 183e4281a3
			
		
	
	
		183e4281a3
		
	
	
	
	
		
			
			A few targets don't emit RTC_CHANGE, we could restrict the event to the tagets that do emit it. Note: There is a lot more of events & commands that we could restrict to capable targets, with the cost of some additional complexity, but the benefit of added correctness and better introspection. Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <20190214152251.2073-19-armbru@redhat.com>
		
			
				
	
	
		
			1077 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1077 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU MC146818 RTC emulation
 | |
|  *
 | |
|  * Copyright (c) 2003-2004 Fabrice Bellard
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/cutils.h"
 | |
| #include "qemu/bcd.h"
 | |
| #include "hw/hw.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/replay.h"
 | |
| #include "hw/timer/mc146818rtc.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/qapi-commands-target.h"
 | |
| #include "qapi/qapi-events-target.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "exec/address-spaces.h"
 | |
| 
 | |
| #ifdef TARGET_I386
 | |
| #include "hw/i386/apic.h"
 | |
| #endif
 | |
| 
 | |
| //#define DEBUG_CMOS
 | |
| //#define DEBUG_COALESCED
 | |
| 
 | |
| #ifdef DEBUG_CMOS
 | |
| # define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
 | |
| #else
 | |
| # define CMOS_DPRINTF(format, ...)      do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_COALESCED
 | |
| # define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
 | |
| #else
 | |
| # define DPRINTF_C(format, ...)      do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define SEC_PER_MIN     60
 | |
| #define MIN_PER_HOUR    60
 | |
| #define SEC_PER_HOUR    3600
 | |
| #define HOUR_PER_DAY    24
 | |
| #define SEC_PER_DAY     86400
 | |
| 
 | |
| #define RTC_REINJECT_ON_ACK_COUNT 20
 | |
| #define RTC_CLOCK_RATE            32768
 | |
| #define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
 | |
| 
 | |
| #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
 | |
| 
 | |
| typedef struct RTCState {
 | |
|     ISADevice parent_obj;
 | |
| 
 | |
|     MemoryRegion io;
 | |
|     MemoryRegion coalesced_io;
 | |
|     uint8_t cmos_data[128];
 | |
|     uint8_t cmos_index;
 | |
|     int32_t base_year;
 | |
|     uint64_t base_rtc;
 | |
|     uint64_t last_update;
 | |
|     int64_t offset;
 | |
|     qemu_irq irq;
 | |
|     int it_shift;
 | |
|     /* periodic timer */
 | |
|     QEMUTimer *periodic_timer;
 | |
|     int64_t next_periodic_time;
 | |
|     /* update-ended timer */
 | |
|     QEMUTimer *update_timer;
 | |
|     uint64_t next_alarm_time;
 | |
|     uint16_t irq_reinject_on_ack_count;
 | |
|     uint32_t irq_coalesced;
 | |
|     uint32_t period;
 | |
|     QEMUTimer *coalesced_timer;
 | |
|     Notifier clock_reset_notifier;
 | |
|     LostTickPolicy lost_tick_policy;
 | |
|     Notifier suspend_notifier;
 | |
|     QLIST_ENTRY(RTCState) link;
 | |
| } RTCState;
 | |
| 
 | |
| static void rtc_set_time(RTCState *s);
 | |
| static void rtc_update_time(RTCState *s);
 | |
| static void rtc_set_cmos(RTCState *s, const struct tm *tm);
 | |
| static inline int rtc_from_bcd(RTCState *s, int a);
 | |
| static uint64_t get_next_alarm(RTCState *s);
 | |
| 
 | |
| static inline bool rtc_running(RTCState *s)
 | |
| {
 | |
|     return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 | |
|             (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
 | |
| }
 | |
| 
 | |
| static uint64_t get_guest_rtc_ns(RTCState *s)
 | |
| {
 | |
|     uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
 | |
| 
 | |
|     return s->base_rtc * NANOSECONDS_PER_SECOND +
 | |
|         guest_clock - s->last_update + s->offset;
 | |
| }
 | |
| 
 | |
| static void rtc_coalesced_timer_update(RTCState *s)
 | |
| {
 | |
|     if (s->irq_coalesced == 0) {
 | |
|         timer_del(s->coalesced_timer);
 | |
|     } else {
 | |
|         /* divide each RTC interval to 2 - 8 smaller intervals */
 | |
|         int c = MIN(s->irq_coalesced, 7) + 1;
 | |
|         int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
 | |
|             periodic_clock_to_ns(s->period / c);
 | |
