR) {
 | |
|             return -errno;
 | |
|         }
 | |
|         /*
 | |
|          * Try again on EINTR and EEXIST.  The latter happens when
 | |
|          * something else creates the file between our two open().
 | |
|          */
 | |
|     }
 | |
| 
 | |
|     return fd;
 | |
| }
 | |
| 
 | |
| static void *file_ram_alloc(RAMBlock *block,
 | |
|                             ram_addr_t memory,
 | |
|                             int fd,
 | |
|                             bool truncate,
 | |
|                             off_t offset,
 | |
|                             Error **errp)
 | |
| {
 | |
|     uint32_t qemu_map_flags;
 | |
|     void *area;
 | |
| 
 | |
|     block->page_size = qemu_fd_getpagesize(fd);
 | |
|     if (block->mr->align % block->page_size) {
 | |
|         error_setg(errp, "alignment 0x%" PRIx64
 | |
|                    " must be multiples of page size 0x%zx",
 | |
|                    block->mr->align, block->page_size);
 | |
|         return NULL;
 | |
|     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
 | |
|         error_setg(errp, "alignment 0x%" PRIx64
 | |
|                    " must be a power of two", block->mr->align);
 | |
|         return NULL;
 | |
|     } else if (offset % block->page_size) {
 | |
|         error_setg(errp, "offset 0x%" PRIx64
 | |
|                    " must be multiples of page size 0x%zx",
 | |
|                    offset, block->page_size);
 | |
|         return NULL;
 | |
|     }
 | |
|     block->mr->align = MAX(block->page_size, block->mr->align);
 | |
| #if defined(__s390x__)
 | |
|     if (kvm_enabled()) {
 | |
|         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (memory < block->page_size) {
 | |
|         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
 | |
|                    "or larger than page size 0x%zx",
 | |
|                    memory, block->page_size);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     memory = ROUND_UP(memory, block->page_size);
 | |
| 
 | |
|     /*
 | |
|      * ftruncate is not supported by hugetlbfs in older
 | |
|      * hosts, so don't bother bailing out on errors.
 | |
|      * If anything goes wrong with it under other filesystems,
 | |
|      * mmap will fail.
 | |
|      *
 | |
|      * Do not truncate the non-empty backend file to avoid corrupting
 | |
|      * the existing data in the file. Disabling shrinking is not
 | |
|      * enough. For example, the current vNVDIMM implementation stores
 | |
|      * the guest NVDIMM labels at the end of the backend file. If the
 | |
|      * backend file is later extended, QEMU will not be able to find
 | |
|      * those labels. Therefore, extending the non-empty backend file
 | |
|      * is disabled as well.
 | |
|      */
 | |
|     if (truncate && ftruncate(fd, offset + memory)) {
 | |
|         perror("ftruncate");
 | |
|     }
 | |
| 
 | |
|     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
 | |
|     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
 | |
|     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
 | |
|     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
 | |
|     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
 | |
|     if (area == MAP_FAILED) {
 | |
|         error_setg_errno(errp, errno,
 | |
|                          "unable to map backing store for guest RAM");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     block->fd = fd;
 | |
|     block->fd_offset = offset;
 | |
|     return area;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Allocate space within the ram_addr_t space that governs the
 | |
|  * dirty bitmaps.
 | |
|  * Called with the ramlist lock held.
 | |
|  */
 | |
| static ram_addr_t find_ram_offset(ram_addr_t size)
 | |
| {
 | |
|     RAMBlock *block, *next_block;
 | |
|     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
 | |
| 
 | |
|     assert(size != 0); /* it would hand out same offset multiple times */
 | |
| 
 | |
|     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         ram_addr_t candidate, next = RAM_ADDR_MAX;
 | |
| 
 | |
|         /* Align blocks to start on a 'long' in the bitmap
 | |
|          * which makes the bitmap sync'ing take the fast path.
 | |
|          */
 | |
|         candidate = block->offset + block->max_length;
 | |
|         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
 | |
| 
 | |
|         /* Search for the closest following block
 | |
|          * and find the gap.
 | |
|          */
 | |
|         RAMBLOCK_FOREACH(next_block) {
 | |
|             if (next_block->offset >= candidate) {
 | |
|                 next = MIN(next, next_block->offset);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* If it fits remember our place and remember the size
 | |
|          * of gap, but keep going so that we might find a smaller
 | |
|          * gap to fill so avoiding fragmentation.
 | |
|          */
 | |
|         if (next - candidate >= size && next - candidate < mingap) {
 | |
|             offset = candidate;
 | |
|             mingap = next - candidate;
 | |
|         }
 | |
| 
 | |
|         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
 | |
|     }
 | |
| 
 | |
|     if (offset == RAM_ADDR_MAX) {
 | |
|         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
 | |
|                 (uint64_t)size);
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     trace_find_ram_offset(size, offset);
 | |
| 
 | |
|     return offset;
 | |
| }
 | |
| 
 | |
| static unsigned long last_ram_page(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t last = 0;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         last = MAX(last, block->offset + block->max_length);
 | |
|     }
 | |
|     return last >> TARGET_PAGE_BITS;
 | |
| }
 | |
| 
 | |
| static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
 | |
|     if (!machine_dump_guest_core(current_machine)) {
 | |
|         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
 | |
|         if (ret) {
 | |
|             perror("qemu_madvise");
 | |
|             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
 | |
|                             "but dump-guest-core=off specified\n");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| const char *qemu_ram_get_idstr(RAMBlock *rb)
 | |
| {
 | |
|     return rb->idstr;
 | |
| }
 | |
| 
 | |
| void *qemu_ram_get_host_addr(RAMBlock *rb)
 | |
| {
 | |
|     return rb->host;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
 | |
| {
 | |
|     return rb->offset;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
 | |
| {
 | |
|     return rb->used_length;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
 | |
| {
 | |
|     return rb->max_length;
 | |
| }
 | |
| 
 | |
| bool qemu_ram_is_shared(RAMBlock *rb)
 | |
| {
 | |
|     return rb->flags & RAM_SHARED;
 | |
| }
 | |
| 
 | |
| bool qemu_ram_is_noreserve(RAMBlock *rb)
 | |
| {
 | |
|     return rb->flags & RAM_NORESERVE;
 | |
| }
 | |
| 
 | |
| /* Note: Only set at the start of postcopy */
 | |
| bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
 | |
| {
 | |
|     return rb->flags & RAM_UF_ZEROPAGE;
 | |
| }
 | |
| 
 | |
| void qemu_ram_set_uf_zeroable(RAMBlock *rb)
 | |
| {
 | |
|     rb->flags |= RAM_UF_ZEROPAGE;
 | |
| }
 | |
| 
 | |
| bool qemu_ram_is_migratable(RAMBlock *rb)
 | |
| {
 | |
|     return rb->flags & RAM_MIGRATABLE;
 | |
| }
 | |
| 
 | |
| void qemu_ram_set_migratable(RAMBlock *rb)
 | |
| {
 | |
|     rb->flags |= RAM_MIGRATABLE;
 | |
| }
 | |
| 
 | |
| void qemu_ram_unset_migratable(RAMBlock *rb)
 | |
| {
 | |
|     rb->flags &= ~RAM_MIGRATABLE;
 | |
| }
 | |
| 
 | |
| bool qemu_ram_is_named_file(RAMBlock *rb)
 | |
| {
 | |
|     return rb->flags & RAM_NAMED_FILE;
 | |
| }
 | |
| 
 | |
| int qemu_ram_get_fd(RAMBlock *rb)
 | |
| {
 | |
|     return rb->fd;
 | |
| }
 | |
| 
 | |
| /* Called with the BQL held.  */
 | |
| void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     assert(new_block);
 | |
|     assert(!new_block->idstr[0]);
 | |
| 
 | |
|     if (dev) {
 | |
|         char *id = qdev_get_dev_path(dev);
 | |
|         if (id) {
 | |
|             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
 | |
|             g_free(id);
 | |
|         }
 | |
|     }
 | |
|     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         if (block != new_block &&
 | |
|             !strcmp(block->idstr, new_block->idstr)) {
 | |
|             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
 | |
|                     new_block->idstr);
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Called with the BQL held.  */
 | |
| void qemu_ram_unset_idstr(RAMBlock *block)
 | |
| {
 | |
|     /* FIXME: arch_init.c assumes that this is not called throughout
 | |
|      * migration.  Ignore the problem since hot-unplug during migration
 | |
|      * does not work anyway.
 | |
|      */
 | |
|     if (block) {
 | |
|         memset(block->idstr, 0, sizeof(block->idstr));
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t qemu_ram_pagesize(RAMBlock *rb)
 | |
| {
 | |
|     return rb->page_size;
 | |
| }
 | |
| 
 | |
| /* Returns the largest size of page in use */
 | |
| size_t qemu_ram_pagesize_largest(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     size_t largest = 0;
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         largest = MAX(largest, qemu_ram_pagesize(block));
 | |
|     }
 | |
| 
 | |
|     return largest;
 | |
| }
 | |
| 
 | |
| static int memory_try_enable_merging(void *addr, size_t len)
 | |
| {
 | |
|     if (!machine_mem_merge(current_machine)) {
 | |
|         /* disabled by the user */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resizing RAM while migrating can result in the migration being canceled.
 | |
|  * Care has to be taken if the guest might have already detected the memory.
 | |
|  *
 | |
|  * As memory core doesn't know how is memory accessed, it is up to
 | |
|  * resize callback to update device state and/or add assertions to detect
 | |
|  * misuse, if necessary.
 | |
|  */
 | |
| int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
 | |
| {
 | |
|     const ram_addr_t oldsize = block->used_length;
 | |
|     const ram_addr_t unaligned_size = newsize;
 | |
| 
 | |
|     assert(block);
 | |
| 
 | |
|     newsize = TARGET_PAGE_ALIGN(newsize);
 | |
|     newsize = REAL_HOST_PAGE_ALIGN(newsize);
 | |
| 
 | |
|     if (block->used_length == newsize) {
 | |
|         /*
 | |
|          * We don't have to resize the ram block (which only knows aligned
 | |
|          * sizes), however, we have to notify if the unaligned size changed.
