 763719d253
			
		
	
	
		763719d253
		
	
	
	
	
		
			
			use ranges_overlap() instead of open-coding the overlap check to improve the readability of the code. Signed-off-by: Yao Xingtao <yaoxt.fnst@fujitsu.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org> Reviewed-by: Alexander Bulekov <alxndr@bu.edu> Message-ID: <20240722040742.11513-8-yaoxt.fnst@fujitsu.com> Signed-off-by: Thomas Huth <thuth@redhat.com>
		
			
				
	
	
		
			973 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			973 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Generic Virtual-Device Fuzzing Target
 | |
|  *
 | |
|  * Copyright Red Hat Inc., 2020
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Alexander Bulekov   <alxndr@bu.edu>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/range.h"
 | |
| 
 | |
| #include <wordexp.h>
 | |
| 
 | |
| #include "hw/core/cpu.h"
 | |
| #include "tests/qtest/libqtest.h"
 | |
| #include "tests/qtest/libqos/pci-pc.h"
 | |
| #include "fuzz.h"
 | |
| #include "string.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/ramblock.h"
 | |
| #include "hw/qdev-core.h"
 | |
| #include "hw/pci/pci.h"
 | |
| #include "hw/pci/pci_device.h"
 | |
| #include "hw/boards.h"
 | |
| #include "generic_fuzz_configs.h"
 | |
| #include "hw/mem/sparse-mem.h"
 | |
| 
 | |
| static void pci_enum(gpointer pcidev, gpointer bus);
 | |
| 
 | |
| /*
 | |
|  * SEPARATOR is used to separate "operations" in the fuzz input
 | |
|  */
 | |
| #define SEPARATOR "FUZZ"
 | |
| 
 | |
| enum cmds {
 | |
|     OP_IN,
 | |
|     OP_OUT,
 | |
|     OP_READ,
 | |
|     OP_WRITE,
 | |
|     OP_PCI_READ,
 | |
|     OP_PCI_WRITE,
 | |
|     OP_DISABLE_PCI,
 | |
|     OP_ADD_DMA_PATTERN,
 | |
|     OP_CLEAR_DMA_PATTERNS,
 | |
|     OP_CLOCK_STEP,
 | |
| };
 | |
| 
 | |
| #define USEC_IN_SEC 1000000000
 | |
| 
 | |
| #define MAX_DMA_FILL_SIZE 0x10000
 | |
| #define MAX_TOTAL_DMA_SIZE 0x10000000
 | |
| 
 | |
| #define PCI_HOST_BRIDGE_CFG 0xcf8
 | |
| #define PCI_HOST_BRIDGE_DATA 0xcfc
 | |
| 
 | |
| typedef struct {
 | |
|     ram_addr_t addr;
 | |
|     ram_addr_t size; /* The number of bytes until the end of the I/O region */
 | |
| } address_range;
 | |
| 
 | |
| static bool qtest_log_enabled;
 | |
| size_t dma_bytes_written;
 | |
| 
 | |
| MemoryRegion *sparse_mem_mr;
 | |
| 
 | |
| /*
 | |
|  * A pattern used to populate a DMA region or perform a memwrite. This is
 | |
|  * useful for e.g. populating tables of unique addresses.
 | |
|  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
 | |
|  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
 | |
|  */
 | |
| typedef struct {
 | |
|     uint8_t index;      /* Index of a byte to increment by stride */
 | |
|     uint8_t stride;     /* Increment each index'th byte by this amount */
 | |
|     size_t len;
 | |
|     const uint8_t *data;
 | |
| } pattern;
 | |
| 
 | |
| /* Avoid filling the same DMA region between MMIO/PIO commands ? */
 | |
| static bool avoid_double_fetches;
 | |
| 
 | |
| static QTestState *qts_global; /* Need a global for the DMA callback */
 | |
| 
 | |
| /*
 | |
|  * List of memory regions that are children of QOM objects specified by the
 | |
|  * user for fuzzing.
 | |
|  */
 | |
| static GHashTable *fuzzable_memoryregions;
 | |
| static GPtrArray *fuzzable_pci_devices;
 | |
| 
 | |
| struct get_io_cb_info {
 | |
|     int index;
 | |
|     int found;
 | |
|     address_range result;
 | |
| };
 | |
| 
 | |
| static bool get_io_address_cb(Int128 start, Int128 size,
 | |
|                               const MemoryRegion *mr,
 | |
|                               hwaddr offset_in_region,
 | |
|                               void *opaque)
 | |
| {
 | |
|     struct get_io_cb_info *info = opaque;
 | |
|     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
 | |
|         if (info->index == 0) {
 | |
|             info->result.addr = (ram_addr_t)start;
 | |
|             info->result.size = (ram_addr_t)size;
 | |
|             info->found = 1;
 | |
|             return true;
 | |
|         }
 | |
|         info->index--;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * List of dma regions populated since the last fuzzing command. Used to ensure
 | |
|  * that we only write to each DMA address once, to avoid race conditions when
 | |
|  * building reproducers.
