 6046f6e94d
			
		
	
	
		6046f6e94d
		
	
	
	
	
		
			
			Store bytes under a mask is fundamentally a cmpxchg, not a straight store. Use HAVE_CMPXCHG128 instead of HAVE_ATOMIC128_RW. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230916220151.526140-8-richard.henderson@linaro.org>
		
			
				
	
	
		
			3003 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3003 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Common CPU TLB handling
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "hw/core/tcg-cpu-ops.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| #include "exec/cputlb.h"
 | |
| #include "exec/memory-internal.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "tcg/tcg.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "exec/log.h"
 | |
| #include "exec/helper-proto-common.h"
 | |
| #include "qemu/atomic.h"
 | |
| #include "qemu/atomic128.h"
 | |
| #include "exec/translate-all.h"
 | |
| #include "trace.h"
 | |
| #include "tb-hash.h"
 | |
| #include "internal-common.h"
 | |
| #include "internal-target.h"
 | |
| #ifdef CONFIG_PLUGIN
 | |
| #include "qemu/plugin-memory.h"
 | |
| #endif
 | |
| #include "tcg/tcg-ldst.h"
 | |
| #include "tcg/oversized-guest.h"
 | |
| 
 | |
| /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
 | |
| /* #define DEBUG_TLB */
 | |
| /* #define DEBUG_TLB_LOG */
 | |
| 
 | |
| #ifdef DEBUG_TLB
 | |
| # define DEBUG_TLB_GATE 1
 | |
| # ifdef DEBUG_TLB_LOG
 | |
| #  define DEBUG_TLB_LOG_GATE 1
 | |
| # else
 | |
| #  define DEBUG_TLB_LOG_GATE 0
 | |
| # endif
 | |
| #else
 | |
| # define DEBUG_TLB_GATE 0
 | |
| # define DEBUG_TLB_LOG_GATE 0
 | |
| #endif
 | |
| 
 | |
| #define tlb_debug(fmt, ...) do { \
 | |
|     if (DEBUG_TLB_LOG_GATE) { \
 | |
|         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
 | |
|                       ## __VA_ARGS__); \
 | |
|     } else if (DEBUG_TLB_GATE) { \
 | |
|         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
 | |
|     } \
 | |
| } while (0)
 | |
| 
 | |
| #define assert_cpu_is_self(cpu) do {                              \
 | |
|         if (DEBUG_TLB_GATE) {                                     \
 | |
|             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
 | |
|         }                                                         \
 | |
|     } while (0)
 | |
| 
 | |
| /* run_on_cpu_data.target_ptr should always be big enough for a
 | |
|  * vaddr even on 32 bit builds
 | |
|  */
 | |
| QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
 | |
| 
 | |
| /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
 | |
|  */
 | |
| QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
 | |
| #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
 | |
| 
 | |
| static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
 | |
| {
 | |
|     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
 | |
| }
 | |
| 
 | |
| static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
 | |
| {
 | |
|     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
 | |
| }
 | |
| 
 | |
| static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
 | |
|                              size_t max_entries)
 | |
| {
 | |
|     desc->window_begin_ns = ns;
 | |
|     desc->window_max_entries = max_entries;
 | |
| }
 | |
| 
 | |
| static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
 | |
| {
 | |
|     CPUJumpCache *jc = cpu->tb_jmp_cache;
 | |
|     int i, i0;
 | |
| 
 | |
|     if (unlikely(!jc)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     i0 = tb_jmp_cache_hash_page(page_addr);
 | |
|     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
 | |
|         qatomic_set(&jc->array[i0 + i].tb, NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
 | |
|  * @desc: The CPUTLBDesc portion of the TLB
 | |
|  * @fast: The CPUTLBDescFast portion of the same TLB
 | |
|  *
 | |
|  * Called with tlb_lock_held.
 | |
|  *
 | |
|  * We have two main constraints when resizing a TLB: (1) we only resize it
 | |
|  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
 | |
|  * the array or unnecessarily flushing it), which means we do not control how
 | |
|  * frequently the resizing can occur; (2) we don't have access to the guest's
 | |
|  * future scheduling decisions, and therefore have to decide the magnitude of
 | |
|  * the resize based on past observations.
 | |
|  *
 | |
|  * In general, a memory-hungry process can benefit greatly from an appropriately
 | |
|  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
 | |
|  * we just have to make the TLB as large as possible; while an oversized TLB
 | |
|  * results in minimal TLB miss rates, it also takes longer to be flushed
 | |
|  * (flushes can be _very_ frequent), and the reduced locality can also hurt
 | |
|  * performance.
 | |
|  *
 | |
|  * To achieve near-optimal performance for all kinds of workloads, we:
 | |
|  *
 | |
|  * 1. Aggressively increase the size of the TLB when the use rate of the
 | |
|  * TLB being flushed is high, since it is likely that in the near future this
 | |
|  * memory-hungry process will execute again, and its memory hungriness will
 | |
|  * probably be similar.
 | |
|  *
 | |
|  * 2. Slowly reduce the size of the TLB as the use rate declines over a
 | |
|  * reasonably large time window. The rationale is that if in such a time window
 | |
|  * we have not observed a high TLB use rate, it is likely that we won't observe
 | |
|  * it in the near future. In that case, once a time window expires we downsize
 | |
|  * the TLB to match the maximum use rate observed in the window.
 | |
|  *
 | |
|  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
 | |
|  * since in that range performance is likely near-optimal. Recall that the TLB
 | |
|  * is direct mapped, so we want the use rate to be low (or at least not too
 | |
|  * high), since otherwise we are likely to have a significant amount of
 | |
|  * conflict misses.
 | |
|  */
 | |
| static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
 | |
|                                   int64_t now)
 | |
| {
 | |
|     size_t old_size = tlb_n_entries(fast);
 | |
|     size_t rate;
 | |
|     size_t new_size = old_size;
 | |
|     int64_t window_len_ms = 100;
 | |
|     int64_t window_len_ns = window_len_ms * 1000 * 1000;
 | |
|     bool window_expired = now > desc->window_begin_ns + window_len_ns;
 | |
| 
 | |
|     if (desc->n_used_entries > desc->window_max_entries) {
 | |
|         desc->window_max_entries = desc->n_used_entries;
 | |
|     }
 | |
|     rate = desc->window_max_entries * 100 / old_size;
 | |
| 
 | |
|     if (rate > 70) {
 | |
|         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
 | |
|     } else if (rate < 30 && window_expired) {
 | |
|         size_t ceil = pow2ceil(desc->window_max_entries);
 | |
|         size_t expected_rate = desc->window_max_entries * 100 / ceil;
 | |
| 
 | |
|         /*
 | |
|          * Avoid undersizing when the max number of entries seen is just below
 | |
|          * a pow2. For instance, if max_entries == 1025, the expected use rate
 | |
|          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
 | |
|          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
 | |
|          * later. Thus, make sure that the expected use rate remains below 70%.
 | |
|          * (and since we double the size, that means the lowest rate we'd
 | |
|          * expect to get is 35%, which is still in the 30-70% range where
 | |
|          * we consider that the size is appropriate.)
 | |
|          */
 | |
|         if (expected_rate > 70) {
 | |
|             ceil *= 2;
 | |
|         }
 | |
|         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
 | |
|     }
 | |
| 
 | |
|     if (new_size == old_size) {
 | |
|         if (window_expired) {
 | |
|             tlb_window_reset(desc, now, desc->n_used_entries);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     g_free(fast->table);
 | |
|     g_free(desc->fulltlb);
 | |
| 
 | |
|     tlb_window_reset(desc, now, 0);
 | |
|     /* desc->n_used_entries is cleared by the caller */
 | |
|     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | |
|     fast->table = g_try_new(CPUTLBEntry, new_size);
 | |
|     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
 | |
| 
 | |
|     /*
 | |
|      * If the allocations fail, try smaller sizes. We just freed some
 | |
|      * memory, so going back to half of new_size has a good chance of working.
 | |
|      * Increased memory pressure elsewhere in the system might cause the
 | |
|      * allocations to fail though, so we progressively reduce the allocation
 | |
|      * size, aborting if we cannot even allocate the smallest TLB we support.
 | |
|      */
 | |
|     while (fast->table == NULL || desc->fulltlb == NULL) {
 | |
|         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
 | |
|             error_report("%s: %s", __func__, strerror(errno));
 | |
|             abort();
 | |
|         }
 | |
|         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
 | |
|         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | |
| 
 | |
|         g_free(fast->table);
 | |
|         g_free(desc->fulltlb);
 | |
|         fast->table = g_try_new(CPUTLBEntry, new_size);
 | |
|         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
 | |
| {
 | |
|     desc->n_used_entries = 0;
 | |
|     desc->large_page_addr = -1;
 | |
|     desc->large_page_mask = -1;
 | |
|     desc->vindex = 0;
 | |
|     memset(fast->table, -1, sizeof_tlb(fast));
 | |
|     memset(desc->vtable, -1, sizeof(desc->vtable));
 | |
| }
 | |
| 
 | |
| static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
 | |
|                                         int64_t now)
 | |
| {
 | |
|     CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
 | |
|     CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
 | |
| 
 | |
|     tlb_mmu_resize_locked(desc, fast, now);
 | |
|     tlb_mmu_flush_locked(desc, fast);
 | |
| }
 | |
| 
 | |
| static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
 | |
| {
 | |
|     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
 | |
| 
 | |
|     tlb_window_reset(desc, now, 0);
 | |
|     desc->n_used_entries = 0;
 | |
|     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
 | |
|     fast->table = g_new(CPUTLBEntry, n_entries);
 | |
|     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
 | |
|     tlb_mmu_flush_locked(desc, fast);
 | |
| }
 | |
| 
 | |
| static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
 | |
| {
 | |
|     cpu->neg.tlb.d[mmu_idx].n_used_entries++;
 | |
| }
 | |
| 
 | |
| static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
 | |
| {
 | |
|     cpu->neg.tlb.d[mmu_idx].n_used_entries--;
 | |
| }
 | |
| 
 | |
| void tlb_init(CPUState *cpu)
 | |
| {
 | |
|     int64_t now = get_clock_realtime();
 | |
|     int i;
 | |
| 
 | |
|     qemu_spin_init(&cpu->neg.tlb.c.lock);
 | |
| 
 | |
|     /* All tlbs are initialized flushed. */
 | |
|     cpu->neg.tlb.c.dirty = 0;
 | |
| 
 | |
|     for (i = 0; i < NB_MMU_MODES; i++) {
 | |
|         tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_destroy(CPUState *cpu)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     qemu_spin_destroy(&cpu->neg.tlb.c.lock);
 | |
|     for (i = 0; i < NB_MMU_MODES; i++) {
 | |
|         CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
 | |
|         CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
 | |
| 
 | |
|         g_free(fast->table);
 | |
|         g_free(desc->fulltlb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* flush_all_helper: run fn across all cpus
 | |
|  *
 | |
|  * If the wait flag is set then the src cpu's helper will be queued as
 | |
|  * "safe" work and the loop exited creating a synchronisation point
 | |
|  * where all queued work will be finished before execution starts
 | |
|  * again.