 | |
|          */
 | |
|         if (unaligned_size != memory_region_size(block->mr)) {
 | |
|             memory_region_set_size(block->mr, unaligned_size);
 | |
|             if (block->resized) {
 | |
|                 block->resized(block->idstr, unaligned_size, block->host);
 | |
|             }
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!(block->flags & RAM_RESIZEABLE)) {
 | |
|         error_setg_errno(errp, EINVAL,
 | |
|                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
 | |
|                          " != 0x" RAM_ADDR_FMT, block->idstr,
 | |
|                          newsize, block->used_length);
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     if (block->max_length < newsize) {
 | |
|         error_setg_errno(errp, EINVAL,
 | |
|                          "Size too large: %s: 0x" RAM_ADDR_FMT
 | |
|                          " > 0x" RAM_ADDR_FMT, block->idstr,
 | |
|                          newsize, block->max_length);
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /* Notify before modifying the ram block and touching the bitmaps. */
 | |
|     if (block->host) {
 | |
|         ram_block_notify_resize(block->host, oldsize, newsize);
 | |
|     }
 | |
| 
 | |
|     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
 | |
|     block->used_length = newsize;
 | |
|     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
 | |
|                                         DIRTY_CLIENTS_ALL);
 | |
|     memory_region_set_size(block->mr, unaligned_size);
 | |
|     if (block->resized) {
 | |
|         block->resized(block->idstr, unaligned_size, block->host);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trigger sync on the given ram block for range [start, start + length]
 | |
|  * with the backing store if one is available.
 | |
|  * Otherwise no-op.
 | |
|  * @Note: this is supposed to be a synchronous op.
 | |
|  */
 | |
| void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
 | |
| {
 | |
|     /* The requested range should fit in within the block range */
 | |
|     g_assert((start + length) <= block->used_length);
 | |
| 
 | |
| #ifdef CONFIG_LIBPMEM
 | |
|     /* The lack of support for pmem should not block the sync */
 | |
|     if (ramblock_is_pmem(block)) {
 | |
|         void *addr = ramblock_ptr(block, start);
 | |
|         pmem_persist(addr, length);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     if (block->fd >= 0) {
 | |
|         /**
 | |
|          * Case there is no support for PMEM or the memory has not been
 | |
|          * specified as persistent (or is not one) - use the msync.
 | |
|          * Less optimal but still achieves the same goal
 | |
|          */
 | |
|         void *addr = ramblock_ptr(block, start);
 | |
|         if (qemu_msync(addr, length, block->fd)) {
 | |
|             warn_report("%s: failed to sync memory range: start: "
 | |
|                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
 | |
|                     __func__, start, length);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Called with ram_list.mutex held */
 | |
| static void dirty_memory_extend(ram_addr_t old_ram_size,
 | |
|                                 ram_addr_t new_ram_size)
 | |
| {
 | |
|     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
 | |
|                                              DIRTY_MEMORY_BLOCK_SIZE);
 | |
|     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
 | |
|                                              DIRTY_MEMORY_BLOCK_SIZE);
 | |
|     int i;
 | |
| 
 | |
|     /* Only need to extend if block count increased */
 | |
|     if (new_num_blocks <= old_num_blocks) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
 | |
|         DirtyMemoryBlocks *old_blocks;
 | |
|         DirtyMemoryBlocks *new_blocks;
 | |
|         int j;
 | |
| 
 | |
|         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
 | |
|         new_blocks = g_malloc(sizeof(*new_blocks) +
 | |
|                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
 | |
| 
 | |
|         if (old_num_blocks) {
 | |
|             memcpy(new_blocks->blocks, old_blocks->blocks,
 | |
|                    old_num_blocks * sizeof(old_blocks->blocks[0]));
 | |
|         }
 | |
| 
 | |
|         for (j = old_num_blocks; j < new_num_blocks; j++) {
 | |
|             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
 | |
|         }
 | |
| 
 | |
|         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
 | |
| 
 | |
|         if (old_blocks) {
 | |
|             g_free_rcu(old_blocks, rcu);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ram_block_add(RAMBlock *new_block, Error **errp)
 | |
| {
 | |
|     const bool noreserve = qemu_ram_is_noreserve(new_block);
 | |
|     const bool shared = qemu_ram_is_shared(new_block);
 | |
|     RAMBlock *block;
 | |
|     RAMBlock *last_block = NULL;
 | |
|     bool free_on_error = false;
 | |
|     ram_addr_t old_ram_size, new_ram_size;
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     old_ram_size = last_ram_page();
 | |
| 
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     new_block->offset = find_ram_offset(new_block->max_length);
 | |
| 
 | |
|     if (!new_block->host) {
 | |
|         if (xen_enabled()) {
 | |
|             xen_ram_alloc(new_block->offset, new_block->max_length,
 | |
|                           new_block->mr, &err);
 | |
|             if (err) {
 | |
|                 error_propagate(errp, err);
 | |
|                 qemu_mutex_unlock_ramlist();
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
 | |
|                                                   &new_block->mr->align,
 | |
|                                                   shared, noreserve);
 | |
|             if (!new_block->host) {
 | |
|                 error_setg_errno(errp, errno,
 | |
|                                  "cannot set up guest memory '%s'",
 | |
|                                  memory_region_name(new_block->mr));
 | |
|                 qemu_mutex_unlock_ramlist();
 | |
|                 return;
 | |
|             }
 | |
|             memory_try_enable_merging(new_block->host, new_block->max_length);
 | |
|             free_on_error = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (new_block->flags & RAM_GUEST_MEMFD) {
 | |
|         int ret;
 | |
| 
 | |
|         assert(kvm_enabled());
 | |
|         assert(new_block->guest_memfd < 0);
 | |
| 
 | |
|         ret = ram_block_discard_require(true);
 | |
|         if (ret < 0) {
 | |
|             error_setg_errno(errp, -ret,
 | |
|                              "cannot set up private guest memory: discard currently blocked");
 | |
|             error_append_hint(errp, "Are you using assigned devices?\n");
 | |
|             goto out_free;
 | |
|         }
 | |
| 
 | |
|         new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
 | |
|                                                         0, errp);
 | |
|         if (new_block->guest_memfd < 0) {
 | |
|             qemu_mutex_unlock_ramlist();
 | |
|             goto out_free;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     new_ram_size = MAX(old_ram_size,
 | |
|               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
 | |
|     if (new_ram_size > old_ram_size) {
 | |
|         dirty_memory_extend(old_ram_size, new_ram_size);
 | |
|     }
 | |
|     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
 | |
|      * QLIST (which has an RCU-friendly variant) does not have insertion at
 | |
|      * tail, so save the last element in last_block.
 | |
|      */
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         last_block = block;
 | |
|         if (block->max_length < new_block->max_length) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (block) {
 | |
|         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
 | |
|     } else if (last_block) {
 | |
|         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
 | |
|     } else { /* list is empty */
 | |
|         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
 | |
|     }
 | |
|     ram_list.mru_block = NULL;
 | |
| 
 | |
|     /* Write list before version */
 | |
|     smp_wmb();
 | |
|     ram_list.version++;
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| 
 | |
|     cpu_physical_memory_set_dirty_range(new_block->offset,
 | |
|                                         new_block->used_length,
 | |
|                                         DIRTY_CLIENTS_ALL);
 | |
| 
 | |
|     if (new_block->host) {
 | |
|         qemu_ram_setup_dump(new_block->host, new_block->max_length);
 | |
|         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
 | |
|         /*
 | |
|          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
 | |
|          * Configure it unless the machine is a qtest server, in which case
 | |
|          * KVM is not used and it may be forked (eg for fuzzing purposes).
 | |
|          */
 | |
|         if (!qtest_enabled()) {
 | |
|             qemu_madvise(new_block->host, new_block->max_length,
 | |
|                          QEMU_MADV_DONTFORK);
 | |
|         }
 | |
|         ram_block_notify_add(new_block->host, new_block->used_length,
 | |
|                              new_block->max_length);
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| out_free:
 | |
|     if (free_on_error) {
 | |
|         qemu_anon_ram_free(new_block->host, new_block->max_length);
 | |
|         new_block->host = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_POSIX
 | |
| RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
 | |
|                                  uint32_t ram_flags, int fd, off_t offset,
 | |
|                                  Error **errp)
 | |
| {
 | |
|     RAMBlock *new_block;
 | |
|     Error *local_err = NULL;
 | |
|     int64_t file_size, file_align;
 | |
| 
 | |
|     /* Just support these ram flags by now. */
 | |
|     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
 | |
|                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
 | |
|                           RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         error_setg(errp, "-mem-path not supported with Xen");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled() && !kvm_has_sync_mmu()) {
 | |
|         error_setg(errp,
 | |
|                    "host lacks kvm mmu notifiers, -mem-path unsupported");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     size = TARGET_PAGE_ALIGN(size);
 | |
|     size = REAL_HOST_PAGE_ALIGN(size);
 | |
| 
 | |
|     file_size = get_file_size(fd);
 | |
|     if (file_size > offset && file_size < (offset + size)) {
 | |
|         error_setg(errp, "backing store size 0x%" PRIx64
 | |
|                    " does not match 'size' option 0x" RAM_ADDR_FMT,
 | |
|                    file_size, size);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     file_align = get_file_align(fd);
 | |
|     if (file_align > 0 && file_align > mr->align) {
 | |
|         error_setg(errp, "backing store align 0x%" PRIx64
 | |
|                    " is larger than 'align' option 0x%" PRIx64,
 | |
|                    file_align, mr->align);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     new_block = g_malloc0(sizeof(*new_block));
 | |
|     new_block->mr = mr;
 | |
|     new_block->used_length = size;
 | |
|     new_block->max_length = size;
 | |
|     new_block->flags = ram_flags;
 | |
|     new_block->guest_memfd = -1;
 | |
|     new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
 | |
|                                      errp);
 | |
|     if (!new_block->host) {
 | |
|         g_free(new_block);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ram_block_add(new_block, &local_err);
 | |
|     if (local_err) {
 | |
|         g_free(new_block);
 | |
|         error_propagate(errp, local_err);
 | |
|         return NULL;
 | |
|     }
 | |
|     return new_block;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
 | |
|                                    uint32_t ram_flags, const char *mem_path,
 | |
|                                    off_t offset, Error **errp)
 | |
| {
 | |
|     int fd;
 | |
|     bool created;
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     fd = file_ram_open(mem_path, memory_region_name(mr),
 | |
|                        !!(ram_flags & RAM_READONLY_FD), &created);
 | |
|     if (fd < 0) {
 | |
|         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
 | |
|                          mem_path);
 | |
|         if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
 | |
|             fd == -EACCES) {
 | |
|             /*
 | |
|              * If we can open the file R/O (note: will never create a new file)
 | |
|              * and we are dealing with a private mapping, there are still ways
 | |
|              * to consume such files and get RAM instead of ROM.