|         timer_mod(s->coalesced_timer, next_clock);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static QLIST_HEAD(, RTCState) rtc_devices =
 | |
|     QLIST_HEAD_INITIALIZER(rtc_devices);
 | |
| 
 | |
| #ifdef TARGET_I386
 | |
| void qmp_rtc_reset_reinjection(Error **errp)
 | |
| {
 | |
|     RTCState *s;
 | |
| 
 | |
|     QLIST_FOREACH(s, &rtc_devices, link) {
 | |
|         s->irq_coalesced = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool rtc_policy_slew_deliver_irq(RTCState *s)
 | |
| {
 | |
|     apic_reset_irq_delivered();
 | |
|     qemu_irq_raise(s->irq);
 | |
|     return apic_get_irq_delivered();
 | |
| }
 | |
| 
 | |
| static void rtc_coalesced_timer(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     if (s->irq_coalesced != 0) {
 | |
|         s->cmos_data[RTC_REG_C] |= 0xc0;
 | |
|         DPRINTF_C("cmos: injecting from timer\n");
 | |
|         if (rtc_policy_slew_deliver_irq(s)) {
 | |
|             s->irq_coalesced--;
 | |
|             DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 | |
|                       s->irq_coalesced);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rtc_coalesced_timer_update(s);
 | |
| }
 | |
| #else
 | |
| static bool rtc_policy_slew_deliver_irq(RTCState *s)
 | |
| {
 | |
|     assert(0);
 | |
|     return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static uint32_t rtc_periodic_clock_ticks(RTCState *s)
 | |
| {
 | |
|     int period_code;
 | |
| 
 | |
|     if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
 | |
|         return 0;
 | |
|      }
 | |
| 
 | |
|     period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 | |
| 
 | |
|     return periodic_period_to_clock(period_code);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * handle periodic timer. @old_period indicates the periodic timer update
 | |
|  * is just due to period adjustment.
 | |
|  */
 | |
| static void
 | |
| periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
 | |
| {
 | |
|     uint32_t period;
 | |
|     int64_t cur_clock, next_irq_clock, lost_clock = 0;
 | |
| 
 | |
|     period = rtc_periodic_clock_ticks(s);
 | |
| 
 | |
|     if (period) {
 | |
|         /* compute 32 khz clock */
 | |
|         cur_clock =
 | |
|             muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
 | |
| 
 | |
|         /*
 | |
|         * if the periodic timer's update is due to period re-configuration,
 | |
|         * we should count the clock since last interrupt.
 | |
|         */
 | |
|         if (old_period) {
 | |
|             int64_t last_periodic_clock, next_periodic_clock;
 | |
| 
 | |
|             next_periodic_clock = muldiv64(s->next_periodic_time,
 | |
|                                     RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
 | |
|             last_periodic_clock = next_periodic_clock - old_period;
 | |
|             lost_clock = cur_clock - last_periodic_clock;
 | |
|             assert(lost_clock >= 0);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * s->irq_coalesced can change for two reasons:
 | |
|          *
 | |
|          * a) if one or more periodic timer interrupts have been lost,
 | |
|          *    lost_clock will be more that a period.
 | |
|          *
 | |
|          * b) when the period may be reconfigured, we expect the OS to
 | |
|          *    treat delayed tick as the new period.  So, when switching
 | |
|          *    from a shorter to a longer period, scale down the missing,
 | |
|          *    because the OS will treat past delayed ticks as longer
 | |
|          *    (leftovers are put back into lost_clock).  When switching
 | |
|          *    to a shorter period, scale up the missing ticks since the
 | |
|          *    OS handler will treat past delayed ticks as shorter.
 | |
|          */
 | |
|         if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 | |
|             uint32_t old_irq_coalesced = s->irq_coalesced;
 | |
| 
 | |
|             s->period = period;
 | |
|             lost_clock += old_irq_coalesced * old_period;
 | |
|             s->irq_coalesced = lost_clock / s->period;
 | |
|             lost_clock %= s->period;
 | |
|             if (old_irq_coalesced != s->irq_coalesced ||
 | |