 | |
|  */
 | |
| static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 | |
|                              run_on_cpu_data d)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (cpu != src) {
 | |
|             async_run_on_cpu(cpu, fn, d);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 | |
| {
 | |
|     uint16_t asked = data.host_int;
 | |
|     uint16_t all_dirty, work, to_clean;
 | |
|     int64_t now = get_clock_realtime();
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
 | |
| 
 | |
|     qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | |
| 
 | |
|     all_dirty = cpu->neg.tlb.c.dirty;
 | |
|     to_clean = asked & all_dirty;
 | |
|     all_dirty &= ~to_clean;
 | |
|     cpu->neg.tlb.c.dirty = all_dirty;
 | |
| 
 | |
|     for (work = to_clean; work != 0; work &= work - 1) {
 | |
|         int mmu_idx = ctz32(work);
 | |
|         tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
 | |
|     }
 | |
| 
 | |
|     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | |
| 
 | |
|     tcg_flush_jmp_cache(cpu);
 | |
| 
 | |
|     if (to_clean == ALL_MMUIDX_BITS) {
 | |
|         qatomic_set(&cpu->neg.tlb.c.full_flush_count,
 | |
|                     cpu->neg.tlb.c.full_flush_count + 1);
 | |
|     } else {
 | |
|         qatomic_set(&cpu->neg.tlb.c.part_flush_count,
 | |
|                     cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
 | |
|         if (to_clean != asked) {
 | |
|             qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
 | |
|                         cpu->neg.tlb.c.elide_flush_count +
 | |
|                         ctpop16(asked & ~to_clean));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 | |
| 
 | |
|     if (cpu->created && !qemu_cpu_is_self(cpu)) {
 | |
|         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 | |
|                          RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     } else {
 | |
|         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush(CPUState *cpu)
 | |
| {
 | |
|     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 | |
| {
 | |
|     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | |
| 
 | |
|     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | |
| 
 | |
|     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | |
| }
 | |
| 
 | |
| void tlb_flush_all_cpus(CPUState *src_cpu)
 | |
| {
 | |
|     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
 | |
| {
 | |
|     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | |
| 
 | |
|     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | |
| 
 | |
|     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | |
| }
 | |
| 
 | |
| void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 | |
| {
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
 | |
|                                       vaddr page, vaddr mask)
 | |
| {
 | |
|     page &= mask;
 | |
|     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
 | |
| 
 | |
|     return (page == (tlb_entry->addr_read & mask) ||
 | |
|             page == (tlb_addr_write(tlb_entry) & mask) ||
 | |
|             page == (tlb_entry->addr_code & mask));
 | |
| }
 | |
| 
 | |
| static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
 | |
| {
 | |
|     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_entry_is_empty - return true if the entry is not in use
 | |
|  * @te: pointer to CPUTLBEntry
 | |
|  */
 | |
| static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
 | |
| {
 | |
|     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
 | |
| }
 | |
| 
 | |
| /* Called with tlb_c.lock held */
 | |
| static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
 | |
|                                         vaddr page,
 | |
|                                         vaddr mask)
 | |
| {
 | |
|     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
 | |
|         memset(tlb_entry, -1, sizeof(*tlb_entry));
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
 | |
| {
 | |
|     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
 | |
| }
 | |
| 
 | |
| /* Called with tlb_c.lock held */
 | |
| static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
 | |
|                                             vaddr page,
 | |
|                                             vaddr mask)
 | |
| {
 | |
|     CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
 | |
|     int k;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
|     for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | |
|         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
 | |
|             tlb_n_used_entries_dec(cpu, mmu_idx);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
 | |
|                                               vaddr page)
 | |
| {
 | |
|     tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
 | |
| }
 | |
| 
 | |
| static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
 | |
| {
 | |
|     vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
 | |
|     vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
 | |
| 
 | |
|     /* Check if we need to flush due to large pages.  */
 | |
|     if ((page & lp_mask) == lp_addr) {
 | |
|         tlb_debug("forcing full flush midx %d (%016"
 | |
|                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
 | |
|                   midx, lp_addr, lp_mask);
 | |
|         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
 | |
|     } else {
 | |
|         if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
 | |
|             tlb_n_used_entries_dec(cpu, midx);
 | |
|         }
 | |
|         tlb_flush_vtlb_page_locked(cpu, midx, page);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_flush_page_by_mmuidx_async_0:
 | |
|  * @cpu: cpu on which to flush
 | |
|  * @addr: page of virtual address to flush
 | |
|  * @idxmap: set of mmu_idx to flush
 | |
|  *
 | |
|  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
 | |
|  * at @addr from the tlbs indicated by @idxmap from @cpu.
 | |
|  */
 | |
| static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
 | |
|                                              vaddr addr,
 | |
|                                              uint16_t idxmap)
 | |
| {
 | |
|     int mmu_idx;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
 | |
| 
 | |
|     qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         if ((idxmap >> mmu_idx) & 1) {
 | |
|             tlb_flush_page_locked(cpu, mmu_idx, addr);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | |
| 
 | |
|     /*
 | |
|      * Discard jump cache entries for any tb which might potentially
 | |
|      * overlap the flushed page, which includes the previous.
 | |
|      */
 | |
|     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
 | |
|     tb_jmp_cache_clear_page(cpu, addr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_flush_page_by_mmuidx_async_1:
 | |
|  * @cpu: cpu on which to flush
 | |
|  * @data: encoded addr + idxmap
 | |
|  *
 | |
|  * Helper for tlb_flush_page_by_mmuidx and friends, called through
 | |
|  * async_run_on_cpu.  The idxmap parameter is encoded in the page
 | |
|  * offset of the target_ptr field.  This limits the set of mmu_idx
 | |
|  * that can be passed via this method.
 | |
|  */
 | |
| static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
 | |
|                                              run_on_cpu_data data)
 | |
| {
 | |
|     vaddr addr_and_idxmap = data.target_ptr;
 | |
|     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
 | |
|     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     vaddr addr;
 | |
|     uint16_t idxmap;
 | |
| } TLBFlushPageByMMUIdxData;
 | |
| 
 | |
| /**
 | |
|  * tlb_flush_page_by_mmuidx_async_2:
 | |
|  * @cpu: cpu on which to flush
 | |
|  * @data: allocated addr + idxmap
 | |
|  *
 | |
|  * Helper for tlb_flush_page_by_mmuidx and friends, called through
 | |
|  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
 | |
|  * TLBFlushPageByMMUIdxData structure that has been allocated
 | |
|  * specifically for this helper.  Free the structure when done.
 | |
|  */
 | |
| static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
 | |
|                                              run_on_cpu_data data)
 | |
| {
 | |
|     TLBFlushPageByMMUIdxData *d = data.host_ptr;
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
 | |
|     g_free(d);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     if (qemu_cpu_is_self(cpu)) {
 | |
|         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 | |
|     } else if (idxmap < TARGET_PAGE_SIZE) {
 | |
|         /*
 | |
|          * Most targets have only a few mmu_idx.  In the case where
 | |
|          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
 | |
|          * allocating memory for this operation.
 | |
|          */
 | |
|         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|     } else {
 | |
|         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
| 
 | |
|         /* Otherwise allocate a structure, freed by the worker.  */
 | |
|         d->addr = addr;
 | |
|         d->idxmap = idxmap;
 | |
|         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                          RUN_ON_CPU_HOST_PTR(d));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *cpu, vaddr addr)
 | |
| {
 | |
|     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
 | |
|                                        uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     /*
 | |
|      * Allocate memory to hold addr+idxmap only when needed.
 | |
|      * See tlb_flush_page_by_mmuidx for details.
 | |
|      */
 | |
|     if (idxmap < TARGET_PAGE_SIZE) {
 | |
|         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|     } else {
 | |
|         CPUState *dst_cpu;
 | |
| 
 | |
|         /* Allocate a separate data block for each destination cpu.  */
 | |
|         CPU_FOREACH(dst_cpu) {
 | |
|             if (dst_cpu != src_cpu) {
 | |
|                 TLBFlushPageByMMUIdxData *d
 | |
|                     = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
| 
 | |
|                 d->addr = addr;
 | |
|                 d->idxmap = idxmap;
 | |
|                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                                  RUN_ON_CPU_HOST_PTR(d));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
 | |
| {
 | |
|     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | |
|                                               vaddr addr,
 | |
|                                               uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     /*
 | |
|      * Allocate memory to hold addr+idxmap only when needed.
 | |
|      * See tlb_flush_page_by_mmuidx for details.
 | |
|      */
 | |
|     if (idxmap < TARGET_PAGE_SIZE) {
 | |
|         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|     } else {
 | |
|         CPUState *dst_cpu;
 | |
|         TLBFlushPageByMMUIdxData *d;
 | |
| 
 | |
|         /* Allocate a separate data block for each destination cpu.  */
 | |
|         CPU_FOREACH(dst_cpu) {
 | |
|             if (dst_cpu != src_cpu) {
 | |
|                 d = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
|                 d->addr = addr;
 | |
|                 d->idxmap = idxmap;
 | |
|                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                                  RUN_ON_CPU_HOST_PTR(d));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         d = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
|         d->addr = addr;
 | |
|         d->idxmap = idxmap;
 | |
|         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                               RUN_ON_CPU_HOST_PTR(d));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
 | |
| {
 | |
|     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| static void tlb_flush_range_locked(CPUState *cpu, int midx,
 | |
|                                    vaddr addr, vaddr len,
 | |
|                                    unsigned bits)
 | |
| {
 | |
|     CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
 | |
|     CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
 | |
|     vaddr mask = MAKE_64BIT_MASK(0, bits);
 | |
| 
 | |
|     /*
 | |
|      * If @bits is smaller than the tlb size, there may be multiple entries
 | |
|      * within the TLB; otherwise all addresses that match under @mask hit
 | |
|      * the same TLB entry.
 | |
|      * TODO: Perhaps allow bits to be a few bits less than the size.
 | |
|      * For now, just flush the entire TLB.
 | |
|      *
 | |
|      * If @len is larger than the tlb size, then it will take longer to
 | |
|      * test all of the entries in the TLB than it will to flush it all.
 | |
|      */
 | |
|     if (mask < f->mask || len > f->mask) {
 | |
|         tlb_debug("forcing full flush midx %d ("
 | |
|                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
 | |
|                   midx, addr, mask, len);
 | |
|         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check if we need to flush due to large pages.
 | |
|      * Because large_page_mask contains all 1's from the msb,
 | |
|      * we only need to test the end of the range.
 | |
|      */
 | |
|     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
 | |
|         tlb_debug("forcing full flush midx %d ("
 | |
|                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
 | |
|                   midx, d->large_page_addr, d->large_page_mask);
 | |
|         tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
 | |
|         vaddr page = addr + i;
 | |
|         CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
 | |
| 
 | |
|         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
 | |
|             tlb_n_used_entries_dec(cpu, midx);
 | |
|         }
 | |
|         tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     vaddr addr;
 | |
|     vaddr len;
 | |
|     uint16_t idxmap;
 | |
|     uint16_t bits;
 | |
| } TLBFlushRangeData;
 | |
| 
 | |
| static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
 | |
|                                               TLBFlushRangeData d)
 | |
| {
 | |
|     int mmu_idx;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
 | |
|               d.addr, d.bits, d.len, d.idxmap);
 | |
| 
 | |
|     qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         if ((d.idxmap >> mmu_idx) & 1) {
 | |
|             tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | |
| 
 | |
|     /*
 | |
|      * If the length is larger than the jump cache size, then it will take
 | |
|      * longer to clear each entry individually than it will to clear it all.
 | |
|      */
 | |
|     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
 | |
|         tcg_flush_jmp_cache(cpu);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Discard jump cache entries for any tb which might potentially
 | |
|      * overlap the flushed pages, which includes the previous.