 | |
|              */
 | |
|             fd = file_ram_open(mem_path, memory_region_name(mr), true,
 | |
|                                &created);
 | |
|             if (fd < 0) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             assert(!created);
 | |
|             close(fd);
 | |
|             error_append_hint(errp, "Consider opening the backing store"
 | |
|                 " read-only but still creating writable RAM using"
 | |
|                 " '-object memory-backend-file,readonly=on,rom=off...'"
 | |
|                 " (see \"VM templating\" documentation)\n");
 | |
|         }
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
 | |
|     if (!block) {
 | |
|         if (created) {
 | |
|             unlink(mem_path);
 | |
|         }
 | |
|         close(fd);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return block;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static
 | |
| RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
 | |
|                                   void (*resized)(const char*,
 | |
|                                                   uint64_t length,
 | |
|                                                   void *host),
 | |
|                                   void *host, uint32_t ram_flags,
 | |
|                                   MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     RAMBlock *new_block;
 | |
|     Error *local_err = NULL;
 | |
|     int align;
 | |
| 
 | |
|     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
 | |
|                           RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
 | |
|     assert(!host ^ (ram_flags & RAM_PREALLOC));
 | |
| 
 | |
|     align = qemu_real_host_page_size();
 | |
|     align = MAX(align, TARGET_PAGE_SIZE);
 | |
|     size = ROUND_UP(size, align);
 | |
|     max_size = ROUND_UP(max_size, align);
 | |
| 
 | |
|     new_block = g_malloc0(sizeof(*new_block));
 | |
|     new_block->mr = mr;
 | |
|     new_block->resized = resized;
 | |
|     new_block->used_length = size;
 | |
|     new_block->max_length = max_size;
 | |
|     assert(max_size >= size);
 | |
|     new_block->fd = -1;
 | |
|     new_block->guest_memfd = -1;
 | |
|     new_block->page_size = qemu_real_host_page_size();
 | |
|     new_block->host = host;
 | |
|     new_block->flags = ram_flags;
 | |
|     ram_block_add(new_block, &local_err);
 | |
|     if (local_err) {
 | |
|         g_free(new_block);
 | |
|         error_propagate(errp, local_err);
 | |
|         return NULL;
 | |
|     }
 | |
|     return new_block;
 | |
| }
 | |
| 
 | |
| RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 | |
|                                    MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
 | |
|                                    errp);
 | |
| }
 | |
| 
 | |
| RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
 | |
|                          MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
 | |
|     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
 | |
| }
 | |
| 
 | |
| RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
 | |
|                                      void (*resized)(const char*,
 | |
|                                                      uint64_t length,
 | |
|                                                      void *host),
 | |
|                                      MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
 | |
|                                    RAM_RESIZEABLE, mr, errp);
 | |
| }
 | |
| 
 | |
| static void reclaim_ramblock(RAMBlock *block)
 | |
| {
 | |
|     if (block->flags & RAM_PREALLOC) {
 | |
|         ;
 | |
|     } else if (xen_enabled()) {
 | |
|         xen_invalidate_map_cache_entry(block->host);
 | |
| #ifndef _WIN32
 | |
|     } else if (block->fd >= 0) {
 | |
|         qemu_ram_munmap(block->fd, block->host, block->max_length);
 | |
|         close(block->fd);
 | |
| #endif
 | |
|     } else {
 | |
|         qemu_anon_ram_free(block->host, block->max_length);
 | |
|     }
 | |
| 
 | |
|     if (block->guest_memfd >= 0) {
 | |
|         close(block->guest_memfd);
 | |
|         ram_block_discard_require(false);
 | |
|     }
 | |
| 
 | |
|     g_free(block);
 | |
| }
 | |
| 
 | |
| void qemu_ram_free(RAMBlock *block)
 | |
| {
 | |
|     if (!block) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (block->host) {
 | |
|         ram_block_notify_remove(block->host, block->used_length,
 | |
|                                 block->max_length);
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     QLIST_REMOVE_RCU(block, next);
 | |
|     ram_list.mru_block = NULL;
 | |
|     /* Write list before version */
 | |
|     smp_wmb();
 | |
|     ram_list.version++;
 | |
|     call_rcu(block, reclaim_ramblock, rcu);
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| }
 | |
| 
 | |
| #ifndef _WIN32
 | |
| void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
|     int flags;
 | |
|     void *area, *vaddr;
 | |
|     int prot;
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         offset = addr - block->offset;
 | |
|         if (offset < block->max_length) {
 | |
|             vaddr = ramblock_ptr(block, offset);
 | |
|             if (block->flags & RAM_PREALLOC) {
 | |
|                 ;
 | |
|             } else if (xen_enabled()) {
 | |
|                 abort();
 | |
|             } else {
 | |
|                 flags = MAP_FIXED;
 | |
|                 flags |= block->flags & RAM_SHARED ?
 | |
|                          MAP_SHARED : MAP_PRIVATE;
 | |
|                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
 | |
|                 prot = PROT_READ;
 | |
|                 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
 | |
|                 if (block->fd >= 0) {
 | |
|                     area = mmap(vaddr, length, prot, flags, block->fd,
 | |
|                                 offset + block->fd_offset);
 | |
|                 } else {
 | |
|                     flags |= MAP_ANONYMOUS;
 | |
|                     area = mmap(vaddr, length, prot, flags, -1, 0);
 | |
|                 }
 | |
|                 if (area != vaddr) {
 | |
|                     error_report("Could not remap addr: "
 | |
|                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
 | |
|                                  length, addr);
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 memory_try_enable_merging(vaddr, length);
 | |
|                 qemu_ram_setup_dump(vaddr, length);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif /* !_WIN32 */
 | |
| 
 | |
| /*
 | |
|  * Return a host pointer to guest's ram.
 | |
|  * For Xen, foreign mappings get created if they don't already exist.
 | |
|  *
 | |
|  * @block: block for the RAM to lookup (optional and may be NULL).
 | |
|  * @addr: address within the memory region.
 | |
|  * @size: pointer to requested size (optional and may be NULL).
 | |
|  *        size may get modified and return a value smaller than
 | |
|  *        what was requested.
 | |
|  * @lock: wether to lock the mapping in xen-mapcache until invalidated.
 | |
|  * @is_write: hint wether to map RW or RO in the xen-mapcache.
 | |
|  *            (optional and may always be set to true).
 | |
|  *
 | |
|  * Called within RCU critical section.
 | |
|  */
 | |
| static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
 | |
|                                  hwaddr *size, bool lock,
 | |
|                                  bool is_write)
 | |
| {
 | |
|     hwaddr len = 0;
 | |
| 
 | |
|     if (size && *size == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (block == NULL) {
 | |
|         block = qemu_get_ram_block(addr);
 | |
|         addr -= block->offset;
 | |
|     }
 | |
|     if (size) {
 | |
|         *size = MIN(*size, block->max_length - addr);
 | |
|         len = *size;
 | |
|     }
 | |
| 
 | |
|     if (xen_enabled() && block->host == NULL) {
 | |
|         /* We need to check if the requested address is in the RAM
 | |
|          * because we don't want to map the entire memory in QEMU.
 | |
|          * In that case just map the requested area.
 | |
|          */
 | |
|         if (xen_mr_is_memory(block->mr)) {
 | |
|             return xen_map_cache(block->mr, block->offset + addr,
 | |
|                                  len, block->offset,
 | |
|                                  lock, lock, is_write);
 | |
|         }
 | |
| 
 | |
|         block->host = xen_map_cache(block->mr, block->offset,
 | |
|                                     block->max_length,
 | |
|                                     block->offset,
 | |
|                                     1, lock, is_write);
 | |
|     }
 | |
| 
 | |
|     return ramblock_ptr(block, addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a host pointer to ram allocated with qemu_ram_alloc.
 | |
|  * This should not be used for general purpose DMA.  Use address_space_map
 | |
|  * or address_space_rw instead. For local memory (e.g. video ram) that the
 | |
|  * device owns, use memory_region_get_ram_ptr.
 | |
|  *
 | |
|  * Called within RCU critical section.
 | |
|  */
 | |
| void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
 | |
| {
 | |
|     return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
 | |
| }
 | |
| 
 | |
| /* Return the offset of a hostpointer within a ramblock */
 | |
| ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
 | |
| {
 | |
|     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
 | |
|     assert((uintptr_t)host >= (uintptr_t)rb->host);
 | |
|     assert(res < rb->max_length);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
 | |
|                                    ram_addr_t *offset)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint8_t *host = ptr;
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         ram_addr_t ram_addr;
 | |
|         RCU_READ_LOCK_GUARD();
 | |
|         ram_addr = xen_ram_addr_from_mapcache(ptr);
 | |
|         if (ram_addr == RAM_ADDR_INVALID) {
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         block = qemu_get_ram_block(ram_addr);
 | |
|         if (block) {
 | |
|             *offset = ram_addr - block->offset;
 | |
|         }
 | |
|         return block;
 | |
|     }
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     block = qatomic_rcu_read(&ram_list.mru_block);
 | |
|     if (block && block->host && host - block->host < block->max_length) {
 | |
|         goto found;
 | |
|     }
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         /* This case append when the block is not mapped. */
 | |
|         if (block->host == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         if (host - block->host < block->max_length) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| 
 | |
| found:
 | |
|     *offset = (host - block->host);
 | |
|     if (round_offset) {
 | |
|         *offset &= TARGET_PAGE_MASK;
 | |
|     }
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finds the named RAMBlock
 | |
|  *
 | |
|  * name: The name of RAMBlock to find
 | |
|  *
 | |
|  * Returns: RAMBlock (or NULL if not found)
 | |
|  */
 | |
| RAMBlock *qemu_ram_block_by_name(const char *name)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         if (!strcmp(name, block->idstr)) {
 | |
|             return block;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some of the system routines need to translate from a host pointer
 | |
|  * (typically a TLB entry) back to a ram offset.
