 51f4d916b5
			
		
	
	
		51f4d916b5
		
	
	
	
	
		
			
			Use cpuinfo_init() during init_accel(), and the variable cpuinfo during test_buffer_is_zero_next_accel(). Adjust the logic that cycles through the set of accelerators for testing. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			291 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Simple C functions to supplement the C library
 | |
|  *
 | |
|  * Copyright (c) 2006 Fabrice Bellard
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/cutils.h"
 | |
| #include "qemu/bswap.h"
 | |
| #include "host/cpuinfo.h"
 | |
| 
 | |
| static bool
 | |
| buffer_zero_int(const void *buf, size_t len)
 | |
| {
 | |
|     if (unlikely(len < 8)) {
 | |
|         /* For a very small buffer, simply accumulate all the bytes.  */
 | |
|         const unsigned char *p = buf;
 | |
|         const unsigned char *e = buf + len;
 | |
|         unsigned char t = 0;
 | |
| 
 | |
|         do {
 | |
|             t |= *p++;
 | |
|         } while (p < e);
 | |
| 
 | |
|         return t == 0;
 | |
|     } else {
 | |
|         /* Otherwise, use the unaligned memory access functions to
 | |
|            handle the beginning and end of the buffer, with a couple
 | |
|            of loops handling the middle aligned section.  */
 | |
|         uint64_t t = ldq_he_p(buf);
 | |
|         const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
 | |
|         const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
 | |
| 
 | |
|         for (; p + 8 <= e; p += 8) {
 | |
|             __builtin_prefetch(p + 8);
 | |
|             if (t) {
 | |
|                 return false;
 | |
|             }
 | |
|             t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
 | |
|         }
 | |
|         while (p < e) {
 | |
|             t |= *p++;
 | |
|         }
 | |
|         t |= ldq_he_p(buf + len - 8);
 | |
| 
 | |
|         return t == 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
 | |
| #include <immintrin.h>
 | |
| 
 | |
| /* Note that each of these vectorized functions require len >= 64.  */
 | |
| 
 | |
| static bool __attribute__((target("sse2")))
 | |
| buffer_zero_sse2(const void *buf, size_t len)
 | |
| {
 | |
|     __m128i t = _mm_loadu_si128(buf);
 | |
|     __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
 | |
|     __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
 | |
|     __m128i zero = _mm_setzero_si128();
 | |
| 
 | |
|     /* Loop over 16-byte aligned blocks of 64.  */
 | |
|     while (likely(p <= e)) {
 | |
|         __builtin_prefetch(p);
 | |
|         t = _mm_cmpeq_epi8(t, zero);
 | |
|         if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
 | |
|             return false;
 | |
|         }
 | |
|         t = p[-4] | p[-3] | p[-2] | p[-1];
 | |
|         p += 4;
 | |
|     }
 | |
| 
 | |
|     /* Finish the aligned tail.  */
 | |
|     t |= e[-3];
 | |
|     t |= e[-2];
 | |
|     t |= e[-1];
 | |
| 
 | |
|     /* Finish the unaligned tail.  */
 | |
|     t |= _mm_loadu_si128(buf + len - 16);
 | |
| 
 | |
|     return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_AVX2_OPT
 | |
| static bool __attribute__((target("sse4")))
 | |
| buffer_zero_sse4(const void *buf, size_t len)
 | |
| {
 | |
|     __m128i t = _mm_loadu_si128(buf);
 | |
|     __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
 | |
|     __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
 | |
| 
 | |
|     /* Loop over 16-byte aligned blocks of 64.  */
 | |
|     while (likely(p <= e)) {
 | |
|         __builtin_prefetch(p);
 | |
|         if (unlikely(!_mm_testz_si128(t, t))) {
 | |
|             return false;
 | |
|         }
 | |
|         t = p[-4] | p[-3] | p[-2] | p[-1];
 | |
|         p += 4;
 | |
|     }
 | |
| 
 | |
|     /* Finish the aligned tail.  */
 | |
|     t |= e[-3];
 | |
|     t |= e[-2];
 | |
|     t |= e[-1];
 | |
| 
 | |
|     /* Finish the unaligned tail.  */
 | |
|     t |= _mm_loadu_si128(buf + len - 16);
 | |
| 
 | |
|     return _mm_testz_si128(t, t);
 | |
| }
 | |
| 
 | |
| static bool __attribute__((target("avx2")))
 | |
| buffer_zero_avx2(const void *buf, size_t len)
 | |
| {
 | |
|     /* Begin with an unaligned head of 32 bytes.  */
 | |
|     __m256i t = _mm256_loadu_si256(buf);
 | |
|     __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
 | |
|     __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
 | |
| 
 | |
|     /* Loop over 32-byte aligned blocks of 128.  */
 | |
|     while (p <= e) {
 | |
|         __builtin_prefetch(p);
 | |
|         if (unlikely(!_mm256_testz_si256(t, t))) {
 | |
|             return false;
 | |
|         }
 | |
|         t = p[-4] | p[-3] | p[-2] | p[-1];
 | |
|         p += 4;
 | |
|     } ;
 | |
| 
 | |
|     /* Finish the last block of 128 unaligned.  */
 | |