 | |
|      */
 | |
|     d.addr -= TARGET_PAGE_SIZE;
 | |
|     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
 | |
|         tb_jmp_cache_clear_page(cpu, d.addr);
 | |
|         d.addr += TARGET_PAGE_SIZE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
 | |
|                                               run_on_cpu_data data)
 | |
| {
 | |
|     TLBFlushRangeData *d = data.host_ptr;
 | |
|     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
 | |
|     g_free(d);
 | |
| }
 | |
| 
 | |
| void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
 | |
|                                vaddr len, uint16_t idxmap,
 | |
|                                unsigned bits)
 | |
| {
 | |
|     TLBFlushRangeData d;
 | |
| 
 | |
|     /*
 | |
|      * If all bits are significant, and len is small,
 | |
|      * this devolves to tlb_flush_page.
 | |
|      */
 | |
|     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | |
|         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
 | |
|         return;
 | |
|     }
 | |
|     /* If no page bits are significant, this devolves to tlb_flush. */
 | |
|     if (bits < TARGET_PAGE_BITS) {
 | |
|         tlb_flush_by_mmuidx(cpu, idxmap);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     d.addr = addr & TARGET_PAGE_MASK;
 | |
|     d.len = len;
 | |
|     d.idxmap = idxmap;
 | |
|     d.bits = bits;
 | |
| 
 | |
|     if (qemu_cpu_is_self(cpu)) {
 | |
|         tlb_flush_range_by_mmuidx_async_0(cpu, d);
 | |
|     } else {
 | |
|         /* Otherwise allocate a structure, freed by the worker.  */
 | |
|         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 | |
|         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_HOST_PTR(p));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
 | |
|                                    uint16_t idxmap, unsigned bits)
 | |
| {
 | |
|     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
 | |
| }
 | |
| 
 | |
| void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
 | |
|                                         vaddr addr, vaddr len,
 | |
|                                         uint16_t idxmap, unsigned bits)
 | |
| {
 | |
|     TLBFlushRangeData d;
 | |
|     CPUState *dst_cpu;
 | |
| 
 | |
|     /*
 | |
|      * If all bits are significant, and len is small,
 | |
|      * this devolves to tlb_flush_page.
 | |
|      */
 | |
|     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | |
|         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
 | |
|         return;
 | |
|     }
 | |
|     /* If no page bits are significant, this devolves to tlb_flush. */
 | |
|     if (bits < TARGET_PAGE_BITS) {
 | |
|         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     d.addr = addr & TARGET_PAGE_MASK;
 | |
|     d.len = len;
 | |
|     d.idxmap = idxmap;
 | |
|     d.bits = bits;
 | |
| 
 | |
|     /* Allocate a separate data block for each destination cpu.  */
 | |
|     CPU_FOREACH(dst_cpu) {
 | |
|         if (dst_cpu != src_cpu) {
 | |
|             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 | |
|             async_run_on_cpu(dst_cpu,
 | |
|                              tlb_flush_range_by_mmuidx_async_1,
 | |
|                              RUN_ON_CPU_HOST_PTR(p));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
 | |
|                                             vaddr addr, uint16_t idxmap,
 | |
|                                             unsigned bits)
 | |
| {
 | |
|     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
 | |
|                                        idxmap, bits);
 | |
| }
 | |
| 
 | |
| void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | |
|                                                vaddr addr,
 | |
|                                                vaddr len,
 | |
|                                                uint16_t idxmap,
 | |
|                                                unsigned bits)
 | |
| {
 | |
|     TLBFlushRangeData d, *p;
 | |
|     CPUState *dst_cpu;
 | |
| 
 | |
|     /*
 | |
|      * If all bits are significant, and len is small,
 | |
|      * this devolves to tlb_flush_page.
 | |
|      */
 | |
|     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | |
|         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
 | |
|         return;
 | |
|     }
 | |
|     /* If no page bits are significant, this devolves to tlb_flush. */
 | |
|     if (bits < TARGET_PAGE_BITS) {
 | |
|         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     d.addr = addr & TARGET_PAGE_MASK;
 | |
|     d.len = len;
 | |
|     d.idxmap = idxmap;
 | |
|     d.bits = bits;
 | |
| 
 | |
|     /* Allocate a separate data block for each destination cpu.  */
 | |
|     CPU_FOREACH(dst_cpu) {
 | |
|         if (dst_cpu != src_cpu) {
 | |
|             p = g_memdup(&d, sizeof(d));
 | |
|             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
 | |
|                              RUN_ON_CPU_HOST_PTR(p));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     p = g_memdup(&d, sizeof(d));
 | |
|     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
 | |
|                           RUN_ON_CPU_HOST_PTR(p));
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | |
|                                                    vaddr addr,
 | |
|                                                    uint16_t idxmap,
 | |
|                                                    unsigned bits)
 | |
| {
 | |
|     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
 | |
|                                               idxmap, bits);
 | |
| }
 | |
| 
 | |
| /* update the TLBs so that writes to code in the virtual page 'addr'
 | |
|    can be detected */
 | |
| void tlb_protect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
 | |
|                                              TARGET_PAGE_SIZE,
 | |
|                                              DIRTY_MEMORY_CODE);
 | |
| }
 | |
| 
 | |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer
 | |
|    tested for self modifying code */
 | |
| void tlb_unprotect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Dirty write flag handling
 | |
|  *
 | |
|  * When the TCG code writes to a location it looks up the address in
 | |
|  * the TLB and uses that data to compute the final address. If any of
 | |
|  * the lower bits of the address are set then the slow path is forced.
 | |
|  * There are a number of reasons to do this but for normal RAM the
 | |
|  * most usual is detecting writes to code regions which may invalidate
 | |
|  * generated code.
 | |
|  *
 | |
|  * Other vCPUs might be reading their TLBs during guest execution, so we update
 | |
|  * te->addr_write with qatomic_set. We don't need to worry about this for
 | |
|  * oversized guests as MTTCG is disabled for them.
 | |
|  *
 | |
|  * Called with tlb_c.lock held.
 | |
|  */
 | |
| static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
 | |
|                                          uintptr_t start, uintptr_t length)
 | |
| {
 | |
|     uintptr_t addr = tlb_entry->addr_write;
 | |
| 
 | |
|     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
 | |
|                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
 | |
|         addr &= TARGET_PAGE_MASK;
 | |
|         addr += tlb_entry->addend;
 | |
|         if ((addr - start) < length) {
 | |
| #if TARGET_LONG_BITS == 32
 | |
|             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
 | |
|             ptr_write += HOST_BIG_ENDIAN;
 | |
|             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
 | |
| #elif TCG_OVERSIZED_GUEST
 | |
|             tlb_entry->addr_write |= TLB_NOTDIRTY;
 | |
| #else
 | |
|             qatomic_set(&tlb_entry->addr_write,
 | |
|                         tlb_entry->addr_write | TLB_NOTDIRTY);
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with tlb_c.lock held.
 | |
|  * Called only from the vCPU context, i.e. the TLB's owner thread.
 | |
|  */
 | |
| static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
 | |
| {
 | |
|     *d = *s;
 | |
| }
 | |
| 
 | |
| /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
 | |
|  * the target vCPU).
 | |
|  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
 | |
|  * thing actually updated is the target TLB entry ->addr_write flags.
 | |
|  */
 | |
| void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
 | |
| {
 | |
|     int mmu_idx;
 | |
| 
 | |
|     qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         unsigned int i;
 | |
|         unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
 | |
| 
 | |
|         for (i = 0; i < n; i++) {
 | |
|             tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
 | |
|                                          start1, length);
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | |
|             tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
 | |
|                                          start1, length);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | |
| }
 | |
| 
 | |
| /* Called with tlb_c.lock held */
 | |
| static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
 | |
|                                          vaddr addr)
 | |
| {
 | |
|     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
 | |
|         tlb_entry->addr_write = addr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the TLB corresponding to virtual page vaddr
 | |
|    so that it is no longer dirty */
 | |
| void tlb_set_dirty(CPUState *cpu, vaddr addr)
 | |
| {
 | |
|     int mmu_idx;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
 | |
|     }
 | |
| 
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         int k;
 | |
|         for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | |
|             tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | |
| }
 | |
| 
 | |
| /* Our TLB does not support large pages, so remember the area covered by
 | |
|    large pages and trigger a full TLB flush if these are invalidated.  */
 | |
| static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
 | |
|                                vaddr addr, uint64_t size)
 | |
| {
 | |
|     vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
 | |
|     vaddr lp_mask = ~(size - 1);
 | |
| 
 | |
|     if (lp_addr == (vaddr)-1) {
 | |
|         /* No previous large page.  */
 | |
|         lp_addr = addr;
 | |
|     } else {
 | |
|         /* Extend the existing region to include the new page.
 | |
|            This is a compromise between unnecessary flushes and
 | |
|            the cost of maintaining a full variable size TLB.  */
 | |
|         lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
 | |
|         while (((lp_addr ^ addr) & lp_mask) != 0) {
 | |
|             lp_mask <<= 1;
 | |
|         }
 | |
|     }
 | |
|     cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
 | |
|     cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
 | |
|                                    vaddr address, int flags,
 | |
|                                    MMUAccessType access_type, bool enable)
 | |
| {
 | |
|     if (enable) {
 | |
|         address |= flags & TLB_FLAGS_MASK;
 | |
|         flags &= TLB_SLOW_FLAGS_MASK;
 | |
|         if (flags) {
 | |
|             address |= TLB_FORCE_SLOW;
 | |
|         }
 | |
|     } else {
 | |
|         address = -1;
 | |
|         flags = 0;
 | |
|     }
 | |
|     ent->addr_idx[access_type] = address;
 | |
|     full->slow_flags[access_type] = flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a new TLB entry. At most one entry for a given virtual address
 | |
|  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | |
|  * supplied size is only used by tlb_flush_page.
 | |
|  *
 | |
|  * Called from TCG-generated code, which is under an RCU read-side
 | |
|  * critical section.
 | |
|  */
 | |
| void tlb_set_page_full(CPUState *cpu, int mmu_idx,
 | |
|                        vaddr addr, CPUTLBEntryFull *full)
 | |
| {
 | |
|     CPUTLB *tlb = &cpu->neg.tlb;
 | |
|     CPUTLBDesc *desc = &tlb->d[mmu_idx];
 | |
|     MemoryRegionSection *section;
 | |
|     unsigned int index, read_flags, write_flags;
 | |
|     uintptr_t addend;
 | |
|     CPUTLBEntry *te, tn;
 | |
|     hwaddr iotlb, xlat, sz, paddr_page;
 | |
|     vaddr addr_page;
 | |
|     int asidx, wp_flags, prot;
 | |
|     bool is_ram, is_romd;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     if (full->lg_page_size <= TARGET_PAGE_BITS) {
 | |
|         sz = TARGET_PAGE_SIZE;
 | |
|     } else {
 | |
|         sz = (hwaddr)1 << full->lg_page_size;
 | |
|         tlb_add_large_page(cpu, mmu_idx, addr, sz);
 | |
|     }
 | |
|     addr_page = addr & TARGET_PAGE_MASK;
 | |
|     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
 | |
| 
 | |
|     prot = full->prot;
 | |
|     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
 | |
|     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
 | |
|                                                 &xlat, &sz, full->attrs, &prot);
 | |
|     assert(sz >= TARGET_PAGE_SIZE);
 | |
| 
 | |
|     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
 | |
|               " prot=%x idx=%d\n",
 | |
|               addr, full->phys_addr, prot, mmu_idx);
 | |
| 
 | |
|     read_flags = 0;
 | |
|     if (full->lg_page_size < TARGET_PAGE_BITS) {
 | |
|         /* Repeat the MMU check and TLB fill on every access.  */
 | |
|         read_flags |= TLB_INVALID_MASK;
 | |
|     }
 | |
|     if (full->attrs.byte_swap) {
 | |
|         read_flags |= TLB_BSWAP;
 | |
|     }
 | |
| 
 | |
|     is_ram = memory_region_is_ram(section->mr);
 | |
|     is_romd = memory_region_is_romd(section->mr);
 | |
| 
 | |
|     if (is_ram || is_romd) {
 | |
|         /* RAM and ROMD both have associated host memory. */
 | |
|         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 | |
|     } else {
 | |
|         /* I/O does not; force the host address to NULL. */
 | |
|         addend = 0;
 | |
|     }
 | |
| 
 | |
|     write_flags = read_flags;
 | |
|     if (is_ram) {
 | |
|         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
 | |
|         assert(!(iotlb & ~TARGET_PAGE_MASK));
 | |
|         /*
 | |
|          * Computing is_clean is expensive; avoid all that unless
 | |
|          * the page is actually writable.