 | |
|  */
 | |
| ram_addr_t qemu_ram_addr_from_host(void *ptr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
| 
 | |
|     block = qemu_ram_block_from_host(ptr, false, &offset);
 | |
|     if (!block) {
 | |
|         return RAM_ADDR_INVALID;
 | |
|     }
 | |
| 
 | |
|     return block->offset + offset;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
| 
 | |
|     ram_addr = qemu_ram_addr_from_host(ptr);
 | |
|     if (ram_addr == RAM_ADDR_INVALID) {
 | |
|         error_report("Bad ram pointer %p", ptr);
 | |
|         abort();
 | |
|     }
 | |
|     return ram_addr;
 | |
| }
 | |
| 
 | |
| static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
 | |
|                                  MemTxAttrs attrs, void *buf, hwaddr len);
 | |
| static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
 | |
|                                   const void *buf, hwaddr len);
 | |
| static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
 | |
|                                   bool is_write, MemTxAttrs attrs);
 | |
| 
 | |
| static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
 | |
|                                 unsigned len, MemTxAttrs attrs)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
|     uint8_t buf[8];
 | |
|     MemTxResult res;
 | |
| 
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
 | |
|            subpage, len, addr);
 | |
| #endif
 | |
|     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
 | |
|     if (res) {
 | |
|         return res;
 | |
|     }
 | |
|     *data = ldn_p(buf, len);
 | |
|     return MEMTX_OK;
 | |
| }
 | |
| 
 | |
| static MemTxResult subpage_write(void *opaque, hwaddr addr,
 | |
|                                  uint64_t value, unsigned len, MemTxAttrs attrs)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
|     uint8_t buf[8];
 | |
| 
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
 | |
|            " value %"PRIx64"\n",
 | |
|            __func__, subpage, len, addr, value);
 | |
| #endif
 | |
|     stn_p(buf, len, value);
 | |
|     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
 | |
| }
 | |
| 
 | |
| static bool subpage_accepts(void *opaque, hwaddr addr,
 | |
|                             unsigned len, bool is_write,
 | |
|                             MemTxAttrs attrs)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
 | |
|            __func__, subpage, is_write ? 'w' : 'r', len, addr);
 | |
| #endif
 | |
| 
 | |
|     return flatview_access_valid(subpage->fv, addr + subpage->base,
 | |
|                                  len, is_write, attrs);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps subpage_ops = {
 | |
|     .read_with_attrs = subpage_read,
 | |
|     .write_with_attrs = subpage_write,
 | |
|     .impl.min_access_size = 1,
 | |
|     .impl.max_access_size = 8,
 | |
|     .valid.min_access_size = 1,
 | |
|     .valid.max_access_size = 8,
 | |
|     .valid.accepts = subpage_accepts,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                             uint16_t section)
 | |
| {
 | |
|     int idx, eidx;
 | |
| 
 | |
|     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | |
|         return -1;
 | |
|     idx = SUBPAGE_IDX(start);
 | |
|     eidx = SUBPAGE_IDX(end);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
 | |
|            __func__, mmio, start, end, idx, eidx, section);
 | |
| #endif
 | |
|     for (; idx <= eidx; idx++) {
 | |
|         mmio->sub_section[idx] = section;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static subpage_t *subpage_init(FlatView *fv, hwaddr base)
 | |
| {
 | |
|     subpage_t *mmio;
 | |
| 
 | |
|     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
 | |
|     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
 | |
|     mmio->fv = fv;
 | |
|     mmio->base = base;
 | |
|     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
 | |
|                           NULL, TARGET_PAGE_SIZE);
 | |
|     mmio->iomem.subpage = true;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
 | |
|            mmio, base, TARGET_PAGE_SIZE);
 | |
| #endif
 | |
| 
 | |
|     return mmio;
 | |
| }
 | |
| 
 | |
| static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
 | |
| {
 | |
|     assert(fv);
 | |
|     MemoryRegionSection section = {
 | |
|         .fv = fv,
 | |
|         .mr = mr,
 | |
|         .offset_within_address_space = 0,
 | |
|         .offset_within_region = 0,
 | |
|         .size = int128_2_64(),
 | |
|     };
 | |
| 
 | |
|     return phys_section_add(map, §ion);
 | |
| }
 | |
| 
 | |
| MemoryRegionSection *iotlb_to_section(CPUState *cpu,
 | |
|                                       hwaddr index, MemTxAttrs attrs)
 | |
| {
 | |
|     int asidx = cpu_asidx_from_attrs(cpu, attrs);
 | |
|     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
 | |
|     AddressSpaceDispatch *d = cpuas->memory_dispatch;
 | |
|     int section_index = index & ~TARGET_PAGE_MASK;
 | |
|     MemoryRegionSection *ret;
 | |
| 
 | |
|     assert(section_index < d->map.sections_nb);
 | |
|     ret = d->map.sections + section_index;
 | |
|     assert(ret->mr);
 | |
|     assert(ret->mr->ops);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void io_mem_init(void)
 | |
| {
 | |
|     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
 | |
|                           NULL, UINT64_MAX);
 | |
| }
 | |
| 
 | |
| AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
 | |
| {
 | |
|     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
 | |
|     uint16_t n;
 | |
| 
 | |
|     n = dummy_section(&d->map, fv, &io_mem_unassigned);
 | |
|     assert(n == PHYS_SECTION_UNASSIGNED);
 | |
| 
 | |
|     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
 | |
| 
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| void address_space_dispatch_free(AddressSpaceDispatch *d)
 | |
| {
 | |
|     phys_sections_free(&d->map);
 | |
|     g_free(d);
 | |
| }
 | |
| 
 | |
| static void do_nothing(CPUState *cpu, run_on_cpu_data d)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void tcg_log_global_after_sync(MemoryListener *listener)
 | |
| {
 | |
|     CPUAddressSpace *cpuas;
 | |
| 
 | |
|     /* Wait for the CPU to end the current TB.  This avoids the following
 | |
|      * incorrect race:
 | |
|      *
 | |
|      *      vCPU                         migration
 | |
|      *      ----------------------       -------------------------
 | |
|      *      TLB check -> slow path
 | |
|      *        notdirty_mem_write
 | |
|      *          write to RAM
 | |
|      *          mark dirty
 | |
|      *                                   clear dirty flag
 | |
|      *      TLB check -> fast path
 | |
|      *                                   read memory
 | |
|      *        write to RAM
 | |
|      *
 | |
|      * by pushing the migration thread's memory read after the vCPU thread has
 | |
|      * written the memory.
 | |
|      */
 | |
|     if (replay_mode == REPLAY_MODE_NONE) {
 | |
|         /*
 | |
|          * VGA can make calls to this function while updating the screen.
 | |
|          * In record/replay mode this causes a deadlock, because
 | |
|          * run_on_cpu waits for rr mutex. Therefore no races are possible
 | |
|          * in this case and no need for making run_on_cpu when
 | |
|          * record/replay is enabled.
 | |
|          */
 | |
|         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
 | |
|         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
 | |
| {
 | |
|     CPUAddressSpace *cpuas = data.host_ptr;
 | |
| 
 | |
|     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
 | |
|     tlb_flush(cpu);
 | |
| }
 | |
| 
 | |
| static void tcg_commit(MemoryListener *listener)
 | |
| {
 | |
|     CPUAddressSpace *cpuas;
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     assert(tcg_enabled());
 | |
|     /* since each CPU stores ram addresses in its TLB cache, we must
 | |
|        reset the modified entries */
 | |
|     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
 | |
|     cpu = cpuas->cpu;
 | |
| 
 | |
|     /*
 | |
|      * Defer changes to as->memory_dispatch until the cpu is quiescent.
 | |
|      * Otherwise we race between (1) other cpu threads and (2) ongoing
 | |
|      * i/o for the current cpu thread, with data cached by mmu_lookup().
 | |
|      *
 | |
|      * In addition, queueing the work function will kick the cpu back to
 | |
|      * the main loop, which will end the RCU critical section and reclaim
 | |
|      * the memory data structures.
 | |
|      *
 | |
|      * That said, the listener is also called during realize, before
 | |
|      * all of the tcg machinery for run-on is initialized: thus halt_cond.
 | |
|      */
 | |
|     if (cpu->halt_cond) {
 | |
|         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
 | |
|     } else {
 | |
|         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void memory_map_init(void)
 | |
| {
 | |
|     system_memory = g_malloc(sizeof(*system_memory));
 | |
| 
 | |
|     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
 | |
|     address_space_init(&address_space_memory, system_memory, "memory");
 | |
| 
 | |
|     system_io = g_malloc(sizeof(*system_io));
 | |
|     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
 | |
|                           65536);
 | |
|     address_space_init(&address_space_io, system_io, "I/O");
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_memory(void)
 | |
| {
 | |
|     return system_memory;
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_io(void)
 | |
| {
 | |
|     return system_io;
 | |
| }
 | |
| 
 | |
| static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
 | |
|                                      hwaddr length)
 | |
| {
 | |
|     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
 | |
|     ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
 | |
| 
 | |
|     /* We know we're only called for RAM MemoryRegions */
 | |
|     assert(ramaddr != RAM_ADDR_INVALID);
 | |
|     addr += ramaddr;
 | |
| 
 | |
|     /* No early return if dirty_log_mask is or becomes 0, because
 | |
|      * cpu_physical_memory_set_dirty_range will still call
 | |
|      * xen_modified_memory.