|     t |= _mm256_loadu_si256(buf + len - 4 * 32);
 | |
|     t |= _mm256_loadu_si256(buf + len - 3 * 32);
 | |
|     t |= _mm256_loadu_si256(buf + len - 2 * 32);
 | |
|     t |= _mm256_loadu_si256(buf + len - 1 * 32);
 | |
| 
 | |
|     return _mm256_testz_si256(t, t);
 | |
| }
 | |
| #endif /* CONFIG_AVX2_OPT */
 | |
| 
 | |
| #ifdef CONFIG_AVX512F_OPT
 | |
| static bool __attribute__((target("avx512f")))
 | |
| buffer_zero_avx512(const void *buf, size_t len)
 | |
| {
 | |
|     /* Begin with an unaligned head of 64 bytes.  */
 | |
|     __m512i t = _mm512_loadu_si512(buf);
 | |
|     __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
 | |
|     __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
 | |
| 
 | |
|     /* Loop over 64-byte aligned blocks of 256.  */
 | |
|     while (p <= e) {
 | |
|         __builtin_prefetch(p);
 | |
|         if (unlikely(_mm512_test_epi64_mask(t, t))) {
 | |
|             return false;
 | |
|         }
 | |
|         t = p[-4] | p[-3] | p[-2] | p[-1];
 | |
|         p += 4;
 | |
|     }
 | |
| 
 | |
|     t |= _mm512_loadu_si512(buf + len - 4 * 64);
 | |
|     t |= _mm512_loadu_si512(buf + len - 3 * 64);
 | |
|     t |= _mm512_loadu_si512(buf + len - 2 * 64);
 | |
|     t |= _mm512_loadu_si512(buf + len - 1 * 64);
 | |
| 
 | |
|     return !_mm512_test_epi64_mask(t, t);
 | |
| 
 | |
| }
 | |
| #endif /* CONFIG_AVX512F_OPT */
 | |
| 
 | |
| /*
 | |
|  * Make sure that these variables are appropriately initialized when
 | |
|  * SSE2 is enabled on the compiler command-line, but the compiler is
 | |
|  * too old to support CONFIG_AVX2_OPT.
 | |
|  */
 | |
| #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
 | |
| # define INIT_USED     0
 | |
| # define INIT_LENGTH   0
 | |
| # define INIT_ACCEL    buffer_zero_int
 | |
| #else
 | |
| # ifndef __SSE2__
 | |
| #  error "ISA selection confusion"
 | |
| # endif
 | |
| # define INIT_USED     CPUINFO_SSE2
 | |
| # define INIT_LENGTH   64
 | |
| # define INIT_ACCEL    buffer_zero_sse2
 | |
| #endif
 | |
| 
 | |
| static unsigned used_accel = INIT_USED;
 | |
| static unsigned length_to_accel = INIT_LENGTH;
 | |
| static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
 | |
| 
 | |
| static unsigned __attribute__((noinline))
 | |
| select_accel_cpuinfo(unsigned info)
 | |
| {
 | |
|     /* Array is sorted in order of algorithm preference. */
 | |
|     static const struct {
 | |
|         unsigned bit;
 | |
|         unsigned len;
 | |
|         bool (*fn)(const void *, size_t);
 | |
|     } all[] = {
 | |
| #ifdef CONFIG_AVX512F_OPT
 | |
|         { CPUINFO_AVX512F, 256, buffer_zero_avx512 },
 | |
| #endif
 | |
| #ifdef CONFIG_AVX2_OPT
 | |
|         { CPUINFO_AVX2,    128, buffer_zero_avx2 },
 | |
|         { CPUINFO_SSE4,     64, buffer_zero_sse4 },
 | |
| #endif
 | |
|         { CPUINFO_SSE2,     64, buffer_zero_sse2 },
 | |
|         { CPUINFO_ALWAYS,    0, buffer_zero_int },
 | |
|     };
 | |
| 
 | |
|     for (unsigned i = 0; i < ARRAY_SIZE(all); ++i) {
 | |
|         if (info & all[i].bit) {
 | |
|             length_to_accel = all[i].len;
 | |
|             buffer_accel = all[i].fn;
 | |
|             return all[i].bit;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
 | |
| static void __attribute__((constructor)) init_accel(void)
 | |
| {
 | |
|     used_accel = select_accel_cpuinfo(cpuinfo_init());
 | |
| }
 | |
| #endif /* CONFIG_AVX2_OPT */
 | |
| 
 | |
| bool test_buffer_is_zero_next_accel(void)
 | |
| {
 | |
|     /*
 | |
|      * Accumulate the accelerators that we've already tested, and
 | |
|      * remove them from the set to test this round.  We'll get back
 | |
|      * a zero from select_accel_cpuinfo when there are no more.
 | |
|      */
 | |
|     unsigned used = select_accel_cpuinfo(cpuinfo & ~used_accel);
 | |
|     used_accel |= used;
 | |
|     return used;
 | |
| }
 | |
| 
 | |
| static bool select_accel_fn(const void *buf, size_t len)
 | |
| {
 | |
|     if (likely(len >= length_to_accel)) {
 | |
|         return buffer_accel(buf, len);
 | |
|     }
 | |
|     return buffer_zero_int(buf, len);
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define select_accel_fn  buffer_zero_int
 | |
| bool test_buffer_is_zero_next_accel(void)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Checks if a buffer is all zeroes
 | |
|  */
 | |
| bool buffer_is_zero(const void *buf, size_t len)
 | |
| {
 | |
|     if (unlikely(len == 0)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     /* Fetch the beginning of the buffer while we select the accelerator.  */
 | |
|     __builtin_prefetch(buf);
 | |
| 
 | |
|     /* Use an optimized zero check if possible.  Note that this also
 | |
|        includes a check for an unrolled loop over 64-bit integers.  */
 | |
|     return select_accel_fn(buf, len);
 | |
| }
 |