 | |
|          */
 | |
|         if (prot & PAGE_WRITE) {
 | |
|             if (section->readonly) {
 | |
|                 write_flags |= TLB_DISCARD_WRITE;
 | |
|             } else if (cpu_physical_memory_is_clean(iotlb)) {
 | |
|                 write_flags |= TLB_NOTDIRTY;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* I/O or ROMD */
 | |
|         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
 | |
|         /*
 | |
|          * Writes to romd devices must go through MMIO to enable write.
 | |
|          * Reads to romd devices go through the ram_ptr found above,
 | |
|          * but of course reads to I/O must go through MMIO.
 | |
|          */
 | |
|         write_flags |= TLB_MMIO;
 | |
|         if (!is_romd) {
 | |
|             read_flags = write_flags;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
 | |
|                                               TARGET_PAGE_SIZE);
 | |
| 
 | |
|     index = tlb_index(cpu, mmu_idx, addr_page);
 | |
|     te = tlb_entry(cpu, mmu_idx, addr_page);
 | |
| 
 | |
|     /*
 | |
|      * Hold the TLB lock for the rest of the function. We could acquire/release
 | |
|      * the lock several times in the function, but it is faster to amortize the
 | |
|      * acquisition cost by acquiring it just once. Note that this leads to
 | |
|      * a longer critical section, but this is not a concern since the TLB lock
 | |
|      * is unlikely to be contended.
 | |
|      */
 | |
|     qemu_spin_lock(&tlb->c.lock);
 | |
| 
 | |
|     /* Note that the tlb is no longer clean.  */
 | |
|     tlb->c.dirty |= 1 << mmu_idx;
 | |
| 
 | |
|     /* Make sure there's no cached translation for the new page.  */
 | |
|     tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
 | |
| 
 | |
|     /*
 | |
|      * Only evict the old entry to the victim tlb if it's for a
 | |
|      * different page; otherwise just overwrite the stale data.
 | |
|      */
 | |
|     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
 | |
|         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
 | |
|         CPUTLBEntry *tv = &desc->vtable[vidx];
 | |
| 
 | |
|         /* Evict the old entry into the victim tlb.  */
 | |
|         copy_tlb_helper_locked(tv, te);
 | |
|         desc->vfulltlb[vidx] = desc->fulltlb[index];
 | |
|         tlb_n_used_entries_dec(cpu, mmu_idx);
 | |
|     }
 | |
| 
 | |
|     /* refill the tlb */
 | |
|     /*
 | |
|      * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
 | |
|      * aligned ram_addr_t of the page base of the target RAM.
 | |
|      * Otherwise, iotlb contains
 | |
|      *  - a physical section number in the lower TARGET_PAGE_BITS
 | |
|      *  - the offset within section->mr of the page base (I/O, ROMD) with the
 | |
|      *    TARGET_PAGE_BITS masked off.
 | |
|      * We subtract addr_page (which is page aligned and thus won't
 | |
|      * disturb the low bits) to give an offset which can be added to the
 | |
|      * (non-page-aligned) vaddr of the eventual memory access to get
 | |
|      * the MemoryRegion offset for the access. Note that the vaddr we
 | |
|      * subtract here is that of the page base, and not the same as the
 | |
|      * vaddr we add back in io_prepare()/get_page_addr_code().
 | |
|      */
 | |
|     desc->fulltlb[index] = *full;
 | |
|     full = &desc->fulltlb[index];
 | |
|     full->xlat_section = iotlb - addr_page;
 | |
|     full->phys_addr = paddr_page;
 | |
| 
 | |
|     /* Now calculate the new entry */
 | |
|     tn.addend = addend - addr_page;
 | |
| 
 | |
|     tlb_set_compare(full, &tn, addr_page, read_flags,
 | |
|                     MMU_INST_FETCH, prot & PAGE_EXEC);
 | |
| 
 | |
|     if (wp_flags & BP_MEM_READ) {
 | |
|         read_flags |= TLB_WATCHPOINT;
 | |
|     }
 | |
|     tlb_set_compare(full, &tn, addr_page, read_flags,
 | |
|                     MMU_DATA_LOAD, prot & PAGE_READ);
 | |
| 
 | |
|     if (prot & PAGE_WRITE_INV) {
 | |
|         write_flags |= TLB_INVALID_MASK;
 | |
|     }
 | |
|     if (wp_flags & BP_MEM_WRITE) {
 | |
|         write_flags |= TLB_WATCHPOINT;
 | |
|     }
 | |
|     tlb_set_compare(full, &tn, addr_page, write_flags,
 | |
|                     MMU_DATA_STORE, prot & PAGE_WRITE);
 | |
| 
 | |
|     copy_tlb_helper_locked(te, &tn);
 | |
|     tlb_n_used_entries_inc(cpu, mmu_idx);
 | |
|     qemu_spin_unlock(&tlb->c.lock);
 | |
| }
 | |
| 
 | |
| void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
 | |
|                              hwaddr paddr, MemTxAttrs attrs, int prot,
 | |
|                              int mmu_idx, uint64_t size)
 | |
| {
 | |
|     CPUTLBEntryFull full = {
 | |
|         .phys_addr = paddr,
 | |
|         .attrs = attrs,
 | |
|         .prot = prot,
 | |
|         .lg_page_size = ctz64(size)
 | |
|     };
 | |
| 
 | |
|     assert(is_power_of_2(size));
 | |
|     tlb_set_page_full(cpu, mmu_idx, addr, &full);
 | |
| }
 | |
| 
 | |
| void tlb_set_page(CPUState *cpu, vaddr addr,
 | |
|                   hwaddr paddr, int prot,
 | |
|                   int mmu_idx, uint64_t size)
 | |
| {
 | |
|     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
 | |
|                             prot, mmu_idx, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
 | |
|  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
 | |
|  * be discarded and looked up again (e.g. via tlb_entry()).
 | |
|  */
 | |
| static void tlb_fill(CPUState *cpu, vaddr addr, int size,
 | |
|                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     bool ok;
 | |
| 
 | |
|     /*
 | |
|      * This is not a probe, so only valid return is success; failure
 | |
|      * should result in exception + longjmp to the cpu loop.
 | |
|      */
 | |
|     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
 | |
|                                     access_type, mmu_idx, false, retaddr);
 | |
|     assert(ok);
 | |
| }
 | |
| 
 | |
| static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
 | |
|                                         MMUAccessType access_type,
 | |
|                                         int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
 | |
|                                           mmu_idx, retaddr);
 | |
| }
 | |
| 
 | |
| static MemoryRegionSection *
 | |
| io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
 | |
|            MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     hwaddr mr_offset;
 | |
| 
 | |
|     section = iotlb_to_section(cpu, xlat, attrs);
 | |
|     mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
 | |
|     cpu->mem_io_pc = retaddr;
 | |
|     if (!cpu->neg.can_do_io) {
 | |
|         cpu_io_recompile(cpu, retaddr);
 | |
|     }
 | |
| 
 | |
|     *out_offset = mr_offset;
 | |
|     return section;
 | |
| }
 | |
| 
 | |
| static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
 | |
|                       unsigned size, MMUAccessType access_type, int mmu_idx,
 | |
|                       MemTxResult response, uintptr_t retaddr)
 | |
| {
 | |
|     if (!cpu->ignore_memory_transaction_failures
 | |
|         && cpu->cc->tcg_ops->do_transaction_failed) {
 | |
|         hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
 | |
| 
 | |
|         cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
 | |
|                                                 access_type, mmu_idx,
 | |
|                                                 full->attrs, response, retaddr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if ADDR is present in the victim tlb, and has been copied
 | |
|    back to the main tlb.  */
 | |
| static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
 | |
|                            MMUAccessType access_type, vaddr page)
 | |
| {
 | |
|     size_t vidx;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
|     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
 | |
|         CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
 | |
|         uint64_t cmp = tlb_read_idx(vtlb, access_type);
 | |
| 
 | |
|         if (cmp == page) {
 | |
|             /* Found entry in victim tlb, swap tlb and iotlb.  */
 | |
|             CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
 | |
| 
 | |
|             qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | |
|             copy_tlb_helper_locked(&tmptlb, tlb);
 | |
|             copy_tlb_helper_locked(tlb, vtlb);
 | |
|             copy_tlb_helper_locked(vtlb, &tmptlb);
 | |
|             qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | |
| 
 | |
|             CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | |
|             CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
 | |
|             CPUTLBEntryFull tmpf;
 | |
|             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
 | |
|                            CPUTLBEntryFull *full, uintptr_t retaddr)
 | |
| {
 | |
|     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
 | |
| 
 | |
|     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
 | |
| 
 | |
|     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
 | |
|         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Set both VGA and migration bits for simplicity and to remove
 | |
|      * the notdirty callback faster.
 | |
|      */
 | |
|     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
 | |
| 
 | |
|     /* We remove the notdirty callback only if the code has been flushed. */
 | |
|     if (!cpu_physical_memory_is_clean(ram_addr)) {
 | |
|         trace_memory_notdirty_set_dirty(mem_vaddr);
 | |
|         tlb_set_dirty(cpu, mem_vaddr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int probe_access_internal(CPUState *cpu, vaddr addr,
 | |
|                                  int fault_size, MMUAccessType access_type,
 | |
|                                  int mmu_idx, bool nonfault,
 | |
|                                  void **phost, CPUTLBEntryFull **pfull,
 | |
|                                  uintptr_t retaddr, bool check_mem_cbs)
 | |
| {
 | |
|     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
 | |
|     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
 | |
|     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
 | |
|     vaddr page_addr = addr & TARGET_PAGE_MASK;
 | |
|     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
 | |
|     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
 | |
|     CPUTLBEntryFull *full;
 | |
| 
 | |
|     if (!tlb_hit_page(tlb_addr, page_addr)) {
 | |
|         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
 | |
|             if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
 | |
|                                             mmu_idx, nonfault, retaddr)) {
 | |
|                 /* Non-faulting page table read failed.  */
 | |
|                 *phost = NULL;
 | |
|                 *pfull = NULL;
 | |
|                 return TLB_INVALID_MASK;
 | |
|             }
 | |
| 
 | |
|             /* TLB resize via tlb_fill may have moved the entry.  */
 | |
|             index = tlb_index(cpu, mmu_idx, addr);
 | |
|             entry = tlb_entry(cpu, mmu_idx, addr);
 | |
| 
 | |
|             /*
 | |
|              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
 | |
|              * to force the next access through tlb_fill.  We've just
 | |
|              * called tlb_fill, so we know that this entry *is* valid.