 | |
|  */
 | |
| static GArray *dma_regions;
 | |
| 
 | |
| static GArray *dma_patterns;
 | |
| static int dma_pattern_index;
 | |
| static bool pci_disabled;
 | |
| 
 | |
| /*
 | |
|  * Allocate a block of memory and populate it with a pattern.
 | |
|  */
 | |
| static void *pattern_alloc(pattern p, size_t len)
 | |
| {
 | |
|     int i;
 | |
|     uint8_t *buf = g_malloc(len);
 | |
|     uint8_t sum = 0;
 | |
| 
 | |
|     for (i = 0; i < len; ++i) {
 | |
|         buf[i] = p.data[i % p.len];
 | |
|         if ((i % p.len) == p.index) {
 | |
|             buf[i] += sum;
 | |
|             sum += p.stride;
 | |
|         }
 | |
|     }
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| static int fuzz_memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
 | |
| {
 | |
|     unsigned access_size_max = mr->ops->valid.max_access_size;
 | |
| 
 | |
|     /*
 | |
|      * Regions are assumed to support 1-4 byte accesses unless
 | |
|      * otherwise specified.
 | |
|      */
 | |
|     if (access_size_max == 0) {
 | |
|         access_size_max = 4;
 | |
|     }
 | |
| 
 | |
|     /* Bound the maximum access by the alignment of the address.  */
 | |
|     if (!mr->ops->impl.unaligned) {
 | |
|         unsigned align_size_max = addr & -addr;
 | |
|         if (align_size_max != 0 && align_size_max < access_size_max) {
 | |
|             access_size_max = align_size_max;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Don't attempt accesses larger than the maximum.  */
 | |
|     if (l > access_size_max) {
 | |
|         l = access_size_max;
 | |
|     }
 | |
|     l = pow2floor(l);
 | |
| 
 | |
|     return l;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call-back for functions that perform DMA reads from guest memory. Confirm
 | |
|  * that the region has not already been populated since the last loop in
 | |
|  * generic_fuzz(), avoiding potential race-conditions, which we don't have
 | |
|  * a good way for reproducing right now.
 | |
|  */
 | |
| void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
 | |
| {
 | |
|     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
 | |
|     if (!qts_global) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Return immediately if:
 | |
|      * - We have no DMA patterns defined
 | |
|      * - The length of the DMA read request is zero
 | |
|      * - The DMA read is hitting an MR other than the machine's main RAM
 | |
|      * - The DMA request hits past the bounds of our RAM
 | |
|      */
 | |
|     if (dma_patterns->len == 0
 | |
|         || len == 0
 | |
|         || dma_bytes_written + len > MAX_TOTAL_DMA_SIZE
 | |
|         || (mr != current_machine->ram && mr != sparse_mem_mr)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If we overlap with any existing dma_regions, split the range and only
 | |
|      * populate the non-overlapping parts.
 | |
|      */
 | |
|     address_range region;
 | |
|     bool double_fetch = false;
 | |
|     for (int i = 0;
 | |
|          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
 | |
|          ++i) {
 | |
|         region = g_array_index(dma_regions, address_range, i);
 | |
|         if (ranges_overlap(addr, len, region.addr, region.size)) {
 | |
|             double_fetch = true;
 | |
|             if (addr < region.addr
 | |
|                 && avoid_double_fetches) {
 | |
|                 fuzz_dma_read_cb(addr, region.addr - addr, mr);
 | |
|             }
 | |
|             if (addr + len > region.addr + region.size
 | |
|                 && avoid_double_fetches) {
 | |
|                 fuzz_dma_read_cb(region.addr + region.size,
 | |
|                         addr + len - (region.addr + region.size), mr);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Cap the length of the DMA access to something reasonable */
 | |
|     len = MIN(len, MAX_DMA_FILL_SIZE);
 | |
| 
 | |
|     address_range ar = {addr, len};
 | |
|     g_array_append_val(dma_regions, ar);
 | |
|     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
 | |
|     void *buf_base = pattern_alloc(p, ar.size);
 | |
|     void *buf = buf_base;
 | |
|     hwaddr l, addr1;
 | |
|     MemoryRegion *mr1;
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr1 = address_space_translate(first_cpu->as,
 | |
|                                       addr, &addr1, &l, true,
 | |
|                                       MEMTXATTRS_UNSPECIFIED);
 | |
| 
 | |
|         /*
 | |
|          *  If mr1 isn't RAM, address_space_translate doesn't update l. Use
 | |
|          *  fuzz_memory_access_size to identify the number of bytes that it
 | |
|          *  is safe to write without accidentally writing to another
 | |
|          *  MemoryRegion.