|                 old_period != s->period) {
 | |
|                 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
 | |
|                           "period scaled from %d to %d\n", old_irq_coalesced,
 | |
|                           s->irq_coalesced, old_period, s->period);
 | |
|                 rtc_coalesced_timer_update(s);
 | |
|             }
 | |
|         } else {
 | |
|            /*
 | |
|              * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
 | |
|              * is not used, we should make the time progress anyway.
 | |
|              */
 | |
|             lost_clock = MIN(lost_clock, period);
 | |
|         }
 | |
| 
 | |
|         assert(lost_clock >= 0 && lost_clock <= period);
 | |
| 
 | |
|         next_irq_clock = cur_clock + period - lost_clock;
 | |
|         s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
 | |
|         timer_mod(s->periodic_timer, s->next_periodic_time);
 | |
|     } else {
 | |
|         s->irq_coalesced = 0;
 | |
|         timer_del(s->periodic_timer);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rtc_periodic_timer(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     periodic_timer_update(s, s->next_periodic_time, 0);
 | |
|     s->cmos_data[RTC_REG_C] |= REG_C_PF;
 | |
|     if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
 | |
|         s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 | |
|         if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 | |
|             if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
 | |
|                 s->irq_reinject_on_ack_count = 0;
 | |
|             if (!rtc_policy_slew_deliver_irq(s)) {
 | |
|                 s->irq_coalesced++;
 | |
|                 rtc_coalesced_timer_update(s);
 | |
|                 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
 | |
|                           s->irq_coalesced);
 | |
|             }
 | |
|         } else
 | |
|             qemu_irq_raise(s->irq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* handle update-ended timer */
 | |
| static void check_update_timer(RTCState *s)
 | |
| {
 | |
|     uint64_t next_update_time;
 | |
|     uint64_t guest_nsec;
 | |
|     int next_alarm_sec;
 | |
| 
 | |
|     /* From the data sheet: "Holding the dividers in reset prevents
 | |
|      * interrupts from operating, while setting the SET bit allows"
 | |
|      * them to occur.
 | |
|      */
 | |
|     if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
 | |
|         assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
 | |
|         timer_del(s->update_timer);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 | |
|     next_update_time = qemu_clock_get_ns(rtc_clock)
 | |
|         + NANOSECONDS_PER_SECOND - guest_nsec;
 | |
| 
 | |
|     /* Compute time of next alarm.  One second is already accounted
 | |
|      * for in next_update_time.
 | |
|      */
 | |
|     next_alarm_sec = get_next_alarm(s);
 | |
|     s->next_alarm_time = next_update_time +
 | |
|                          (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
 | |
| 
 | |
|     /* If update_in_progress latched the UIP bit, we must keep the timer
 | |
|      * programmed to the next second, so that UIP is cleared.  Otherwise,
 | |
|      * if UF is already set, we might be able to optimize.
 | |
|      */
 | |
|     if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
 | |
|         (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
 | |
|         /* If AF cannot change (i.e. either it is set already, or
 | |
|          * SET=1 and then the time is not updated), nothing to do.
 | |
|          */
 | |
|         if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
 | |
|             (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
 | |
|             timer_del(s->update_timer);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         /* UF is set, but AF is clear.  Program the timer to target
 | |
|          * the alarm time.  */
 | |
|         next_update_time = s->next_alarm_time;
 | |
|     }
 | |
|     if (next_update_time != timer_expire_time_ns(s->update_timer)) {
 | |
|         timer_mod(s->update_timer, next_update_time);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