 | |
|              */
 | |
|             flags &= ~TLB_INVALID_MASK;
 | |
|         }
 | |
|         tlb_addr = tlb_read_idx(entry, access_type);
 | |
|     }
 | |
|     flags &= tlb_addr;
 | |
| 
 | |
|     *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | |
|     flags |= full->slow_flags[access_type];
 | |
| 
 | |
|     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
 | |
|     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
 | |
|         ||
 | |
|         (access_type != MMU_INST_FETCH && force_mmio)) {
 | |
|         *phost = NULL;
 | |
|         return TLB_MMIO;
 | |
|     }
 | |
| 
 | |
|     /* Everything else is RAM. */
 | |
|     *phost = (void *)((uintptr_t)addr + entry->addend);
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| int probe_access_full(CPUArchState *env, vaddr addr, int size,
 | |
|                       MMUAccessType access_type, int mmu_idx,
 | |
|                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
 | |
|                       uintptr_t retaddr)
 | |
| {
 | |
|     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | |
|                                       mmu_idx, nonfault, phost, pfull, retaddr,
 | |
|                                       true);
 | |
| 
 | |
|     /* Handle clean RAM pages.  */
 | |
|     if (unlikely(flags & TLB_NOTDIRTY)) {
 | |
|         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
 | |
|         flags &= ~TLB_NOTDIRTY;
 | |
|     }
 | |
| 
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
 | |
|                           MMUAccessType access_type, int mmu_idx,
 | |
|                           void **phost, CPUTLBEntryFull **pfull)
 | |
| {
 | |
|     void *discard_phost;
 | |
|     CPUTLBEntryFull *discard_tlb;
 | |
| 
 | |
|     /* privately handle users that don't need full results */
 | |
|     phost = phost ? phost : &discard_phost;
 | |
|     pfull = pfull ? pfull : &discard_tlb;
 | |
| 
 | |
|     int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | |
|                                       mmu_idx, true, phost, pfull, 0, false);
 | |
| 
 | |
|     /* Handle clean RAM pages.  */
 | |
|     if (unlikely(flags & TLB_NOTDIRTY)) {
 | |
|         notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
 | |
|         flags &= ~TLB_NOTDIRTY;
 | |
|     }
 | |
| 
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| int probe_access_flags(CPUArchState *env, vaddr addr, int size,
 | |
|                        MMUAccessType access_type, int mmu_idx,
 | |
|                        bool nonfault, void **phost, uintptr_t retaddr)
 | |
| {
 | |
|     CPUTLBEntryFull *full;
 | |
|     int flags;
 | |
| 
 | |
|     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | |
| 
 | |
|     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | |
|                                   mmu_idx, nonfault, phost, &full, retaddr,
 | |
|                                   true);
 | |
| 
 | |
|     /* Handle clean RAM pages. */
 | |
|     if (unlikely(flags & TLB_NOTDIRTY)) {
 | |
|         notdirty_write(env_cpu(env), addr, 1, full, retaddr);
 | |
|         flags &= ~TLB_NOTDIRTY;
 | |
|     }
 | |
| 
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| void *probe_access(CPUArchState *env, vaddr addr, int size,
 | |
|                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     CPUTLBEntryFull *full;
 | |
|     void *host;
 | |
|     int flags;
 | |
| 
 | |
|     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | |
| 
 | |
|     flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | |
|                                   mmu_idx, false, &host, &full, retaddr,
 | |
|                                   true);
 | |
| 
 | |
|     /* Per the interface, size == 0 merely faults the access. */
 | |
|     if (size == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
 | |
|         /* Handle watchpoints.  */
 | |
|         if (flags & TLB_WATCHPOINT) {
 | |
|             int wp_access = (access_type == MMU_DATA_STORE
 | |
|                              ? BP_MEM_WRITE : BP_MEM_READ);
 | |
|             cpu_check_watchpoint(env_cpu(env), addr, size,
 | |
|                                  full->attrs, wp_access, retaddr);
 | |
|         }
 | |
| 
 | |
|         /* Handle clean RAM pages.  */
 | |
|         if (flags & TLB_NOTDIRTY) {
 | |
|             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return host;
 | |
| }
 | |
| 
 | |
| void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
 | |
|                         MMUAccessType access_type, int mmu_idx)
 | |
| {
 | |
|     CPUTLBEntryFull *full;
 | |
|     void *host;
 | |
|     int flags;
 | |
| 
 | |
|     flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
 | |
|                                   mmu_idx, true, &host, &full, 0, false);
 | |
| 
 | |
|     /* No combination of flags are expected by the caller. */
 | |
|     return flags ? NULL : host;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a ram_addr_t for the virtual address for execution.
 | |
|  *
 | |
|  * Return -1 if we can't translate and execute from an entire page
 | |
|  * of RAM.  This will force us to execute by loading and translating
 | |
|  * one insn at a time, without caching.
 | |
|  *
 | |
|  * NOTE: This function will trigger an exception if the page is
 | |
|  * not executable.
 | |
|  */
 | |
| tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
 | |
|                                         void **hostp)
 | |
| {
 | |
|     CPUTLBEntryFull *full;
 | |
|     void *p;
 | |
| 
 | |
|     (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
 | |
|                                 cpu_mmu_index(env, true), false,
 | |
|                                 &p, &full, 0, false);
 | |
|     if (p == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (full->lg_page_size < TARGET_PAGE_BITS) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (hostp) {
 | |
|         *hostp = p;
 | |
|     }
 | |
|     return qemu_ram_addr_from_host_nofail(p);
 | |
| }
 | |
| 
 | |
| /* Load/store with atomicity primitives. */
 | |
| #include "ldst_atomicity.c.inc"
 | |
| 
 | |
| #ifdef CONFIG_PLUGIN
 | |
| /*
 | |
|  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
 | |
|  * This should be a hot path as we will have just looked this path up
 | |
|  * in the softmmu lookup code (or helper). We don't handle re-fills or
 | |
|  * checking the victim table. This is purely informational.
 | |
|  *
 | |
|  * The one corner case is i/o write, which can cause changes to the
 | |
|  * address space.  Those changes, and the corresponding tlb flush,
 | |
|  * should be delayed until the next TB, so even then this ought not fail.
 | |
|  * But check, Just in Case.
 | |
|  */
 | |
| bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
 | |
|                        bool is_store, struct qemu_plugin_hwaddr *data)
 | |
| {
 | |
|     CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
 | |
|     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
 | |
|     MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | |
|     uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
 | |
|     CPUTLBEntryFull *full;
 | |
| 
 | |
|     if (unlikely(!tlb_hit(tlb_addr, addr))) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | |
|     data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
 | |
| 
 | |
|     /* We must have an iotlb entry for MMIO */
 | |
|     if (tlb_addr & TLB_MMIO) {
 | |
|         MemoryRegionSection *section =
 | |
|             iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
 | |
|                              full->attrs);
 | |
|         data->is_io = true;
 | |
|         data->mr = section->mr;
 | |
|     } else {
 | |
|         data->is_io = false;
 | |
|         data->mr = NULL;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Probe for a load/store operation.
 | |
|  * Return the host address and into @flags.
 | |
|  */
 | |
| 
 | |
| typedef struct MMULookupPageData {
 | |
|     CPUTLBEntryFull *full;
 | |
|     void *haddr;
 | |
|     vaddr addr;
 | |
|     int flags;
 | |
|     int size;
 | |
| } MMULookupPageData;
 | |
| 
 | |
| typedef struct MMULookupLocals {
 | |
|     MMULookupPageData page[2];
 | |
|     MemOp memop;
 | |
|     int mmu_idx;
 | |
| } MMULookupLocals;
 | |
| 
 | |
| /**
 | |
|  * mmu_lookup1: translate one page
 | |
|  * @cpu: generic cpu state
 | |
|  * @data: lookup parameters
 | |
|  * @mmu_idx: virtual address context
 | |
|  * @access_type: load/store/code
 | |
|  * @ra: return address into tcg generated code, or 0
 | |
|  *
 | |
|  * Resolve the translation for the one page at @data.addr, filling in
 | |
|  * the rest of @data with the results.  If the translation fails,
 | |
|  * tlb_fill will longjmp out.  Return true if the softmmu tlb for
 | |
|  * @mmu_idx may have resized.
 | |
|  */
 | |
| static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data,
 | |
|                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
 | |
| {
 | |
|     vaddr addr = data->addr;
 | |
|     uintptr_t index = tlb_index(cpu, mmu_idx, addr);
 | |
|     CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
 | |
|     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
 | |
|     bool maybe_resized = false;
 | |
|     CPUTLBEntryFull *full;
 | |
|     int flags;
 | |
| 
 | |
|     /* If the TLB entry is for a different page, reload and try again.  */
 | |
|     if (!tlb_hit(tlb_addr, addr)) {
 | |
|         if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
 | |
|                             addr & TARGET_PAGE_MASK)) {
 | |
|             tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra);
 | |
|             maybe_resized = true;
 | |
|             index = tlb_index(cpu, mmu_idx, addr);
 | |
|             entry = tlb_entry(cpu, mmu_idx, addr);
 | |
|         }
 | |
|         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
 | |
|     }
 | |
| 
 | |
|     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | |
|     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
 | |
|     flags |= full->slow_flags[access_type];
 | |
| 
 | |
|     data->full = full;
 | |
|     data->flags = flags;
 | |
|     /* Compute haddr speculatively; depending on flags it might be invalid. */
 | |
|     data->haddr = (void *)((uintptr_t)addr + entry->addend);
 | |
| 
 | |
|     return maybe_resized;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mmu_watch_or_dirty
 | |
|  * @cpu: generic cpu state
 | |
|  * @data: lookup parameters
 | |
|  * @access_type: load/store/code
 | |
|  * @ra: return address into tcg generated code, or 0
 | |
|  *
 | |
|  * Trigger watchpoints for @data.addr:@data.size;
 | |
|  * record writes to protected clean pages.
 | |
|  */
 | |
| static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
 | |
|                                MMUAccessType access_type, uintptr_t ra)
 | |
| {
 | |
|     CPUTLBEntryFull *full = data->full;
 | |
|     vaddr addr = data->addr;
 | |
|     int flags = data->flags;
 | |
|     int size = data->size;
 | |
| 
 | |
|     /* On watchpoint hit, this will longjmp out.  */
 | |
|     if (flags & TLB_WATCHPOINT) {
 | |
|         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
 | |
|         cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
 | |
|         flags &= ~TLB_WATCHPOINT;
 | |
|     }
 | |
| 
 | |
|     /* Note that notdirty is only set for writes. */
 | |
|     if (flags & TLB_NOTDIRTY) {
 | |
|         notdirty_write(cpu, addr, size, full, ra);
 | |
|         flags &= ~TLB_NOTDIRTY;
 | |
|     }
 | |
|     data->flags = flags;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mmu_lookup: translate page(s)
 | |
|  * @cpu: generic cpu state
 | |
|  * @addr: virtual address
 | |
|  * @oi: combined mmu_idx and MemOp
 | |
|  * @ra: return address into tcg generated code, or 0
 | |
|  * @access_type: load/store/code
 | |
|  * @l: output result
 | |
|  *
 | |
|  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
 | |
|  * bytes.  Return true if the lookup crosses a page boundary.