 | |
|          */
 | |
|         if (!memory_region_is_ram(mr1)) {
 | |
|             l = fuzz_memory_access_size(mr1, l, addr1);
 | |
|         }
 | |
|         if (memory_region_is_ram(mr1) ||
 | |
|             memory_region_is_romd(mr1) ||
 | |
|             mr1 == sparse_mem_mr) {
 | |
|             /* ROM/RAM case */
 | |
|             if (qtest_log_enabled) {
 | |
|                 /*
 | |
|                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
 | |
|                 * that will be written by qtest.c with a DMA tag, so we can reorder
 | |
|                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
 | |
|                 * command.
 | |
|                 */
 | |
|                 fprintf(stderr, "[DMA] ");
 | |
|                 if (double_fetch) {
 | |
|                     fprintf(stderr, "[DOUBLE-FETCH] ");
 | |
|                 }
 | |
|                 fflush(stderr);
 | |
|             }
 | |
|             qtest_memwrite(qts_global, addr, buf, l);
 | |
|             dma_bytes_written += l;
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
| 
 | |
|     }
 | |
|     g_free(buf_base);
 | |
| 
 | |
|     /* Increment the index of the pattern for the next DMA access */
 | |
|     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
 | |
|  * a physical address. To do this, we iterate over all of the matched
 | |
|  * MemoryRegions. Check whether each region exists within the particular io
 | |
|  * space. Return the absolute address of the offset within the index'th region
 | |
|  * that is a subregion of the io_space and the distance until the end of the
 | |
|  * memory region.
 | |
|  */
 | |
| static bool get_io_address(address_range *result, AddressSpace *as,
 | |
|                             uint8_t index,
 | |
|                             uint32_t offset) {
 | |
|     FlatView *view;
 | |
|     view = as->current_map;
 | |
|     g_assert(view);
 | |
|     struct get_io_cb_info cb_info = {};
 | |
| 
 | |
|     cb_info.index = index;
 | |
| 
 | |
|     /*
 | |
|      * Loop around the FlatView until we match "index" number of
 | |
|      * fuzzable_memoryregions, or until we know that there are no matching
 | |
|      * memory_regions.
 | |
|      */
 | |
|     do {
 | |
|         flatview_for_each_range(view, get_io_address_cb , &cb_info);
 | |
|     } while (cb_info.index != index && !cb_info.found);
 | |
| 
 | |
|     *result = cb_info.result;
 | |
|     if (result->size) {
 | |
|         offset = offset % result->size;
 | |
|         result->addr += offset;
 | |
|         result->size -= offset;
 | |
|     }
 | |
|     return cb_info.found;
 | |
| }
 | |
| 
 | |
| static bool get_pio_address(address_range *result,
 | |
|                             uint8_t index, uint16_t offset)
 | |
| {
 | |
|     /*
 | |
|      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
 | |
|      * can contain an addr that extends past the PIO space. When we pass this
 | |
|      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
 | |
|      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
 | |
|      * that the address here is within the PIO space limits.