 | |
| {
 | |
|     if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 | |
|         hour %= 12;
 | |
|         if (s->cmos_data[RTC_HOURS] & 0x80) {
 | |
|             hour += 12;
 | |
|         }
 | |
|     }
 | |
|     return hour;
 | |
| }
 | |
| 
 | |
| static uint64_t get_next_alarm(RTCState *s)
 | |
| {
 | |
|     int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
 | |
|     int32_t hour, min, sec;
 | |
| 
 | |
|     rtc_update_time(s);
 | |
| 
 | |
|     alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
 | |
|     alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
 | |
|     alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
 | |
|     alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
 | |
| 
 | |
|     cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 | |
|     cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 | |
|     cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
 | |
|     cur_hour = convert_hour(s, cur_hour);
 | |
| 
 | |
|     if (alarm_hour == -1) {
 | |
|         alarm_hour = cur_hour;
 | |
|         if (alarm_min == -1) {
 | |
|             alarm_min = cur_min;
 | |
|             if (alarm_sec == -1) {
 | |
|                 alarm_sec = cur_sec + 1;
 | |
|             } else if (cur_sec > alarm_sec) {
 | |
|                 alarm_min++;
 | |
|             }
 | |
|         } else if (cur_min == alarm_min) {
 | |
|             if (alarm_sec == -1) {
 | |
|                 alarm_sec = cur_sec + 1;
 | |
|             } else {
 | |
|                 if (cur_sec > alarm_sec) {
 | |
|                     alarm_hour++;
 | |
|                 }
 | |
|             }
 | |
|             if (alarm_sec == SEC_PER_MIN) {
 | |
|                 /* wrap to next hour, minutes is not in don't care mode */
 | |
|                 alarm_sec = 0;
 | |
|                 alarm_hour++;
 | |
|             }
 | |
|         } else if (cur_min > alarm_min) {
 | |
|             alarm_hour++;
 | |
|         }
 | |
|     } else if (cur_hour == alarm_hour) {
 | |
|         if (alarm_min == -1) {
 | |
|             alarm_min = cur_min;
 | |
|             if (alarm_sec == -1) {
 | |
|                 alarm_sec = cur_sec + 1;
 | |
|             } else if (cur_sec > alarm_sec) {
 | |
|                 alarm_min++;
 | |
|             }
 | |
| 
 | |
|             if (alarm_sec == SEC_PER_MIN) {
 | |
|                 alarm_sec = 0;
 | |
|                 alarm_min++;
 | |
|             }
 | |
|             /* wrap to next day, hour is not in don't care mode */
 | |
|             alarm_min %= MIN_PER_HOUR;
 | |
|         } else if (cur_min == alarm_min) {
 | |
|             if (alarm_sec == -1) {
 | |
|                 alarm_sec = cur_sec + 1;
 | |
|             }
 | |
|             /* wrap to next day, hours+minutes not in don't care mode */
 | |
|             alarm_sec %= SEC_PER_MIN;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* values that are still don't care fire at the next min/sec */
 | |
|     if (alarm_min == -1) {
 | |
|         alarm_min = 0;
 | |
|     }
 | |
|     if (alarm_sec == -1) {
 | |
|         alarm_sec = 0;
 | |
|     }
 | |
| 
 | |
|     /* keep values in range */
 | |
|     if (alarm_sec == SEC_PER_MIN) {
 | |
|         alarm_sec = 0;
 | |
|         alarm_min++;
 | |
|     }
 | |
|     if (alarm_min == MIN_PER_HOUR) {
 | |
|         alarm_min = 0;
 | |
|         alarm_hour++;
 | |
|     }
 | |
|     alarm_hour %= HOUR_PER_DAY;
 | |
| 
 | |
|     hour = alarm_hour - cur_hour;
 | |
|     min = hour * MIN_PER_HOUR + alarm_min - cur_min;
 | |
|     sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
 | |
|     return sec <= 0 ? sec + SEC_PER_DAY : sec;
 | |
| }
 | |
| 
 | |
| static void rtc_update_timer(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
|     int32_t irqs = REG_C_UF;
 | |
|     int32_t new_irqs;
 | |
| 
 | |
|     assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
 | |
| 
 | |
|     /* UIP might have been latched, update time and clear it.  */
 | |
|     rtc_update_time(s);
 | |
|     s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | |
| 
 | |
|     if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
 | |