 | |
|  */
 | |
| static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | |
|                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
 | |
| {
 | |
|     unsigned a_bits;
 | |
|     bool crosspage;
 | |
|     int flags;
 | |
| 
 | |
|     l->memop = get_memop(oi);
 | |
|     l->mmu_idx = get_mmuidx(oi);
 | |
| 
 | |
|     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
 | |
| 
 | |
|     /* Handle CPU specific unaligned behaviour */
 | |
|     a_bits = get_alignment_bits(l->memop);
 | |
|     if (addr & ((1 << a_bits) - 1)) {
 | |
|         cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
 | |
|     }
 | |
| 
 | |
|     l->page[0].addr = addr;
 | |
|     l->page[0].size = memop_size(l->memop);
 | |
|     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
 | |
|     l->page[1].size = 0;
 | |
|     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
 | |
| 
 | |
|     if (likely(!crosspage)) {
 | |
|         mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
 | |
| 
 | |
|         flags = l->page[0].flags;
 | |
|         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
 | |
|             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
 | |
|         }
 | |
|         if (unlikely(flags & TLB_BSWAP)) {
 | |
|             l->memop ^= MO_BSWAP;
 | |
|         }
 | |
|     } else {
 | |
|         /* Finish compute of page crossing. */
 | |
|         int size0 = l->page[1].addr - addr;
 | |
|         l->page[1].size = l->page[0].size - size0;
 | |
|         l->page[0].size = size0;
 | |
| 
 | |
|         /*
 | |
|          * Lookup both pages, recognizing exceptions from either.  If the
 | |
|          * second lookup potentially resized, refresh first CPUTLBEntryFull.
 | |
|          */
 | |
|         mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
 | |
|         if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) {
 | |
|             uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
 | |
|             l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
 | |
|         }
 | |
| 
 | |
|         flags = l->page[0].flags | l->page[1].flags;
 | |
|         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
 | |
|             mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
 | |
|             mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Since target/sparc is the only user of TLB_BSWAP, and all
 | |
|          * Sparc accesses are aligned, any treatment across two pages
 | |
|          * would be arbitrary.  Refuse it until there's a use.
 | |
|          */
 | |
|         tcg_debug_assert((flags & TLB_BSWAP) == 0);
 | |
|     }
 | |
| 
 | |
|     return crosspage;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Probe for an atomic operation.  Do not allow unaligned operations,
 | |
|  * or io operations to proceed.  Return the host address.
 | |
|  */
 | |
| static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | |
|                                int size, uintptr_t retaddr)
 | |
| {
 | |
|     uintptr_t mmu_idx = get_mmuidx(oi);
 | |
|     MemOp mop = get_memop(oi);
 | |
|     int a_bits = get_alignment_bits(mop);
 | |
|     uintptr_t index;
 | |
|     CPUTLBEntry *tlbe;
 | |
|     vaddr tlb_addr;
 | |
|     void *hostaddr;
 | |
|     CPUTLBEntryFull *full;
 | |
| 
 | |
|     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
 | |
| 
 | |
|     /* Adjust the given return address.  */
 | |
|     retaddr -= GETPC_ADJ;
 | |
| 
 | |
|     /* Enforce guest required alignment.  */
 | |
|     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
 | |
|         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
 | |
|         cpu_unaligned_access(cpu, addr, MMU_DATA_STORE,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* Enforce qemu required alignment.  */
 | |
|     if (unlikely(addr & (size - 1))) {
 | |
|         /* We get here if guest alignment was not requested,
 | |
|            or was not enforced by cpu_unaligned_access above.
 | |
|            We might widen the access and emulate, but for now
 | |
|            mark an exception and exit the cpu loop.  */
 | |
|         goto stop_the_world;
 | |
|     }
 | |
| 
 | |
|     index = tlb_index(cpu, mmu_idx, addr);
 | |
|     tlbe = tlb_entry(cpu, mmu_idx, addr);
 | |
| 
 | |
|     /* Check TLB entry and enforce page permissions.  */
 | |
|     tlb_addr = tlb_addr_write(tlbe);
 | |
|     if (!tlb_hit(tlb_addr, addr)) {
 | |
|         if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
 | |
|                             addr & TARGET_PAGE_MASK)) {
 | |
|             tlb_fill(cpu, addr, size,
 | |
|                      MMU_DATA_STORE, mmu_idx, retaddr);
 | |
|             index = tlb_index(cpu, mmu_idx, addr);
 | |
|             tlbe = tlb_entry(cpu, mmu_idx, addr);
 | |
|         }
 | |
|         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Let the guest notice RMW on a write-only page.
 | |
|      * We have just verified that the page is writable.
 | |
|      * Subpage lookups may have left TLB_INVALID_MASK set,
 | |
|      * but addr_read will only be -1 if PAGE_READ was unset.
 | |
|      */
 | |
|     if (unlikely(tlbe->addr_read == -1)) {
 | |
|         tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
 | |
|         /*
 | |
|          * Since we don't support reads and writes to different
 | |
|          * addresses, and we do have the proper page loaded for
 | |
|          * write, this shouldn't ever return.  But just in case,
 | |
|          * handle via stop-the-world.
 | |
|          */
 | |
|         goto stop_the_world;
 | |
|     }
 | |
|     /* Collect tlb flags for read. */
 | |
|     tlb_addr |= tlbe->addr_read;
 | |
| 
 | |
|     /* Notice an IO access or a needs-MMU-lookup access */
 | |
|     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
 | |
|         /* There's really nothing that can be done to
 | |
|            support this apart from stop-the-world.  */
 | |
|         goto stop_the_world;
 | |
|     }
 | |
| 
 | |
|     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
 | |
|     full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | |
| 
 | |
|     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
 | |
|         notdirty_write(cpu, addr, size, full, retaddr);
 | |
|     }
 | |
| 
 | |
|     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
 | |
|         int wp_flags = 0;
 | |
| 
 | |
|         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
 | |
|             wp_flags |= BP_MEM_WRITE;
 | |
|         }
 | |
|         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
 | |
|             wp_flags |= BP_MEM_READ;
 | |
|         }
 | |
|         if (wp_flags) {
 | |
|             cpu_check_watchpoint(cpu, addr, size,
 | |
|                                  full->attrs, wp_flags, retaddr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return hostaddr;
 | |
| 
 | |
|  stop_the_world:
 | |
|     cpu_loop_exit_atomic(cpu, retaddr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load Helpers
 | |
|  *
 | |
|  * We support two different access types. SOFTMMU_CODE_ACCESS is
 | |
|  * specifically for reading instructions from system memory. It is
 | |
|  * called by the translation loop and in some helpers where the code
 | |
|  * is disassembled. It shouldn't be called directly by guest code.
 | |
|  *
 | |
|  * For the benefit of TCG generated code, we want to avoid the
 | |
|  * complication of ABI-specific return type promotion and always
 | |
|  * return a value extended to the register size of the host. This is
 | |
|  * tcg_target_long, except in the case of a 32-bit host and 64-bit
 | |
|  * data, and for that we always have uint64_t.
 | |
|  *
 | |
|  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * do_ld_mmio_beN:
 | |
|  * @cpu: generic cpu state
 | |
|  * @full: page parameters
 | |
|  * @ret_be: accumulated data
 | |
|  * @addr: virtual address
 | |
|  * @size: number of bytes
 | |
|  * @mmu_idx: virtual address context
 | |
|  * @ra: return address into tcg generated code, or 0
 | |
|  * Context: iothread lock held
 | |
|  *
 | |
|  * Load @size bytes from @addr, which is memory-mapped i/o.
 | |
|  * The bytes are concatenated in big-endian order with @ret_be.
 | |
|  */
 | |
| static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
 | |
|                                 uint64_t ret_be, vaddr addr, int size,
 | |
|                                 int mmu_idx, MMUAccessType type, uintptr_t ra,
 | |
|                                 MemoryRegion *mr, hwaddr mr_offset)
 | |
| {
 | |
|     do {
 | |
|         MemOp this_mop;
 | |
|         unsigned this_size;
 | |
|         uint64_t val;
 | |
|         MemTxResult r;
 | |
| 
 | |
|         /* Read aligned pieces up to 8 bytes. */
 | |
|         this_mop = ctz32(size | (int)addr | 8);
 | |
|         this_size = 1 << this_mop;
 | |
|         this_mop |= MO_BE;
 | |
| 
 | |
|         r = memory_region_dispatch_read(mr, mr_offset, &val,
 | |
|                                         this_mop, full->attrs);
 | |
|         if (unlikely(r != MEMTX_OK)) {
 | |
|             io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
 | |
|         }
 | |
|         if (this_size == 8) {
 | |
|             return val;
 | |
|         }
 | |
| 
 | |
|         ret_be = (ret_be << (this_size * 8)) | val;
 | |
|         addr += this_size;
 | |
|         mr_offset += this_size;
 | |
|         size -= this_size;
 | |
|     } while (size);
 | |
| 
 | |
|     return ret_be;
 | |
| }
 | |
| 
 | |
| static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
 | |
|                                uint64_t ret_be, vaddr addr, int size,
 | |
|                                int mmu_idx, MMUAccessType type, uintptr_t ra)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr mr_offset;
 | |
|     MemTxAttrs attrs;
 | |
|     uint64_t ret;
 | |
| 
 | |
|     tcg_debug_assert(size > 0 && size <= 8);
 | |
| 
 | |
|     attrs = full->attrs;
 | |
|     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | |
|     mr = section->mr;
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     ret = int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
 | |
|                           type, ra, mr, mr_offset);
 | |
|     qemu_mutex_unlock_iothread();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
 | |
|                                uint64_t ret_be, vaddr addr, int size,
 | |
|                                int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr mr_offset;
 | |
|     MemTxAttrs attrs;
 | |
|     uint64_t a, b;
 | |
| 
 | |
|     tcg_debug_assert(size > 8 && size <= 16);
 | |
| 
 | |
|     attrs = full->attrs;
 | |
|     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | |
|     mr = section->mr;
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
 | |
|                         MMU_DATA_LOAD, ra, mr, mr_offset);
 | |
|     b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
 | |
|                         MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
 | |
|     qemu_mutex_unlock_iothread();
 | |
| 
 | |
|     return int128_make128(b, a);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_ld_bytes_beN
 | |
|  * @p: translation parameters
 | |
|  * @ret_be: accumulated data
 | |
|  *
 | |
|  * Load @p->size bytes from @p->haddr, which is RAM.
 | |
|  * The bytes to concatenated in big-endian order with @ret_be.
 | |
|  */
 | |
| static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
 | |
| {
 | |
|     uint8_t *haddr = p->haddr;
 | |
|     int i, size = p->size;
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         ret_be = (ret_be << 8) | haddr[i];
 | |
|     }
 | |
|     return ret_be;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_ld_parts_beN
 | |
|  * @p: translation parameters
 | |
|  * @ret_be: accumulated data
 | |
|  *
 | |
|  * As do_ld_bytes_beN, but atomically on each aligned part.
 | |
|  */
 | |
| static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
 | |
| {
 | |
|     void *haddr = p->haddr;
 | |
|     int size = p->size;
 | |
| 
 | |
|     do {
 | |
|         uint64_t x;
 | |
|         int n;
 | |
| 
 | |
|         /*
 | |
|          * Find minimum of alignment and size.
 | |
|          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
 | |
|          * would have only checked the low bits of addr|size once at the start,
 | |
|          * but is just as easy.
 | |
|          */
 | |
|         switch (((uintptr_t)haddr | size) & 7) {
 | |
|         case 4:
 | |
|             x = cpu_to_be32(load_atomic4(haddr));
 | |
|             ret_be = (ret_be << 32) | x;
 | |
|             n = 4;
 | |
|             break;
 | |
|         case 2:
 | |
|         case 6:
 | |
|             x = cpu_to_be16(load_atomic2(haddr));
 | |
|             ret_be = (ret_be << 16) | x;
 | |
|             n = 2;
 | |
|             break;
 | |
|         default:
 | |
|             x = *(uint8_t *)haddr;
 | |
|             ret_be = (ret_be << 8) | x;
 | |
|             n = 1;
 | |
|             break;
 | |
|         case 0:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         haddr += n;
 | |
|         size -= n;
 | |
|     } while (size != 0);
 | |
|     return ret_be;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_ld_parts_be4
 | |
|  * @p: translation parameters
 | |
|  * @ret_be: accumulated data
 | |
|  *
 | |
|  * As do_ld_bytes_beN, but with one atomic load.