 | |
|      */
 | |
|     bool found = get_io_address(result, &address_space_io, index, offset);
 | |
|     return result->addr <= 0xFFFF ? found : false;
 | |
| }
 | |
| 
 | |
| static bool get_mmio_address(address_range *result,
 | |
|                              uint8_t index, uint32_t offset)
 | |
| {
 | |
|     return get_io_address(result, &address_space_memory, index, offset);
 | |
| }
 | |
| 
 | |
| static void op_in(QTestState *s, const unsigned char * data, size_t len)
 | |
| {
 | |
|     enum Sizes {Byte, Word, Long, end_sizes};
 | |
|     struct {
 | |
|         uint8_t size;
 | |
|         uint8_t base;
 | |
|         uint16_t offset;
 | |
|     } a;
 | |
|     address_range abs;
 | |
| 
 | |
|     if (len < sizeof(a)) {
 | |
|         return;
 | |
|     }
 | |
|     memcpy(&a, data, sizeof(a));
 | |
|     if (get_pio_address(&abs, a.base, a.offset) == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (a.size %= end_sizes) {
 | |
|     case Byte:
 | |
|         qtest_inb(s, abs.addr);
 | |
|         break;
 | |
|     case Word:
 | |
|         if (abs.size >= 2) {
 | |
|             qtest_inw(s, abs.addr);
 | |
|         }
 | |
|         break;
 | |
|     case Long:
 | |
|         if (abs.size >= 4) {
 | |
|             qtest_inl(s, abs.addr);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void op_out(QTestState *s, const unsigned char * data, size_t len)
 | |
| {
 | |
|     enum Sizes {Byte, Word, Long, end_sizes};
 | |
|     struct {
 | |
|         uint8_t size;
 | |
|         uint8_t base;
 | |
|         uint16_t offset;
 | |
|         uint32_t value;
 | |
|     } a;
 | |
|     address_range abs;
 | |
| 
 | |
|     if (len < sizeof(a)) {
 | |
|         return;
 | |
|     }
 | |
|     memcpy(&a, data, sizeof(a));
 | |
| 
 | |
|     if (get_pio_address(&abs, a.base, a.offset) == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (a.size %= end_sizes) {
 | |
|     case Byte:
 | |
|         qtest_outb(s, abs.addr, a.value & 0xFF);
 | |
|         break;
 | |
|     case Word:
 | |
|         if (abs.size >= 2) {
 | |
|             qtest_outw(s, abs.addr, a.value & 0xFFFF);
 | |
|         }
 | |
|         break;
 | |
|     case Long:
 | |
|         if (abs.size >= 4) {
 | |
|             qtest_outl(s, abs.addr, a.value);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void op_read(QTestState *s, const unsigned char * data, size_t len)
 | |
| {
 | |
|     enum Sizes {Byte, Word, Long, Quad, end_sizes};
 | |
|     struct {
 | |
|         uint8_t size;
 | |
|         uint8_t base;
 | |
|         uint32_t offset;
 | |
|     } a;
 | |
|     address_range abs;
 | |
| 
 | |
|     if (len < sizeof(a)) {
 | |
|         return;
 | |
|     }
 | |
|     memcpy(&a, data, sizeof(a));
 | |
| 
 | |
|     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (a.size %= end_sizes) {
 | |
|     case Byte:
 | |
|         qtest_readb(s, abs.addr);
 | |
|         break;
 | |
|     case Word:
 | |
|         if (abs.size >= 2) {
 | |
|             qtest_readw(s, abs.addr);
 | |
|         }
 | |
|         break;
 | |
|     case Long:
 | |
|         if (abs.size >= 4) {
 | |
|             qtest_readl(s, abs.addr);
 | |
|         }
 | |
|         break;
 | |
|     case Quad:
 | |
|         if (abs.size >= 8) {
 | |
|             qtest_readq(s, abs.addr);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void op_write(QTestState *s, const unsigned char * data, size_t len)
 | |
| {
 | |
|     enum Sizes {Byte, Word, Long, Quad, end_sizes};
 | |
|     struct {
 | |
|         uint8_t size;
 | |
|         uint8_t base;
 | |
|         uint32_t offset;
 | |
|         uint64_t value;
 | |
|     } a;
 | |
|     address_range abs;
 | |
| 
 | |
|     if (len < sizeof(a)) {
 | |
|         return;
 | |
|     }
 | |
|     memcpy(&a, data, sizeof(a));
 | |
| 
 | |
|     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (a.size %= end_sizes) {
 | |
|     case Byte:
 | |
|             qtest_writeb(s, abs.addr, a.value & 0xFF);
 | |
|         break;
 | |
|     case Word:
 | |
|         if (abs.size >= 2) {
 | |
|             qtest_writew(s, abs.addr, a.value & 0xFFFF);
 | |
|         }
 | |
|         break;
 | |
|     case Long:
 | |
|         if (abs.size >= 4) {
 | |
|             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
 | |
|         }
 | |
|         break;
 | |
|     case Quad:
 | |
|         if (abs.size >= 8) {
 | |
|             qtest_writeq(s, abs.addr, a.value);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
 | |
| {
 | |
|     enum Sizes {Byte, Word, Long, end_sizes};
 | |
|     struct {
 | |
|         uint8_t size;
 | |
|         uint8_t base;
 | |
|         uint8_t offset;
 | |
|     } a;
 | |
|     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
 | |
|         return;
 | |
|     }
 | |