 | |
|      */
 | |
|     if (dirty_log_mask) {
 | |
|         dirty_log_mask =
 | |
|             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
 | |
|     }
 | |
|     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
 | |
|         assert(tcg_enabled());
 | |
|         tb_invalidate_phys_range(addr, addr + length - 1);
 | |
|         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
 | |
|     }
 | |
|     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
 | |
| }
 | |
| 
 | |
| void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
 | |
| {
 | |
|     /*
 | |
|      * In principle this function would work on other memory region types too,
 | |
|      * but the ROM device use case is the only one where this operation is
 | |
|      * necessary.  Other memory regions should use the
 | |
|      * address_space_read/write() APIs.
 | |
|      */
 | |
|     assert(memory_region_is_romd(mr));
 | |
| 
 | |
|     invalidate_and_set_dirty(mr, addr, size);
 | |
| }
 | |
| 
 | |
| int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
 | |
| {
 | |
|     unsigned access_size_max = mr->ops->valid.max_access_size;
 | |
| 
 | |
|     /* Regions are assumed to support 1-4 byte accesses unless
 | |
|        otherwise specified.  */
 | |
|     if (access_size_max == 0) {
 | |
|         access_size_max = 4;
 | |
|     }
 | |
| 
 | |
|     /* Bound the maximum access by the alignment of the address.  */
 | |
|     if (!mr->ops->impl.unaligned) {
 | |
|         unsigned align_size_max = addr & -addr;
 | |
|         if (align_size_max != 0 && align_size_max < access_size_max) {
 | |
|             access_size_max = align_size_max;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Don't attempt accesses larger than the maximum.  */
 | |
|     if (l > access_size_max) {
 | |
|         l = access_size_max;
 | |
|     }
 | |
|     l = pow2floor(l);
 | |
| 
 | |
|     return l;
 | |
| }
 | |
| 
 | |
| bool prepare_mmio_access(MemoryRegion *mr)
 | |
| {
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     if (!bql_locked()) {
 | |
|         bql_lock();
 | |
|         release_lock = true;
 | |
|     }
 | |
|     if (mr->flush_coalesced_mmio) {
 | |
|         qemu_flush_coalesced_mmio_buffer();
 | |
|     }
 | |
| 
 | |
|     return release_lock;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * flatview_access_allowed
 | |
|  * @mr: #MemoryRegion to be accessed
 | |
|  * @attrs: memory transaction attributes
 | |
|  * @addr: address within that memory region
 | |
|  * @len: the number of bytes to access
 | |
|  *
 | |
|  * Check if a memory transaction is allowed.
 | |
|  *
 | |
|  * Returns: true if transaction is allowed, false if denied.
 | |
|  */
 | |
| static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
 | |
|                                     hwaddr addr, hwaddr len)
 | |
| {
 | |
|     if (likely(!attrs.memory)) {
 | |
|         return true;
 | |
|     }
 | |
|     if (memory_region_is_ram(mr)) {
 | |
|         return true;
 | |
|     }
 | |
|     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                   "Invalid access to non-RAM device at "
 | |
|                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
 | |
|                   "region '%s'\n", addr, len, memory_region_name(mr));
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
 | |
|                                                 const uint8_t *buf,
 | |
|                                                 hwaddr len, hwaddr mr_addr,
 | |
|                                                 hwaddr *l, MemoryRegion *mr)
 | |
| {
 | |
|     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
 | |
|         return MEMTX_ACCESS_ERROR;
 | |
|     }
 | |
| 
 | |
|     if (!memory_access_is_direct(mr, true)) {
 | |
|         uint64_t val;
 | |
|         MemTxResult result;
 | |
|         bool release_lock = prepare_mmio_access(mr);
 | |
| 
 | |
|         *l = memory_access_size(mr, *l, mr_addr);
 | |
|         /*
 | |
|          * XXX: could force current_cpu to NULL to avoid
 | |
|          * potential bugs
 | |
|          */
 | |
| 
 | |
|         /*
 | |
|          * Assure Coverity (and ourselves) that we are not going to OVERRUN
 | |
|          * the buffer by following ldn_he_p().
 | |
|          */
 | |
| #ifdef QEMU_STATIC_ANALYSIS
 | |
|         assert((*l == 1 && len >= 1) ||
 | |
|                (*l == 2 && len >= 2) ||
 | |
|                (*l == 4 && len >= 4) ||
 | |
|                (*l == 8 && len >= 8));
 | |
| #endif
 | |
|         val = ldn_he_p(buf, *l);
 | |
|         result = memory_region_dispatch_write(mr, mr_addr, val,
 | |
|                                               size_memop(*l), attrs);
 | |
|         if (release_lock) {
 | |
|             bql_unlock();
 | |
|         }
 | |
| 
 | |
|         return result;
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
 | |
|                                                false, true);
 | |
| 
 | |
|         memmove(ram_ptr, buf, *l);
 | |
|         invalidate_and_set_dirty(mr, mr_addr, *l);
 | |
| 
 | |
|         return MEMTX_OK;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Called within RCU critical section.  */
 | |
| static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
 | |
|                                            MemTxAttrs attrs,
 | |
|                                            const void *ptr,
 | |
|                                            hwaddr len, hwaddr mr_addr,
 | |
|                                            hwaddr l, MemoryRegion *mr)
 | |
| {
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     const uint8_t *buf = ptr;
 | |
| 
 | |
|     for (;;) {
 | |
|         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
 | |
|                                                mr);
 | |
| 
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
| 
 | |
|         if (!len) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         l = len;
 | |
|         mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section.  */
 | |
| static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
 | |
|                                   const void *buf, hwaddr len)
 | |
| {
 | |
|     hwaddr l;
 | |
|     hwaddr mr_addr;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     l = len;
 | |
|     mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
 | |
|     if (!flatview_access_allowed(mr, attrs, addr, len)) {
 | |
|         return MEMTX_ACCESS_ERROR;
 | |
|     }
 | |
|     return flatview_write_continue(fv, addr, attrs, buf, len,
 | |
|                                    mr_addr, l, mr);
 | |
| }
 | |
| 
 | |
| static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
 | |
|                                                hwaddr len, hwaddr mr_addr,
 | |
|                                                hwaddr *l,
 | |
|                                                MemoryRegion *mr)
 | |
| {
 | |
|     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
 | |
|         return MEMTX_ACCESS_ERROR;
 | |
|     }
 | |
| 
 | |
|     if (!memory_access_is_direct(mr, false)) {
 | |
|         /* I/O case */
 | |
|         uint64_t val;
 | |
|         MemTxResult result;
 | |
|         bool release_lock = prepare_mmio_access(mr);
 | |
| 
 | |
|         *l = memory_access_size(mr, *l, mr_addr);
 | |
|         result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
 | |
|                                              attrs);
 | |
| 
 | |
|         /*
 | |
|          * Assure Coverity (and ourselves) that we are not going to OVERRUN
 | |
|          * the buffer by following stn_he_p().
 | |
|          */
 | |
| #ifdef QEMU_STATIC_ANALYSIS
 | |
|         assert((*l == 1 && len >= 1) ||
 | |
|                (*l == 2 && len >= 2) ||
 | |
|                (*l == 4 && len >= 4) ||
 | |
|                (*l == 8 && len >= 8));
 | |
| #endif
 | |
|         stn_he_p(buf, *l, val);
 | |
| 
 | |
|         if (release_lock) {
 | |
|             bql_unlock();
 | |
|         }
 | |
|         return result;
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
 | |
|                                                false, false);
 | |
| 
 | |
|         memcpy(buf, ram_ptr, *l);
 | |
| 
 | |
|         return MEMTX_OK;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Called within RCU critical section.  */
 | |
| MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
 | |
|                                    MemTxAttrs attrs, void *ptr,
 | |
|                                    hwaddr len, hwaddr mr_addr, hwaddr l,
 | |
|                                    MemoryRegion *mr)
 | |
| {
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     uint8_t *buf = ptr;
 | |
| 
 | |
|     fuzz_dma_read_cb(addr, len, mr);
 | |
|     for (;;) {
 | |
|         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
 | |
| 
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
| 
 | |
|         if (!len) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         l = len;
 | |
|         mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section.  */
 | |
| static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
 | |
|                                  MemTxAttrs attrs, void *buf, hwaddr len)
 | |
| {
 | |
|     hwaddr l;
 | |
|     hwaddr mr_addr;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     l = len;
 | |
|     mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
 | |
|     if (!flatview_access_allowed(mr, attrs, addr, len)) {
 | |
|         return MEMTX_ACCESS_ERROR;
 | |
|     }
 | |
|     return flatview_read_continue(fv, addr, attrs, buf, len,
 | |
|                                   mr_addr, l, mr);
 | |
| }
 | |
| 
 | |
| MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
 | |
|                                     MemTxAttrs attrs, void *buf, hwaddr len)
 | |
| {
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     FlatView *fv;
 | |
| 
 | |
|     if (len > 0) {
 | |
|         RCU_READ_LOCK_GUARD();
 | |
|         fv = address_space_to_flatview(as);
 | |
|         result = flatview_read(fv, addr, attrs, buf, len);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
 | |
|                                 MemTxAttrs attrs,
 | |
|                                 const void *buf, hwaddr len)
 | |
| {
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     FlatView *fv;
 | |
| 
 | |
|     if (len > 0) {
 | |
|         RCU_READ_LOCK_GUARD();
 | |
|         fv = address_space_to_flatview(as);
 | |
|         result = flatview_write(fv, addr, attrs, buf, len);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
 | |
|                              void *buf, hwaddr len, bool is_write)
 | |
| {
 | |
|     if (is_write) {
 | |
|         return address_space_write(as, addr, attrs, buf, len);
 | |
|     } else {
 | |
|         return address_space_read_full(as, addr, attrs, buf, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
 | |
|                               uint8_t c, hwaddr len, MemTxAttrs attrs)
 | |
| {
 | |
| #define FILLBUF_SIZE 512
 | |
|     uint8_t fillbuf[FILLBUF_SIZE];
 | |
|     int l;
 | |
|     MemTxResult error = MEMTX_OK;
 | |
| 
 | |
|     memset(fillbuf, c, FILLBUF_SIZE);
 | |
|     while (len > 0) {
 | |
|         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
 | |
|         error |= address_space_write(as, addr, attrs, fillbuf, l);
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|     }
 | |
| 
 | |
|     return error;
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_rw(hwaddr addr, void *buf,
 | |
|                             hwaddr len, bool is_write)
 | |
| {
 | |
|     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
 | |
|                      buf, len, is_write);
 | |
| }
 | |
| 
 | |
| enum write_rom_type {
 | |
|     WRITE_DATA,
 | |
|     FLUSH_CACHE,
 | |
| };
 | |
| 
 | |
| static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
 | |
|                                                            hwaddr addr,
 | |
|                                                            MemTxAttrs attrs,
 | |
|                                                            const void *ptr,
 | |
|                                                            hwaddr len,
 | |
|                                                            enum write_rom_type type)
 | |
| {
 | |
|     hwaddr l;
 | |
|     uint8_t *ram_ptr;
 | |
|     hwaddr addr1;
 | |
|     MemoryRegion *mr;
 | |
|     const uint8_t *buf = ptr;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
 | |
| 
 | |
|         if (!(memory_region_is_ram(mr) ||
 | |
|               memory_region_is_romd(mr))) {
 | |
|             l = memory_access_size(mr, l, addr1);
 | |
|         } else {
 | |
|             /* ROM/RAM case */
 | |
|             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|             switch (type) {
 | |
|             case WRITE_DATA:
 | |
|                 memcpy(ram_ptr, buf, l);
 | |
|                 invalidate_and_set_dirty(mr, addr1, l);
 | |
|                 break;
 | |
|             case FLUSH_CACHE:
 | |
|                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return MEMTX_OK;
 | |
| }
 | |
| 
 | |
| /* used for ROM loading : can write in RAM and ROM */
 | |
| MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
 | |
|                                     MemTxAttrs attrs,
 | |
|                                     const void *buf, hwaddr len)
 | |
| {
 | |
|     return address_space_write_rom_internal(as, addr, attrs,
 | |
|                                             buf, len, WRITE_DATA);
 | |
| }
 | |
| 
 | |
| void cpu_flush_icache_range(hwaddr start, hwaddr len)
 | |
| {
 | |
|     /*
 | |
|      * This function should do the same thing as an icache flush that was
 | |
|      * triggered from within the guest. For TCG we are always cache coherent,
 | |
|      * so there is no need to flush anything. For KVM / Xen we need to flush
 | |
|      * the host's instruction cache at least.