 | |
|  * Four aligned bytes are guaranteed to cover the load.
 | |
|  */
 | |
| static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
 | |
| {
 | |
|     int o = p->addr & 3;
 | |
|     uint32_t x = load_atomic4(p->haddr - o);
 | |
| 
 | |
|     x = cpu_to_be32(x);
 | |
|     x <<= o * 8;
 | |
|     x >>= (4 - p->size) * 8;
 | |
|     return (ret_be << (p->size * 8)) | x;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_ld_parts_be8
 | |
|  * @p: translation parameters
 | |
|  * @ret_be: accumulated data
 | |
|  *
 | |
|  * As do_ld_bytes_beN, but with one atomic load.
 | |
|  * Eight aligned bytes are guaranteed to cover the load.
 | |
|  */
 | |
| static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
 | |
|                                 MMULookupPageData *p, uint64_t ret_be)
 | |
| {
 | |
|     int o = p->addr & 7;
 | |
|     uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
 | |
| 
 | |
|     x = cpu_to_be64(x);
 | |
|     x <<= o * 8;
 | |
|     x >>= (8 - p->size) * 8;
 | |
|     return (ret_be << (p->size * 8)) | x;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_ld_parts_be16
 | |
|  * @p: translation parameters
 | |
|  * @ret_be: accumulated data
 | |
|  *
 | |
|  * As do_ld_bytes_beN, but with one atomic load.
 | |
|  * 16 aligned bytes are guaranteed to cover the load.
 | |
|  */
 | |
| static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
 | |
|                                MMULookupPageData *p, uint64_t ret_be)
 | |
| {
 | |
|     int o = p->addr & 15;
 | |
|     Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
 | |
|     int size = p->size;
 | |
| 
 | |
|     if (!HOST_BIG_ENDIAN) {
 | |
|         y = bswap128(y);
 | |
|     }
 | |
|     y = int128_lshift(y, o * 8);
 | |
|     y = int128_urshift(y, (16 - size) * 8);
 | |
|     x = int128_make64(ret_be);
 | |
|     x = int128_lshift(x, size * 8);
 | |
|     return int128_or(x, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for the above.
 | |
|  */
 | |
| static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
 | |
|                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
 | |
|                           MemOp mop, uintptr_t ra)
 | |
| {
 | |
|     MemOp atom;
 | |
|     unsigned tmp, half_size;
 | |
| 
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
 | |
|                               mmu_idx, type, ra);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * It is a given that we cross a page and therefore there is no
 | |
|      * atomicity for the load as a whole, but subobjects may need attention.
 | |
|      */
 | |
|     atom = mop & MO_ATOM_MASK;
 | |
|     switch (atom) {
 | |
|     case MO_ATOM_SUBALIGN:
 | |
|         return do_ld_parts_beN(p, ret_be);
 | |
| 
 | |
|     case MO_ATOM_IFALIGN_PAIR:
 | |
|     case MO_ATOM_WITHIN16_PAIR:
 | |
|         tmp = mop & MO_SIZE;
 | |
|         tmp = tmp ? tmp - 1 : 0;
 | |
|         half_size = 1 << tmp;
 | |
|         if (atom == MO_ATOM_IFALIGN_PAIR
 | |
|             ? p->size == half_size
 | |
|             : p->size >= half_size) {
 | |
|             if (!HAVE_al8_fast && p->size < 4) {
 | |
|                 return do_ld_whole_be4(p, ret_be);
 | |
|             } else {
 | |
|                 return do_ld_whole_be8(cpu, ra, p, ret_be);
 | |
|             }
 | |
|         }
 | |
|         /* fall through */
 | |
| 
 | |
|     case MO_ATOM_IFALIGN:
 | |
|     case MO_ATOM_WITHIN16:
 | |
|     case MO_ATOM_NONE:
 | |
|         return do_ld_bytes_beN(p, ret_be);
 | |
| 
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for the above, for 8 < size < 16.
 | |
|  */
 | |
| static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
 | |
|                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
 | |
| {
 | |
|     int size = p->size;
 | |
|     uint64_t b;
 | |
|     MemOp atom;
 | |
| 
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * It is a given that we cross a page and therefore there is no
 | |
|      * atomicity for the load as a whole, but subobjects may need attention.
 | |
|      */
 | |
|     atom = mop & MO_ATOM_MASK;
 | |
|     switch (atom) {
 | |
|     case MO_ATOM_SUBALIGN:
 | |
|         p->size = size - 8;
 | |
|         a = do_ld_parts_beN(p, a);
 | |
|         p->haddr += size - 8;
 | |
|         p->size = 8;
 | |
|         b = do_ld_parts_beN(p, 0);
 | |
|         break;
 | |
| 
 | |
|     case MO_ATOM_WITHIN16_PAIR:
 | |
|         /* Since size > 8, this is the half that must be atomic. */
 | |
|         return do_ld_whole_be16(cpu, ra, p, a);
 | |
| 
 | |
|     case MO_ATOM_IFALIGN_PAIR:
 | |
|         /*
 | |
|          * Since size > 8, both halves are misaligned,
 | |
|          * and so neither is atomic.
 | |
|          */
 | |
|     case MO_ATOM_IFALIGN:
 | |
|     case MO_ATOM_WITHIN16:
 | |
|     case MO_ATOM_NONE:
 | |
|         p->size = size - 8;
 | |
|         a = do_ld_bytes_beN(p, a);
 | |
|         b = ldq_be_p(p->haddr + size - 8);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     return int128_make128(b, a);
 | |
| }
 | |
| 
 | |
| static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | |
|                        MMUAccessType type, uintptr_t ra)
 | |
| {
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
 | |
|     } else {
 | |
|         return *(uint8_t *)p->haddr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | |
|                         MMUAccessType type, MemOp memop, uintptr_t ra)
 | |
| {
 | |
|     uint16_t ret;
 | |
| 
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
 | |
|         if ((memop & MO_BSWAP) == MO_LE) {
 | |
|             ret = bswap16(ret);
 | |
|         }
 | |
|     } else {
 | |
|         /* Perform the load host endian, then swap if necessary. */
 | |
|         ret = load_atom_2(cpu, ra, p->haddr, memop);
 | |
|         if (memop & MO_BSWAP) {
 | |
|             ret = bswap16(ret);
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | |
|                         MMUAccessType type, MemOp memop, uintptr_t ra)
 | |
| {
 | |
|     uint32_t ret;
 | |
| 
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
 | |
|         if ((memop & MO_BSWAP) == MO_LE) {
 | |
|             ret = bswap32(ret);
 | |
|         }
 | |
|     } else {
 | |
|         /* Perform the load host endian. */
 | |
|         ret = load_atom_4(cpu, ra, p->haddr, memop);
 | |
|         if (memop & MO_BSWAP) {
 | |
|             ret = bswap32(ret);
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | |
|                         MMUAccessType type, MemOp memop, uintptr_t ra)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
 | |
|         if ((memop & MO_BSWAP) == MO_LE) {
 | |
|             ret = bswap64(ret);
 | |
|         }
 | |
|     } else {
 | |
|         /* Perform the load host endian. */
 | |
|         ret = load_atom_8(cpu, ra, p->haddr, memop);
 | |
|         if (memop & MO_BSWAP) {
 | |
|             ret = bswap64(ret);
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | |
|                           uintptr_t ra, MMUAccessType access_type)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | |
|     tcg_debug_assert(!crosspage);
 | |
| 
 | |
|     return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
 | |
| }
 | |
| 
 | |
| static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | |
|                            uintptr_t ra, MMUAccessType access_type)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
|     uint16_t ret;
 | |
|     uint8_t a, b;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
 | |
|     }
 | |
| 
 | |
|     a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
 | |
|     b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
 | |
| 
 | |
|     if ((l.memop & MO_BSWAP) == MO_LE) {
 | |
|         ret = a | (b << 8);
 | |
|     } else {
 | |
|         ret = b | (a << 8);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | |
|                            uintptr_t ra, MMUAccessType access_type)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
|     uint32_t ret;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
 | |
|     }
 | |
| 
 | |
|     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
 | |
|     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
 | |
|     if ((l.memop & MO_BSWAP) == MO_LE) {
 | |
|         ret = bswap32(ret);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | |
|                            uintptr_t ra, MMUAccessType access_type)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
|     uint64_t ret;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
 | |
|     }
 | |
| 
 | |
|     ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
 | |
|     ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
 | |
|     if ((l.memop & MO_BSWAP) == MO_LE) {
 | |
|         ret = bswap64(ret);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
 | |
|                           MemOpIdx oi, uintptr_t ra)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
|     uint64_t a, b;
 | |
|     Int128 ret;
 | |
|     int first;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         if (unlikely(l.page[0].flags & TLB_MMIO)) {
 | |
|             ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
 | |
|                                    l.mmu_idx, ra);
 | |
|             if ((l.memop & MO_BSWAP) == MO_LE) {
 | |
|                 ret = bswap128(ret);
 | |
|             }
 | |
|         } else {
 | |
|             /* Perform the load host endian. */
 | |
|             ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
 | |
|             if (l.memop & MO_BSWAP) {
 | |
|                 ret = bswap128(ret);
 | |
|             }
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     first = l.page[0].size;
 | |
|     if (first == 8) {
 | |
|         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
 | |
| 
 | |
|         a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
 | |
|         b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
 | |
|         if ((mop8 & MO_BSWAP) == MO_LE) {
 | |
|             ret = int128_make128(a, b);
 | |
|         } else {
 | |
|             ret = int128_make128(b, a);
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if (first < 8) {
 | |
|         a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
 | |
|                       MMU_DATA_LOAD, l.memop, ra);
 | |
|         ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
 | |
|     } else {
 | |
|         ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
 | |
|         b = int128_getlo(ret);
 | |
|         ret = int128_lshift(ret, l.page[1].size * 8);
 | |
|         a = int128_gethi(ret);
 | |
|         b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
 | |
|                       MMU_DATA_LOAD, l.memop, ra);
 | |
|         ret = int128_make128(b, a);
 | |
|     }
 | |
|     if ((l.memop & MO_BSWAP) == MO_LE) {
 | |
|         ret = bswap128(ret);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Store Helpers
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * do_st_mmio_leN:
 | |
|  * @cpu: generic cpu state
 | |
|  * @full: page parameters
 | |
|  * @val_le: data to store
 | |
|  * @addr: virtual address
 | |
|  * @size: number of bytes
 | |
|  * @mmu_idx: virtual address context
 | |
|  * @ra: return address into tcg generated code, or 0
 | |
|  * Context: iothread lock held
 | |
|  *
 | |
|  * Store @size bytes at @addr, which is memory-mapped i/o.
 | |
|  * The bytes to store are extracted in little-endian order from @val_le;
 | |
|  * return the bytes of @val_le beyond @p->size that have not been stored.