|     memcpy(&a, data, sizeof(a));
 | |
|     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
 | |
|                                   a.base % fuzzable_pci_devices->len);
 | |
|     int devfn = dev->devfn;
 | |
|     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
 | |
|     switch (a.size %= end_sizes) {
 | |
|     case Byte:
 | |
|         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
 | |
|         break;
 | |
|     case Word:
 | |
|         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
 | |
|         break;
 | |
|     case Long:
 | |
|         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
 | |
| {
 | |
|     enum Sizes {Byte, Word, Long, end_sizes};
 | |
|     struct {
 | |
|         uint8_t size;
 | |
|         uint8_t base;
 | |
|         uint8_t offset;
 | |
|         uint32_t value;
 | |
|     } a;
 | |
|     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
 | |
|         return;
 | |
|     }
 | |
|     memcpy(&a, data, sizeof(a));
 | |
|     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
 | |
|                                   a.base % fuzzable_pci_devices->len);
 | |
|     int devfn = dev->devfn;
 | |
|     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
 | |
|     switch (a.size %= end_sizes) {
 | |
|     case Byte:
 | |
|         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
 | |
|         break;
 | |
|     case Word:
 | |
|         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
 | |
|         break;
 | |
|     case Long:
 | |
|         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void op_add_dma_pattern(QTestState *s,
 | |
|                                const unsigned char *data, size_t len)
 | |
| {
 | |
|     struct {
 | |
|         /*
 | |
|          * index and stride can be used to increment the index-th byte of the
 | |
|          * pattern by the value stride, for each loop of the pattern.
 | |
|          */
 | |
|         uint8_t index;
 | |
|         uint8_t stride;
 | |
|     } a;
 | |
| 
 | |
|     if (len < sizeof(a) + 1) {
 | |
|         return;
 | |
|     }
 | |
|     memcpy(&a, data, sizeof(a));
 | |
|     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
 | |
|     p.index = a.index % p.len;
 | |
|     g_array_append_val(dma_patterns, p);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static void op_clear_dma_patterns(QTestState *s,
 | |
|                                   const unsigned char *data, size_t len)
 | |
| {
 | |
|     g_array_set_size(dma_patterns, 0);
 | |
|     dma_pattern_index = 0;
 | |
| }
 | |
| 
 | |
| static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
 | |
| {
 | |
|     qtest_clock_step_next(s);
 | |
| }
 | |
| 
 | |
| static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
 | |
| {
 | |
|     pci_disabled = true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
 | |
|  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
 | |
|  * specify the boundaries between commands. SEPARATOR is used to separate
 | |
|  * "operations" in the fuzz input. Why use a separator, instead of just using
 | |
|  * the operations' length to identify operation boundaries?
 | |
|  *   1. This is a simple way to support variable-length operations
 | |
|  *   2. This adds "stability" to the input.
 | |
|  *      For example take the input "AbBcgDefg", where there is no separator and
 | |
|  *      Opcodes are capitalized.
 | |
|  *      Simply, by removing the first byte, we end up with a very different
 | |
|  *      sequence:
 | |
|  *      BbcGdefg...
 | |
|  *      By adding a separator, we avoid this problem:
 | |
|  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
 | |
|  *      Since B uses two additional bytes as operands, the first "B" will be
 | |
|  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
 | |
|  *      bytes are likely to be pruned, eventually.
 | |
|  *
 | |
|  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
 | |
|  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
 | |
|  *  -dict), though this should not be necessary.
 | |
|  *
 | |
|  * As a result, the stream of bytes is converted into a sequence of commands.
 | |
|  * In a simplified example where SEPARATOR is 0xFF:
 | |
|  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
 | |
|  * becomes this sequence of commands:
 | |
|  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
 | |
|  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
 | |
|  * 01          -> op01 (-,0)    -> out (-,0)
 | |
|  * ...
 | |
|  *
 | |
|  * Note here that it is the job of the individual opcode functions to check
 | |
|  * that enough data was provided. I.e. in the last command out (,0), out needs
 | |
|  * to check that there is not enough data provided to select an address/value
 | |
|  * for the operation.