 | |
|      */
 | |
|     if (tcg_enabled()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     address_space_write_rom_internal(&address_space_memory,
 | |
|                                      start, MEMTXATTRS_UNSPECIFIED,
 | |
|                                      NULL, len, FLUSH_CACHE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| address_space_unregister_map_client_do(AddressSpaceMapClient *client)
 | |
| {
 | |
|     QLIST_REMOVE(client, link);
 | |
|     g_free(client);
 | |
| }
 | |
| 
 | |
| static void address_space_notify_map_clients_locked(AddressSpace *as)
 | |
| {
 | |
|     AddressSpaceMapClient *client;
 | |
| 
 | |
|     while (!QLIST_EMPTY(&as->map_client_list)) {
 | |
|         client = QLIST_FIRST(&as->map_client_list);
 | |
|         qemu_bh_schedule(client->bh);
 | |
|         address_space_unregister_map_client_do(client);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
 | |
| {
 | |
|     AddressSpaceMapClient *client = g_malloc(sizeof(*client));
 | |
| 
 | |
|     QEMU_LOCK_GUARD(&as->map_client_list_lock);
 | |
|     client->bh = bh;
 | |
|     QLIST_INSERT_HEAD(&as->map_client_list, client, link);
 | |
|     /* Write map_client_list before reading in_use.  */
 | |
|     smp_mb();
 | |
|     if (!qatomic_read(&as->bounce.in_use)) {
 | |
|         address_space_notify_map_clients_locked(as);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_exec_init_all(void)
 | |
| {
 | |
|     qemu_mutex_init(&ram_list.mutex);
 | |
|     /* The data structures we set up here depend on knowing the page size,
 | |
|      * so no more changes can be made after this point.
 | |
|      * In an ideal world, nothing we did before we had finished the
 | |
|      * machine setup would care about the target page size, and we could
 | |
|      * do this much later, rather than requiring board models to state
 | |
|      * up front what their requirements are.
 | |
|      */
 | |
|     finalize_target_page_bits();
 | |
|     io_mem_init();
 | |
|     memory_map_init();
 | |
| }
 | |
| 
 | |
| void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
 | |
| {
 | |
|     AddressSpaceMapClient *client;
 | |
| 
 | |
|     QEMU_LOCK_GUARD(&as->map_client_list_lock);
 | |
|     QLIST_FOREACH(client, &as->map_client_list, link) {
 | |
|         if (client->bh == bh) {
 | |
|             address_space_unregister_map_client_do(client);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void address_space_notify_map_clients(AddressSpace *as)
 | |
| {
 | |
|     QEMU_LOCK_GUARD(&as->map_client_list_lock);
 | |
|     address_space_notify_map_clients_locked(as);
 | |
| }
 | |
| 
 | |
| static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
 | |
|                                   bool is_write, MemTxAttrs attrs)
 | |
| {
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l, xlat;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
 | |
|         if (!memory_access_is_direct(mr, is_write)) {
 | |
|             l = memory_access_size(mr, l, addr);
 | |
|             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool address_space_access_valid(AddressSpace *as, hwaddr addr,
 | |
|                                 hwaddr len, bool is_write,
 | |
|                                 MemTxAttrs attrs)
 | |
| {
 | |
|     FlatView *fv;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     fv = address_space_to_flatview(as);
 | |
|     return flatview_access_valid(fv, addr, len, is_write, attrs);
 | |
| }
 | |
| 
 | |
| static hwaddr
 | |
| flatview_extend_translation(FlatView *fv, hwaddr addr,
 | |
|                             hwaddr target_len,
 | |
|                             MemoryRegion *mr, hwaddr base, hwaddr len,
 | |
|                             bool is_write, MemTxAttrs attrs)
 | |
| {
 | |
|     hwaddr done = 0;
 | |
|     hwaddr xlat;
 | |
|     MemoryRegion *this_mr;
 | |
| 
 | |
|     for (;;) {
 | |
|         target_len -= len;
 | |
|         addr += len;
 | |
|         done += len;
 | |
|         if (target_len == 0) {
 | |
|             return done;
 | |
|         }
 | |
| 
 | |
|         len = target_len;
 | |
|         this_mr = flatview_translate(fv, addr, &xlat,
 | |
|                                      &len, is_write, attrs);
 | |
|         if (this_mr != mr || xlat != base + done) {
 | |
|             return done;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Map a physical memory region into a host virtual address.
 | |
|  * May map a subset of the requested range, given by and returned in *plen.
 | |
|  * May return NULL if resources needed to perform the mapping are exhausted.
 | |
|  * Use only for reads OR writes - not for read-modify-write operations.
 | |
|  * Use address_space_register_map_client() to know when retrying the map
 | |
|  * operation is likely to succeed.
 | |
|  */
 | |
| void *address_space_map(AddressSpace *as,
 | |
|                         hwaddr addr,
 | |
|                         hwaddr *plen,
 | |
|                         bool is_write,
 | |
|                         MemTxAttrs attrs)
 | |
| {
 | |
|     hwaddr len = *plen;
 | |
|     hwaddr l, xlat;
 | |
|     MemoryRegion *mr;
 | |
|     FlatView *fv;
 | |
| 
 | |
|     trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
 | |
| 
 | |
|     if (len == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     l = len;
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     fv = address_space_to_flatview(as);
 | |
|     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
 | |
| 
 | |
|     if (!memory_access_is_direct(mr, is_write)) {
 | |
|         if (qatomic_xchg(&as->bounce.in_use, true)) {
 | |
|             *plen = 0;
 | |
|             return NULL;
 | |
|         }
 | |
|         /* Avoid unbounded allocations */
 | |
|         l = MIN(l, TARGET_PAGE_SIZE);
 | |
|         as->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
 | |
|         as->bounce.addr = addr;
 | |
|         as->bounce.len = l;
 | |
| 
 | |
|         memory_region_ref(mr);
 | |
|         as->bounce.mr = mr;
 | |
|         if (!is_write) {
 | |
|             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
 | |
|                           as->bounce.buffer, l);
 | |
|         }
 | |
| 
 | |
|         *plen = l;
 | |
|         return as->bounce.buffer;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     memory_region_ref(mr);
 | |
|     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
 | |
|                                         l, is_write, attrs);
 | |
|     fuzz_dma_read_cb(addr, *plen, mr);
 | |
|     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
 | |
| }
 | |
| 
 | |
| /* Unmaps a memory region previously mapped by address_space_map().
 | |
|  * Will also mark the memory as dirty if is_write is true.  access_len gives
 | |
|  * the amount of memory that was actually read or written by the caller.