 | |
|  */
 | |
| static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
 | |
|                                 uint64_t val_le, vaddr addr, int size,
 | |
|                                 int mmu_idx, uintptr_t ra,
 | |
|                                 MemoryRegion *mr, hwaddr mr_offset)
 | |
| {
 | |
|     do {
 | |
|         MemOp this_mop;
 | |
|         unsigned this_size;
 | |
|         MemTxResult r;
 | |
| 
 | |
|         /* Store aligned pieces up to 8 bytes. */
 | |
|         this_mop = ctz32(size | (int)addr | 8);
 | |
|         this_size = 1 << this_mop;
 | |
|         this_mop |= MO_LE;
 | |
| 
 | |
|         r = memory_region_dispatch_write(mr, mr_offset, val_le,
 | |
|                                          this_mop, full->attrs);
 | |
|         if (unlikely(r != MEMTX_OK)) {
 | |
|             io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
 | |
|                       mmu_idx, r, ra);
 | |
|         }
 | |
|         if (this_size == 8) {
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         val_le >>= this_size * 8;
 | |
|         addr += this_size;
 | |
|         mr_offset += this_size;
 | |
|         size -= this_size;
 | |
|     } while (size);
 | |
| 
 | |
|     return val_le;
 | |
| }
 | |
| 
 | |
| static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
 | |
|                                uint64_t val_le, vaddr addr, int size,
 | |
|                                int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     hwaddr mr_offset;
 | |
|     MemoryRegion *mr;
 | |
|     MemTxAttrs attrs;
 | |
|     uint64_t ret;
 | |
| 
 | |
|     tcg_debug_assert(size > 0 && size <= 8);
 | |
| 
 | |
|     attrs = full->attrs;
 | |
|     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | |
|     mr = section->mr;
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     ret = int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
 | |
|                           ra, mr, mr_offset);
 | |
|     qemu_mutex_unlock_iothread();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
 | |
|                                  Int128 val_le, vaddr addr, int size,
 | |
|                                  int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr mr_offset;
 | |
|     MemTxAttrs attrs;
 | |
|     uint64_t ret;
 | |
| 
 | |
|     tcg_debug_assert(size > 8 && size <= 16);
 | |
| 
 | |
|     attrs = full->attrs;
 | |
|     section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | |
|     mr = section->mr;
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
 | |
|                     mmu_idx, ra, mr, mr_offset);
 | |
|     ret = int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
 | |
|                           size - 8, mmu_idx, ra, mr, mr_offset + 8);
 | |
|     qemu_mutex_unlock_iothread();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for the above.
 | |
|  */
 | |
| static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
 | |
|                           uint64_t val_le, int mmu_idx,
 | |
|                           MemOp mop, uintptr_t ra)
 | |
| {
 | |
|     MemOp atom;
 | |
|     unsigned tmp, half_size;
 | |
| 
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
 | |
|                               p->size, mmu_idx, ra);
 | |
|     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | |
|         return val_le >> (p->size * 8);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * It is a given that we cross a page and therefore there is no atomicity
 | |
|      * for the store as a whole, but subobjects may need attention.
 | |
|      */
 | |
|     atom = mop & MO_ATOM_MASK;
 | |
|     switch (atom) {
 | |
|     case MO_ATOM_SUBALIGN:
 | |
|         return store_parts_leN(p->haddr, p->size, val_le);
 | |
| 
 | |
|     case MO_ATOM_IFALIGN_PAIR:
 | |
|     case MO_ATOM_WITHIN16_PAIR:
 | |
|         tmp = mop & MO_SIZE;
 | |
|         tmp = tmp ? tmp - 1 : 0;
 | |
|         half_size = 1 << tmp;
 | |
|         if (atom == MO_ATOM_IFALIGN_PAIR
 | |
|             ? p->size == half_size
 | |
|             : p->size >= half_size) {
 | |
|             if (!HAVE_al8_fast && p->size <= 4) {
 | |
|                 return store_whole_le4(p->haddr, p->size, val_le);
 | |
|             } else if (HAVE_al8) {
 | |
|                 return store_whole_le8(p->haddr, p->size, val_le);
 | |
|             } else {
 | |
|                 cpu_loop_exit_atomic(cpu, ra);
 | |
|             }
 | |
|         }
 | |
|         /* fall through */
 | |
| 
 | |
|     case MO_ATOM_IFALIGN:
 | |
|     case MO_ATOM_WITHIN16:
 | |
|     case MO_ATOM_NONE:
 | |
|         return store_bytes_leN(p->haddr, p->size, val_le);
 | |
| 
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for the above, for 8 < size < 16.
 | |
|  */
 | |
| static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
 | |
|                             Int128 val_le, int mmu_idx,
 | |
|                             MemOp mop, uintptr_t ra)
 | |
| {
 | |
|     int size = p->size;
 | |
|     MemOp atom;
 | |
| 
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
 | |
|                                 size, mmu_idx, ra);
 | |
|     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | |
|         return int128_gethi(val_le) >> ((size - 8) * 8);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * It is a given that we cross a page and therefore there is no atomicity
 | |
|      * for the store as a whole, but subobjects may need attention.
 | |
|      */
 | |
|     atom = mop & MO_ATOM_MASK;
 | |
|     switch (atom) {
 | |
|     case MO_ATOM_SUBALIGN:
 | |
|         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
 | |
|         return store_parts_leN(p->haddr + 8, p->size - 8,
 | |
|                                int128_gethi(val_le));
 | |
| 
 | |
|     case MO_ATOM_WITHIN16_PAIR:
 | |
|         /* Since size > 8, this is the half that must be atomic. */
 | |
|         if (!HAVE_CMPXCHG128) {
 | |
|             cpu_loop_exit_atomic(cpu, ra);
 | |
|         }
 | |
|         return store_whole_le16(p->haddr, p->size, val_le);
 | |
| 
 | |
|     case MO_ATOM_IFALIGN_PAIR:
 | |
|         /*
 | |
|          * Since size > 8, both halves are misaligned,
 | |
|          * and so neither is atomic.
 | |
|          */
 | |
|     case MO_ATOM_IFALIGN:
 | |
|     case MO_ATOM_WITHIN16:
 | |
|     case MO_ATOM_NONE:
 | |
|         stq_le_p(p->haddr, int128_getlo(val_le));
 | |
|         return store_bytes_leN(p->haddr + 8, p->size - 8,
 | |
|                                int128_gethi(val_le));
 | |
| 
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
 | |
|                     int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
 | |
|     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | |
|         /* nothing */
 | |
|     } else {
 | |
|         *(uint8_t *)p->haddr = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
 | |
|                     int mmu_idx, MemOp memop, uintptr_t ra)
 | |
| {
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         if ((memop & MO_BSWAP) != MO_LE) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
|         do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
 | |
|     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | |
|         /* nothing */
 | |
|     } else {
 | |
|         /* Swap to host endian if necessary, then store. */
 | |
|         if (memop & MO_BSWAP) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
|         store_atom_2(cpu, ra, p->haddr, memop, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
 | |
|                     int mmu_idx, MemOp memop, uintptr_t ra)
 | |
| {
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         if ((memop & MO_BSWAP) != MO_LE) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
|         do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
 | |
|     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | |
|         /* nothing */
 | |
|     } else {
 | |
|         /* Swap to host endian if necessary, then store. */
 | |
|         if (memop & MO_BSWAP) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
|         store_atom_4(cpu, ra, p->haddr, memop, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
 | |
|                     int mmu_idx, MemOp memop, uintptr_t ra)
 | |
| {
 | |
|     if (unlikely(p->flags & TLB_MMIO)) {
 | |
|         if ((memop & MO_BSWAP) != MO_LE) {
 | |
|             val = bswap64(val);
 | |
|         }
 | |
|         do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
 | |
|     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | |
|         /* nothing */
 | |
|     } else {
 | |
|         /* Swap to host endian if necessary, then store. */
 | |
|         if (memop & MO_BSWAP) {
 | |
|             val = bswap64(val);
 | |
|         }
 | |
|         store_atom_8(cpu, ra, p->haddr, memop, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
 | |
|                        MemOpIdx oi, uintptr_t ra)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | |
|     tcg_debug_assert(!crosspage);
 | |
| 
 | |
|     do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
 | |
| }
 | |
| 
 | |
| static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
 | |
|                        MemOpIdx oi, uintptr_t ra)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
|     uint8_t a, b;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if ((l.memop & MO_BSWAP) == MO_LE) {
 | |
|         a = val, b = val >> 8;
 | |
|     } else {
 | |
|         b = val, a = val >> 8;
 | |
|     }
 | |
|     do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
 | |
|     do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
 | |
| }
 | |
| 
 | |
| static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
 | |
|                        MemOpIdx oi, uintptr_t ra)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Swap to little endian for simplicity, then store by bytes. */
 | |
|     if ((l.memop & MO_BSWAP) != MO_LE) {
 | |
|         val = bswap32(val);
 | |
|     }
 | |
|     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | |
|     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
 | |
| }
 | |
| 
 | |
| static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
 | |
|                        MemOpIdx oi, uintptr_t ra)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Swap to little endian for simplicity, then store by bytes. */
 | |
|     if ((l.memop & MO_BSWAP) != MO_LE) {
 | |
|         val = bswap64(val);
 | |
|     }
 | |
|     val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | |
|     (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
 | |
| }
 | |
| 
 | |
| static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
 | |
|                         MemOpIdx oi, uintptr_t ra)
 | |
| {
 | |
|     MMULookupLocals l;
 | |
|     bool crosspage;
 | |
|     uint64_t a, b;
 | |
|     int first;
 | |
| 
 | |
|     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | |
|     crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | |
|     if (likely(!crosspage)) {
 | |
|         if (unlikely(l.page[0].flags & TLB_MMIO)) {
 | |
|             if ((l.memop & MO_BSWAP) != MO_LE) {
 | |
|                 val = bswap128(val);
 | |
|             }
 | |
|             do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
 | |
|         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
 | |
|             /* nothing */
 | |
|         } else {
 | |
|             /* Swap to host endian if necessary, then store. */
 | |
|             if (l.memop & MO_BSWAP) {
 | |
|                 val = bswap128(val);
 | |
|             }
 | |
|             store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     first = l.page[0].size;
 | |
|     if (first == 8) {
 | |
|         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
 | |
| 
 | |
|         if (l.memop & MO_BSWAP) {
 | |
|             val = bswap128(val);
 | |
|         }
 | |
|         if (HOST_BIG_ENDIAN) {
 | |
|             b = int128_getlo(val), a = int128_gethi(val);
 | |
|         } else {
 | |
|             a = int128_getlo(val), b = int128_gethi(val);
 | |
|         }
 | |
|         do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
 | |
|         do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if ((l.memop & MO_BSWAP) != MO_LE) {
 | |
|         val = bswap128(val);
 | |
|     }
 | |
|     if (first < 8) {
 | |
|         do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
 | |
|         val = int128_urshift(val, first * 8);
 | |
|         do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
 | |
|     } else {
 | |
|         b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | |
|         do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #include "ldst_common.c.inc"
 | |
| 
 | |
| /*
 | |
|  * First set of functions passes in OI and RETADDR.
 | |
|  * This makes them callable from other helpers.
 | |
|  */
 | |
| 
 | |
| #define ATOMIC_NAME(X) \
 | |
|     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
 | |
| 
 | |
| #define ATOMIC_MMU_CLEANUP
 | |
| 
 | |
| #include "atomic_common.c.inc"
 | |
| 
 | |
| #define DATA_SIZE 1
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #define DATA_SIZE 2
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #define DATA_SIZE 4
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #ifdef CONFIG_ATOMIC64
 | |
| #define DATA_SIZE 8
 | |
| #include "atomic_template.h"
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
 | |
| #define DATA_SIZE 16
 | |
| #include "atomic_template.h"
 | |
| #endif
 | |
| 
 | |
| /* Code access functions.  */
 | |
| 
 | |
| uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
 | |
|     return do_ld1_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
 | |
|     return do_ld2_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
 | |
|     return do_ld4_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
 | |
|     return do_ld8_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
 | |
| }
 | |
| 
 | |
| uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
 | |
|                          MemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | |
| }
 | |
| 
 | |
| uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
 | |
|                           MemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
 | |
|                           MemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
 | |
|                           MemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | |
| }
 |