 | |
|  */
 | |
| static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
 | |
| {
 | |
|     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
 | |
|         [OP_IN]                 = op_in,
 | |
|         [OP_OUT]                = op_out,
 | |
|         [OP_READ]               = op_read,
 | |
|         [OP_WRITE]              = op_write,
 | |
|         [OP_PCI_READ]           = op_pci_read,
 | |
|         [OP_PCI_WRITE]          = op_pci_write,
 | |
|         [OP_DISABLE_PCI]        = op_disable_pci,
 | |
|         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
 | |
|         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
 | |
|         [OP_CLOCK_STEP]         = op_clock_step,
 | |
|     };
 | |
|     const unsigned char *cmd = Data;
 | |
|     const unsigned char *nextcmd;
 | |
|     size_t cmd_len;
 | |
|     uint8_t op;
 | |
| 
 | |
|     op_clear_dma_patterns(s, NULL, 0);
 | |
|     pci_disabled = false;
 | |
|     dma_bytes_written = 0;
 | |
| 
 | |
|     QPCIBus *pcibus = qpci_new_pc(s, NULL);
 | |
|     g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
 | |
|     qpci_free_pc(pcibus);
 | |
| 
 | |
|     while (cmd && Size) {
 | |
|         /* Get the length until the next command or end of input */
 | |
|         nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
 | |
|         cmd_len = nextcmd ? nextcmd - cmd : Size;
 | |
| 
 | |
|         if (cmd_len > 0) {
 | |
|             /* Interpret the first byte of the command as an opcode */
 | |
|             op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
 | |
|             ops[op](s, cmd + 1, cmd_len - 1);
 | |
| 
 | |
|             /* Run the main loop */
 | |
|             flush_events(s);
 | |
|         }
 | |
|         /* Advance to the next command */
 | |
|         cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
 | |
|         Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
 | |
|         g_array_set_size(dma_regions, 0);
 | |
|     }
 | |
|     fuzz_reset(s);
 | |
| }
 | |
| 
 | |
| static void usage(void)
 | |
| {
 | |
|     printf("Please specify the following environment variables:\n");
 | |
|     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
 | |
|     printf("QEMU_FUZZ_OBJECTS= "
 | |
|             "a space separated list of QOM type names for objects to fuzz\n");
 | |
|     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
 | |
|             "Try to avoid racy DMA double fetch bugs? %d by default\n",
 | |
|             avoid_double_fetches);
 | |
|     exit(0);
 | |
| }
 | |
| 
 | |
| static int locate_fuzz_memory_regions(Object *child, void *opaque)
 | |
| {
 | |
|     MemoryRegion *mr;
 | |
|     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
 | |
|         mr = MEMORY_REGION(child);
 | |
|         if ((memory_region_is_ram(mr) ||
 | |
|             memory_region_is_ram_device(mr) ||
 | |
|             memory_region_is_rom(mr)) == false) {
 | |
|             /*
 | |
|              * We don't want duplicate pointers to the same MemoryRegion, so
 | |
|              * try to remove copies of the pointer, before adding it.
 | |
|              */
 | |
|             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int locate_fuzz_objects(Object *child, void *opaque)
 | |
| {
 | |
|     GString *type_name;
 | |
|     GString *path_name;
 | |
|     char *pattern = opaque;
 | |
| 
 | |
|     type_name = g_string_new(object_get_typename(child));
 | |
|     g_string_ascii_down(type_name);
 | |
|     if (g_pattern_match_simple(pattern, type_name->str)) {
 | |
|         /* Find and save ptrs to any child MemoryRegions */
 | |
|         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
 | |
| 
 | |
|         /*
 | |
|          * We matched an object. If its a PCI device, store a pointer to it so
 | |
|          * we can map BARs and fuzz its config space.
 | |
|          */
 | |
|         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
 | |
|             /*
 | |
|              * Don't want duplicate pointers to the same PCIDevice, so remove
 | |
|              * copies of the pointer, before adding it.