 | |
|  */
 | |
| void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
 | |
|                          bool is_write, hwaddr access_len)
 | |
| {
 | |
|     if (buffer != as->bounce.buffer) {
 | |
|         MemoryRegion *mr;
 | |
|         ram_addr_t addr1;
 | |
| 
 | |
|         mr = memory_region_from_host(buffer, &addr1);
 | |
|         assert(mr != NULL);
 | |
|         if (is_write) {
 | |
|             invalidate_and_set_dirty(mr, addr1, access_len);
 | |
|         }
 | |
|         if (xen_enabled()) {
 | |
|             xen_invalidate_map_cache_entry(buffer);
 | |
|         }
 | |
|         memory_region_unref(mr);
 | |
|         return;
 | |
|     }
 | |
|     if (is_write) {
 | |
|         address_space_write(as, as->bounce.addr, MEMTXATTRS_UNSPECIFIED,
 | |
|                             as->bounce.buffer, access_len);
 | |
|     }
 | |
|     qemu_vfree(as->bounce.buffer);
 | |
|     as->bounce.buffer = NULL;
 | |
|     memory_region_unref(as->bounce.mr);
 | |
|     /* Clear in_use before reading map_client_list.  */
 | |
|     qatomic_set_mb(&as->bounce.in_use, false);
 | |
|     address_space_notify_map_clients(as);
 | |
| }
 | |
| 
 | |
| void *cpu_physical_memory_map(hwaddr addr,
 | |
|                               hwaddr *plen,
 | |
|                               bool is_write)
 | |
| {
 | |
|     return address_space_map(&address_space_memory, addr, plen, is_write,
 | |
|                              MEMTXATTRS_UNSPECIFIED);
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_unmap(void *buffer, hwaddr len,
 | |
|                                bool is_write, hwaddr access_len)
 | |
| {
 | |
|     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
 | |
| }
 | |
| 
 | |
| #define ARG1_DECL                AddressSpace *as
 | |
| #define ARG1                     as
 | |
| #define SUFFIX
 | |
| #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
 | |
| #define RCU_READ_LOCK(...)       rcu_read_lock()
 | |
| #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
 | |
| #include "memory_ldst.c.inc"
 | |
| 
 | |
| int64_t address_space_cache_init(MemoryRegionCache *cache,
 | |
|                                  AddressSpace *as,
 | |
|                                  hwaddr addr,
 | |
|                                  hwaddr len,
 | |
|                                  bool is_write)
 | |
| {
 | |
|     AddressSpaceDispatch *d;
 | |
|     hwaddr l;
 | |
|     MemoryRegion *mr;
 | |
|     Int128 diff;
 | |
| 
 | |
|     assert(len > 0);
 | |
| 
 | |
|     l = len;
 | |
|     cache->fv = address_space_get_flatview(as);
 | |
|     d = flatview_to_dispatch(cache->fv);
 | |
|     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
 | |
| 
 | |
|     /*
 | |
|      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
 | |
|      * Take that into account to compute how many bytes are there between
 | |
|      * cache->xlat and the end of the section.
 | |
|      */
 | |
|     diff = int128_sub(cache->mrs.size,
 | |
|                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
 | |
|     l = int128_get64(int128_min(diff, int128_make64(l)));
 | |
| 
 | |
|     mr = cache->mrs.mr;
 | |
|     memory_region_ref(mr);
 | |
|     if (memory_access_is_direct(mr, is_write)) {
 | |
|         /* We don't care about the memory attributes here as we're only
 | |
|          * doing this if we found actual RAM, which behaves the same
 | |
|          * regardless of attributes; so UNSPECIFIED is fine.
 | |
|          */
 | |
|         l = flatview_extend_translation(cache->fv, addr, len, mr,
 | |
|                                         cache->xlat, l, is_write,
 | |
|                                         MEMTXATTRS_UNSPECIFIED);
 | |
|         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
 | |
|                                          is_write);
 | |
|     } else {
 | |
|         cache->ptr = NULL;
 | |
|     }
 | |
| 
 | |
|     cache->len = l;
 | |
|     cache->is_write = is_write;
 | |
|     return l;
 | |
| }
 | |
| 
 | |
| void address_space_cache_invalidate(MemoryRegionCache *cache,
 | |
|                                     hwaddr addr,
 | |
|                                     hwaddr access_len)
 | |
| {
 | |
|     assert(cache->is_write);
 | |
|     if (likely(cache->ptr)) {
 | |
|         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void address_space_cache_destroy(MemoryRegionCache *cache)
 | |
| {
 | |
|     if (!cache->mrs.mr) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         xen_invalidate_map_cache_entry(cache->ptr);
 | |
|     }
 | |
|     memory_region_unref(cache->mrs.mr);
 | |
|     flatview_unref(cache->fv);
 | |
|     cache->mrs.mr = NULL;
 | |
|     cache->fv = NULL;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section.  This function has the same
 | |
|  * semantics as address_space_translate, but it only works on a
 | |
|  * predefined range of a MemoryRegion that was mapped with
 | |
|  * address_space_cache_init.
 | |
|  */
 | |
| static inline MemoryRegion *address_space_translate_cached(
 | |
|     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
 | |
|     hwaddr *plen, bool is_write, MemTxAttrs attrs)
 | |
| {
 | |
|     MemoryRegionSection section;
 | |
|     MemoryRegion *mr;
 | |
|     IOMMUMemoryRegion *iommu_mr;
 | |
|     AddressSpace *target_as;
 | |
| 
 | |
|     assert(!cache->ptr);
 | |
|     *xlat = addr + cache->xlat;
 | |
| 
 | |
|     mr = cache->mrs.mr;
 | |
|     iommu_mr = memory_region_get_iommu(mr);
 | |
|     if (!iommu_mr) {
 | |
|         /* MMIO region.  */
 | |
|         return mr;
 | |
|     }
 | |
| 
 | |
|     section = address_space_translate_iommu(iommu_mr, xlat, plen,
 | |
|                                             NULL, is_write, true,
 | |
|                                             &target_as, attrs);
 | |
|     return section.mr;
 | |
| }
 | |
| 
 | |
| /* Called within RCU critical section.  */
 | |
| static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
 | |
|                                                        const void *ptr,
 | |
|                                                        hwaddr len,
 | |
|                                                        hwaddr mr_addr,
 | |
|                                                        hwaddr l,
 | |
|                                                        MemoryRegion *mr)
 | |
| {
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     const uint8_t *buf = ptr;
 | |
| 
 | |
|     for (;;) {
 | |
|         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
 | |
|                                                mr);
 | |
| 
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         mr_addr += l;
 | |
| 
 | |
|         if (!len) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         l = len;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Called within RCU critical section.  */
 | |
| static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
 | |
|                                                       void *ptr, hwaddr len,
 | |
|                                                       hwaddr mr_addr, hwaddr l,
 | |
|                                                       MemoryRegion *mr)
 | |
| {
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     uint8_t *buf = ptr;
 | |
| 
 | |
|     for (;;) {
 | |
|         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         mr_addr += l;
 | |
| 
 | |
|         if (!len) {
 | |
|             break;
 | |
|         }
 | |
|         l = len;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section. address_space_read_cached uses this
 | |
|  * out of line function when the target is an MMIO or IOMMU region.
 | |
|  */
 | |
| MemTxResult
 | |
| address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
 | |
|                                    void *buf, hwaddr len)
 | |
| {
 | |
|     hwaddr mr_addr, l;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     l = len;
 | |
|     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
 | |
|                                         MEMTXATTRS_UNSPECIFIED);
 | |
|     return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
 | |
|                                               buf, len, mr_addr, l, mr);
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section. address_space_write_cached uses this
 | |
|  * out of line function when the target is an MMIO or IOMMU region.
 | |
|  */
 | |
| MemTxResult
 | |
| address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
 | |
|                                     const void *buf, hwaddr len)
 | |
| {
 | |
|     hwaddr mr_addr, l;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     l = len;
 | |
|     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
 | |
|                                         MEMTXATTRS_UNSPECIFIED);
 | |
|     return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
 | |
|                                                buf, len, mr_addr, l, mr);
 | |
| }
 | |
| 
 | |
| #define ARG1_DECL                MemoryRegionCache *cache
 | |
| #define ARG1                     cache
 | |
| #define SUFFIX                   _cached_slow
 | |
| #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
 | |
| #define RCU_READ_LOCK()          ((void)0)
 | |
| #define RCU_READ_UNLOCK()        ((void)0)
 | |
| #include "memory_ldst.c.inc"
 | |
| 
 | |
| /* virtual memory access for debug (includes writing to ROM) */
 | |
| int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
 | |
|                         void *ptr, size_t len, bool is_write)
 | |
| {
 | |
|     hwaddr phys_addr;
 | |
|     vaddr l, page;
 | |
|     uint8_t *buf = ptr;
 | |
| 
 | |
|     cpu_synchronize_state(cpu);
 | |
|     while (len > 0) {
 | |
|         int asidx;
 | |
|         MemTxAttrs attrs;
 | |
|         MemTxResult res;
 | |
| 
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
 | |
|         asidx = cpu_asidx_from_attrs(cpu, attrs);
 | |
|         /* if no physical page mapped, return an error */
 | |
|         if (phys_addr == -1)
 | |
|             return -1;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         phys_addr += (addr & ~TARGET_PAGE_MASK);
 | |
|         if (is_write) {
 | |
|             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
 | |
|                                           attrs, buf, l);
 | |
|         } else {
 | |
|             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
 | |
|                                      attrs, buf, l);
 | |
|         }
 | |
|         if (res != MEMTX_OK) {
 | |
|             return -1;
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool cpu_physical_memory_is_io(hwaddr phys_addr)
 | |
| {
 | |
|     MemoryRegion*mr;
 | |
|     hwaddr l = 1;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     mr = address_space_translate(&address_space_memory,
 | |
|                                  phys_addr, &phys_addr, &l, false,
 | |
|                                  MEMTXATTRS_UNSPECIFIED);
 | |
| 
 | |
|     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
 | |
| }
 | |
| 
 | |
| int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     int ret = 0;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         ret = func(block, opaque);
 | |
|         if (ret) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmap pages of memory from start to start+length such that
 | |
|  * they a) read as 0, b) Trigger whatever fault mechanism
 | |
|  * the OS provides for postcopy.
 | |
|  * The pages must be unmapped by the end of the function.
 | |
|  * Returns: 0 on success, none-0 on failure
 | |
|  *
 | |
|  */
 | |
| int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
 | |
| {
 | |
|     int ret = -1;
 | |
| 
 | |
|     uint8_t *host_startaddr = rb->host + start;
 | |
| 
 | |
|     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
 | |
|         error_report("%s: Unaligned start address: %p",
 | |
|                      __func__, host_startaddr);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if ((start + length) <= rb->max_length) {
 | |
|         bool need_madvise, need_fallocate;
 | |
|         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
 | |
|             error_report("%s: Unaligned length: %zx", __func__, length);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         errno = ENOTSUP; /* If we are missing MADVISE etc */
 | |
| 
 | |
|         /* The logic here is messy;
 | |
|          *    madvise DONTNEED fails for hugepages
 | |
|          *    fallocate works on hugepages and shmem
 | |
|          *    shared anonymous memory requires madvise REMOVE
 | |
|          */
 | |
|         need_madvise = (rb->page_size == qemu_real_host_page_size());
 | |
|         need_fallocate = rb->fd != -1;
 | |
|         if (need_fallocate) {
 | |
|             /* For a file, this causes the area of the file to be zero'd
 | |
|              * if read, and for hugetlbfs also causes it to be unmapped
 | |
|              * so a userfault will trigger.
 | |
|              */
 | |
| #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
 | |
|             /*
 | |
|              * fallocate() will fail with readonly files. Let's print a
 | |
|              * proper error message.
 | |
|              */
 | |
|             if (rb->flags & RAM_READONLY_FD) {
 | |
|                 error_report("%s: Discarding RAM with readonly files is not"
 | |
|                              " supported", __func__);
 | |
|                 goto err;
 | |
| 
 | |
|             }
 | |
|             /*
 | |
|              * We'll discard data from the actual file, even though we only
 | |
|              * have a MAP_PRIVATE mapping, possibly messing with other
 | |
|              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
 | |
|              * change that behavior whithout violating the promised
 | |
|              * semantics of ram_block_discard_range().
 | |
|              *
 | |
|              * Only warn, because it works as long as nobody else uses that
 | |
|              * file.
 | |
|              */
 | |
|             if (!qemu_ram_is_shared(rb)) {
 | |
|                 warn_report_once("%s: Discarding RAM"
 | |
|                                  " in private file mappings is possibly"
 | |
|                                  " dangerous, because it will modify the"
 | |
|                                  " underlying file and will affect other"
 | |
|                                  " users of the file", __func__);
 | |
|             }
 | |
| 
 | |
|             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
 | |
|                             start, length);
 | |
|             if (ret) {
 | |
|                 ret = -errno;
 | |
|                 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
 | |
|                              __func__, rb->idstr, start, length, ret);
 | |
|                 goto err;
 | |
|             }
 | |
| #else
 | |
|             ret = -ENOSYS;
 | |
|             error_report("%s: fallocate not available/file"
 | |
|                          "%s:%" PRIx64 " +%zx (%d)",
 | |
|                          __func__, rb->idstr, start, length, ret);
 | |
|             goto err;
 | |
| #endif
 | |
|         }
 | |
|         if (need_madvise) {
 | |
|             /* For normal RAM this causes it to be unmapped,
 | |
|              * for shared memory it causes the local mapping to disappear
 | |
|              * and to fall back on the file contents (which we just
 | |
|              * fallocate'd away).
 | |
|              */
 | |
| #if defined(CONFIG_MADVISE)
 | |
|             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
 | |
|                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
 | |
|             } else {
 | |
|                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
 | |
|             }
 | |
|             if (ret) {
 | |
|                 ret = -errno;
 | |
|                 error_report("%s: Failed to discard range "
 | |
|                              "%s:%" PRIx64 " +%zx (%d)",
 | |
|                              __func__, rb->idstr, start, length, ret);
 | |
|                 goto err;
 | |
|             }
 | |
| #else
 | |
|             ret = -ENOSYS;
 | |
|             error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
 | |
|                          __func__, rb->idstr, start, length, ret);
 | |
|             goto err;
 | |
| #endif
 | |
|         }
 | |
|         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
 | |
|                                       need_madvise, need_fallocate, ret);
 | |
|     } else {
 | |
|         error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
 | |
|                      __func__, rb->idstr, start, length, rb->max_length);
 | |
|     }
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
 | |
|                                         size_t length)
 | |
| {
 | |
|     int ret = -1;
 | |
| 
 | |
| #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
 | |
|     ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
 | |
|                     start, length);
 | |
| 
 | |
|     if (ret) {
 | |
|         ret = -errno;
 | |
|         error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
 | |
|                      __func__, rb->idstr, start, length, ret);
 | |
|     }
 | |
| #else
 | |
|     ret = -ENOSYS;
 | |
|     error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
 | |
|                  __func__, rb->idstr, start, length, ret);
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| bool ramblock_is_pmem(RAMBlock *rb)
 | |
| {
 | |
|     return rb->flags & RAM_PMEM;
 | |
| }
 | |
| 
 | |
| static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
 | |
| {
 | |
|     if (start == end - 1) {
 | |
|         qemu_printf("\t%3d      ", start);
 | |
|     } else {
 | |
|         qemu_printf("\t%3d..%-3d ", start, end - 1);
 | |
|     }
 | |
|     qemu_printf(" skip=%d ", skip);
 | |
|     if (ptr == PHYS_MAP_NODE_NIL) {
 | |
|         qemu_printf(" ptr=NIL");
 | |
|     } else if (!skip) {
 | |
|         qemu_printf(" ptr=#%d", ptr);
 | |
|     } else {
 | |
|         qemu_printf(" ptr=[%d]", ptr);
 | |
|     }
 | |
|     qemu_printf("\n");
 | |
| }
 | |
| 
 | |
| #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
 | |
|                            int128_sub((size), int128_one())) : 0)
 | |
| 
 | |
| void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     qemu_printf("  Dispatch\n");
 | |
|     qemu_printf("    Physical sections\n");
 | |
| 
 | |
|     for (i = 0; i < d->map.sections_nb; ++i) {
 | |
|         MemoryRegionSection *s = d->map.sections + i;
 | |
|         const char *names[] = { " [unassigned]", " [not dirty]",
 | |
|                                 " [ROM]", " [watch]" };
 | |
| 
 | |
|         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
 | |
|                     " %s%s%s%s%s",
 | |
|             i,
 | |
|             s->offset_within_address_space,
 | |
|             s->offset_within_address_space + MR_SIZE(s->size),
 | |
|             s->mr->name ? s->mr->name : "(noname)",
 | |
|             i < ARRAY_SIZE(names) ? names[i] : "",
 | |
|             s->mr == root ? " [ROOT]" : "",
 | |
|             s == d->mru_section ? " [MRU]" : "",
 | |
|             s->mr->is_iommu ? " [iommu]" : "");
 | |
| 
 | |
|         if (s->mr->alias) {
 | |
|             qemu_printf(" alias=%s", s->mr->alias->name ?
 | |
|                     s->mr->alias->name : "noname");
 | |
|         }
 | |
|         qemu_printf("\n");
 | |
|     }
 | |
| 
 | |
|     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
 | |
|                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
 | |
|     for (i = 0; i < d->map.nodes_nb; ++i) {
 | |
|         int j, jprev;
 | |
|         PhysPageEntry prev;
 | |
|         Node *n = d->map.nodes + i;
 | |
| 
 | |
|         qemu_printf("      [%d]\n", i);
 | |
| 
 | |
|         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
 | |
|             PhysPageEntry *pe = *n + j;
 | |
| 
 | |
|             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
 | |
| 
 | |
|             jprev = j;
 | |
|             prev = *pe;
 | |
|         }
 | |
| 
 | |
|         if (jprev != ARRAY_SIZE(*n)) {
 | |
|             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Require any discards to work. */
 | |
| static unsigned int ram_block_discard_required_cnt;
 | |
| /* Require only coordinated discards to work. */
 | |
| static unsigned int ram_block_coordinated_discard_required_cnt;
 | |
| /* Disable any discards. */
 | |
| static unsigned int ram_block_discard_disabled_cnt;
 | |
| /* Disable only uncoordinated discards. */
 | |
| static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
 | |
| static QemuMutex ram_block_discard_disable_mutex;
 | |
| 
 | |
| static void ram_block_discard_disable_mutex_lock(void)
 | |
| {
 | |
|     static gsize initialized;
 | |
| 
 | |
|     if (g_once_init_enter(&initialized)) {
 | |
|         qemu_mutex_init(&ram_block_discard_disable_mutex);
 | |
|         g_once_init_leave(&initialized, 1);
 | |
|     }
 | |
|     qemu_mutex_lock(&ram_block_discard_disable_mutex);
 | |
| }
 | |
| 
 | |
| static void ram_block_discard_disable_mutex_unlock(void)
 | |
| {
 | |
|     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
 | |
| }
 | |
| 
 | |
| int ram_block_discard_disable(bool state)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     ram_block_discard_disable_mutex_lock();
 | |
|     if (!state) {
 | |
|         ram_block_discard_disabled_cnt--;
 | |
|     } else if (ram_block_discard_required_cnt ||
 | |
|                ram_block_coordinated_discard_required_cnt) {
 | |
|         ret = -EBUSY;
 | |
|     } else {
 | |
|         ram_block_discard_disabled_cnt++;
 | |
|     }
 | |
|     ram_block_discard_disable_mutex_unlock();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ram_block_uncoordinated_discard_disable(bool state)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     ram_block_discard_disable_mutex_lock();
 | |
|     if (!state) {
 | |
|         ram_block_uncoordinated_discard_disabled_cnt--;
 | |
|     } else if (ram_block_discard_required_cnt) {
 | |
|         ret = -EBUSY;
 | |
|     } else {
 | |
|         ram_block_uncoordinated_discard_disabled_cnt++;
 | |
|     }
 | |
|     ram_block_discard_disable_mutex_unlock();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ram_block_discard_require(bool state)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     ram_block_discard_disable_mutex_lock();
 | |
|     if (!state) {
 | |
|         ram_block_discard_required_cnt--;
 | |
|     } else if (ram_block_discard_disabled_cnt ||
 | |
|                ram_block_uncoordinated_discard_disabled_cnt) {
 | |
|         ret = -EBUSY;
 | |
|     } else {
 | |
|         ram_block_discard_required_cnt++;
 | |
|     }
 | |
|     ram_block_discard_disable_mutex_unlock();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ram_block_coordinated_discard_require(bool state)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     ram_block_discard_disable_mutex_lock();
 | |
|     if (!state) {
 | |
|         ram_block_coordinated_discard_required_cnt--;
 | |
|     } else if (ram_block_discard_disabled_cnt) {
 | |
|         ret = -EBUSY;
 | |
|     } else {
 | |
|         ram_block_coordinated_discard_required_cnt++;
 | |
|     }
 | |
|     ram_block_discard_disable_mutex_unlock();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| bool ram_block_discard_is_disabled(void)
 | |
| {
 | |
|     return qatomic_read(&ram_block_discard_disabled_cnt) ||
 | |
|            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
 | |
| }
 | |
| 
 | |
| bool ram_block_discard_is_required(void)
 | |
| {
 | |
|     return qatomic_read(&ram_block_discard_required_cnt) ||
 | |
|            qatomic_read(&ram_block_coordinated_discard_required_cnt);
 | |
| }
 |