 | |
|              */
 | |
|             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
 | |
|             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
 | |
|         }
 | |
|     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
 | |
|         path_name = g_string_new(object_get_canonical_path_component(child));
 | |
|         g_string_ascii_down(path_name);
 | |
|         if (g_pattern_match_simple(pattern, path_name->str)) {
 | |
|             MemoryRegion *mr;
 | |
|             mr = MEMORY_REGION(child);
 | |
|             if ((memory_region_is_ram(mr) ||
 | |
|                  memory_region_is_ram_device(mr) ||
 | |
|                  memory_region_is_rom(mr)) == false) {
 | |
|                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
 | |
|             }
 | |
|         }
 | |
|         g_string_free(path_name, true);
 | |
|     }
 | |
|     g_string_free(type_name, true);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void pci_enum(gpointer pcidev, gpointer bus)
 | |
| {
 | |
|     PCIDevice *dev = pcidev;
 | |
|     QPCIDevice *qdev;
 | |
|     int i;
 | |
| 
 | |
|     qdev = qpci_device_find(bus, dev->devfn);
 | |
|     g_assert(qdev != NULL);
 | |
|     for (i = 0; i < 6; i++) {
 | |
|         if (dev->io_regions[i].size) {
 | |
|             qpci_iomap(qdev, i, NULL);
 | |
|         }
 | |
|     }
 | |
|     qpci_device_enable(qdev);
 | |
|     g_free(qdev);
 | |
| }
 | |
| 
 | |
| static void generic_pre_fuzz(QTestState *s)
 | |
| {
 | |
|     GHashTableIter iter;
 | |
|     MemoryRegion *mr;
 | |
|     char **result;
 | |
|     GString *name_pattern;
 | |
| 
 | |
|     if (!getenv("QEMU_FUZZ_OBJECTS")) {
 | |
|         usage();
 | |
|     }
 | |
|     if (getenv("QTEST_LOG")) {
 | |
|         qtest_log_enabled = 1;
 | |
|     }
 | |
|     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
 | |
|         avoid_double_fetches = 1;
 | |
|     }
 | |
|     qts_global = s;
 | |
| 
 | |
|     /*
 | |
|      * Create a special device that we can use to back DMA buffers at very
 | |
|      * high memory addresses
 | |
|      */
 | |
|     sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
 | |
| 
 | |
|     dma_regions = g_array_new(false, false, sizeof(address_range));
 | |
|     dma_patterns = g_array_new(false, false, sizeof(pattern));
 | |
| 
 | |
|     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
 | |
|     fuzzable_pci_devices   = g_ptr_array_new();
 | |
| 
 | |
|     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
 | |
|     for (int i = 0; result[i] != NULL; i++) {
 | |
|         name_pattern = g_string_new(result[i]);
 | |
|         /*
 | |
|          * Make the pattern lowercase. We do the same for all the MemoryRegion
 | |
|          * and Type names so the configs are case-insensitive.
 | |
|          */
 | |
|         g_string_ascii_down(name_pattern);
 | |
|         printf("Matching objects by name %s\n", result[i]);
 | |
|         object_child_foreach_recursive(qdev_get_machine(),
 | |
|                                     locate_fuzz_objects,
 | |
|                                     name_pattern->str);
 | |
|         g_string_free(name_pattern, true);
 | |
|     }
 | |
|     g_strfreev(result);
 | |
|     printf("This process will try to fuzz the following MemoryRegions:\n");
 | |
| 
 | |
|     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
 | |
|     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
 | |
|         printf("  * %s (size 0x%" PRIx64 ")\n",
 | |
|                object_get_canonical_path_component(&(mr->parent_obj)),
 | |
|                memory_region_size(mr));
 | |
|     }
 | |
| 
 | |
|     if (!g_hash_table_size(fuzzable_memoryregions)) {
 | |
|         printf("No fuzzable memory regions found...\n");
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When libfuzzer gives us two inputs to combine, return a new input with the
 | |
|  * following structure:
 | |
|  *
 | |
|  * Input 1 (data1)
 | |
|  * SEPARATOR
 | |
|  * Clear out the DMA Patterns
 | |
|  * SEPARATOR
 | |
|  * Disable the pci_read/write instructions
 | |
|  * SEPARATOR
 | |
|  * Input 2 (data2)
 | |
|  *
 | |
|  * The idea is to collate the core behaviors of the two inputs.
 | |
|  * For example:
 | |
|  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
 | |
|  *          device functionality A
 | |
|  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
 | |
|  *          functionality B
 | |
|  *
 | |
|  * This function attempts to produce an input that:
 | |
|  * Output: maps a device's BARs, set up three DMA patterns, triggers
 | |
|  *          device functionality A, replaces the DMA patterns with a single
 | |
|  *          pattern, and triggers device functionality B.
 | |
|  */
 | |
| static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
 | |
|                                      uint8_t *data2, size_t size2, uint8_t *out,
 | |
|                                      size_t max_out_size, unsigned int seed)
 | |
| {
 | |
|     size_t copy_len = 0, size = 0;
 | |
| 
 | |
|     /* Check that we have enough space for data1 and at least part of data2 */
 | |
|     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Copy_Len in the first input */
 | |
|     copy_len = size1;
 | |
|     memcpy(out + size, data1, copy_len);
 | |
|     size += copy_len;
 | |
|     max_out_size -= copy_len;
 | |
| 
 | |
|     /* Append a separator */
 | |
|     copy_len = strlen(SEPARATOR);
 | |
|     memcpy(out + size, SEPARATOR, copy_len);
 | |
|     size += copy_len;
 | |
|     max_out_size -= copy_len;
 | |
| 
 | |
|     /* Clear out the DMA Patterns */
 | |
|     copy_len = 1;
 | |
|     if (copy_len) {
 | |
|         out[size] = OP_CLEAR_DMA_PATTERNS;
 | |
|     }
 | |
|     size += copy_len;
 | |
|     max_out_size -= copy_len;
 | |
| 
 | |
|     /* Append a separator */
 | |
|     copy_len = strlen(SEPARATOR);
 | |
|     memcpy(out + size, SEPARATOR, copy_len);
 | |
|     size += copy_len;
 | |
|     max_out_size -= copy_len;
 | |
| 
 | |
|     /* Disable PCI ops. Assume data1 took care of setting up PCI */
 | |
|     copy_len = 1;
 | |
|     if (copy_len) {
 | |
|         out[size] = OP_DISABLE_PCI;
 | |
|     }
 | |
|     size += copy_len;
 | |
|     max_out_size -= copy_len;
 | |
| 
 | |
|     /* Append a separator */
 | |
|     copy_len = strlen(SEPARATOR);
 | |
|     memcpy(out + size, SEPARATOR, copy_len);
 | |
|     size += copy_len;
 | |
|     max_out_size -= copy_len;
 | |
| 
 | |
|     /* Copy_Len over the second input */
 | |
|     copy_len = MIN(size2, max_out_size);
 | |
|     memcpy(out + size, data2, copy_len);
 | |
|     size += copy_len;
 | |
|     max_out_size -= copy_len;
 | |
| 
 | |
|     return  size;
 | |
| }
 | |
| 
 | |
| 
 | |
| static GString *generic_fuzz_cmdline(FuzzTarget *t)
 | |
| {
 | |
|     GString *cmd_line = g_string_new(TARGET_NAME);
 | |
|     if (!getenv("QEMU_FUZZ_ARGS")) {
 | |
|         usage();
 | |
|     }
 | |
|     g_string_append_printf(cmd_line, " -display none \
 | |
|                                       -machine accel=qtest, \
 | |
|                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
 | |
|     return cmd_line;
 | |
| }
 | |
| 
 | |
| static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
 | |
| {
 | |
|     gchar *args;
 | |
|     const generic_fuzz_config *config;
 | |
|     g_assert(t->opaque);
 | |
| 
 | |
|     config = t->opaque;
 | |
|     g_setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
 | |
|     if (config->argfunc) {
 | |
|         args = config->argfunc();
 | |
|         g_setenv("QEMU_FUZZ_ARGS", args, 1);
 | |
|         g_free(args);
 | |
|     } else {
 | |
|         g_assert_nonnull(config->args);
 | |
|         g_setenv("QEMU_FUZZ_ARGS", config->args, 1);
 | |
|     }
 | |
|     g_setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
 | |
|     return generic_fuzz_cmdline(t);
 | |
| }
 | |
| 
 | |
| static void register_generic_fuzz_targets(void)
 | |
| {
 | |
|     fuzz_add_target(&(FuzzTarget){
 | |
|             .name = "generic-fuzz",
 | |
|             .description = "Fuzz based on any qemu command-line args. ",
 | |
|             .get_init_cmdline = generic_fuzz_cmdline,
 | |
|             .pre_fuzz = generic_pre_fuzz,
 | |
|             .fuzz = generic_fuzz,
 | |
|             .crossover = generic_fuzz_crossover
 | |
|     });
 | |
| 
 | |
|     for (int i = 0; i < ARRAY_SIZE(predefined_configs); i++) {
 | |
|         const generic_fuzz_config *config = predefined_configs + i;
 | |
|         fuzz_add_target(&(FuzzTarget){
 | |
|                 .name = g_strconcat("generic-fuzz-", config->name, NULL),
 | |
|                 .description = "Predefined generic-fuzz config.",
 | |
|                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
 | |
|                 .pre_fuzz = generic_pre_fuzz,
 | |
|                 .fuzz = generic_fuzz,
 | |
|                 .crossover = generic_fuzz_crossover,
 | |
|                 .opaque = (void *)config
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| fuzz_target_init(register_generic_fuzz_targets);
 |