|         irqs |= REG_C_AF;
 | |
|         if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 | |
|             qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
 | |
|     s->cmos_data[RTC_REG_C] |= irqs;
 | |
|     if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
 | |
|         s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 | |
|         qemu_irq_raise(s->irq);
 | |
|     }
 | |
|     check_update_timer(s);
 | |
| }
 | |
| 
 | |
| static void cmos_ioport_write(void *opaque, hwaddr addr,
 | |
|                               uint64_t data, unsigned size)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
|     uint32_t old_period;
 | |
|     bool update_periodic_timer;
 | |
| 
 | |
|     if ((addr & 1) == 0) {
 | |
|         s->cmos_index = data & 0x7f;
 | |
|     } else {
 | |
|         CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
 | |
|                      s->cmos_index, data);
 | |
|         switch(s->cmos_index) {
 | |
|         case RTC_SECONDS_ALARM:
 | |
|         case RTC_MINUTES_ALARM:
 | |
|         case RTC_HOURS_ALARM:
 | |
|             s->cmos_data[s->cmos_index] = data;
 | |
|             check_update_timer(s);
 | |
|             break;
 | |
|         case RTC_IBM_PS2_CENTURY_BYTE:
 | |
|             s->cmos_index = RTC_CENTURY;
 | |
|             /* fall through */
 | |
|         case RTC_CENTURY:
 | |
|         case RTC_SECONDS:
 | |
|         case RTC_MINUTES:
 | |
|         case RTC_HOURS:
 | |
|         case RTC_DAY_OF_WEEK:
 | |
|         case RTC_DAY_OF_MONTH:
 | |
|         case RTC_MONTH:
 | |
|         case RTC_YEAR:
 | |
|             s->cmos_data[s->cmos_index] = data;
 | |
|             /* if in set mode, do not update the time */
 | |
|             if (rtc_running(s)) {
 | |
|                 rtc_set_time(s);
 | |
|                 check_update_timer(s);
 | |
|             }
 | |
|             break;
 | |
|         case RTC_REG_A:
 | |
|             update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
 | |
|             old_period = rtc_periodic_clock_ticks(s);
 | |
| 
 | |
|             if ((data & 0x60) == 0x60) {
 | |
|                 if (rtc_running(s)) {
 | |
|                     rtc_update_time(s);
 | |
|                 }
 | |
|                 /* What happens to UIP when divider reset is enabled is
 | |
|                  * unclear from the datasheet.  Shouldn't matter much
 | |
|                  * though.
 | |
|                  */
 | |
|                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | |
|             } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
 | |
|                     (data & 0x70)  <= 0x20) {
 | |
|                 /* when the divider reset is removed, the first update cycle
 | |
|                  * begins one-half second later*/
 | |
|                 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | |
|                     s->offset = 500000000;
 | |
|                     rtc_set_time(s);
 | |
|                 }
 | |
|                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | |
|             }
 | |
|             /* UIP bit is read only */
 | |
|             s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 | |
|                 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 | |
| 
 | |
|             if (update_periodic_timer) {
 | |
|                 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
 | |
|                                       old_period);
 | |
|             }
 | |
| 
 | |
|             check_update_timer(s);
 | |
|             break;
 | |
|         case RTC_REG_B:
 | |
|             update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
 | |
|                                        & REG_B_PIE;
 | |
|             old_period = rtc_periodic_clock_ticks(s);
 | |
| 
 | |
|             if (data & REG_B_SET) {
 | |
|                 /* update cmos to when the rtc was stopping */
 | |
|                 if (rtc_running(s)) {
 | |
|                     rtc_update_time(s);
 | |
|                 }
 | |
|                 /* set mode: reset UIP mode */
 | |
|                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | |
|                 data &= ~REG_B_UIE;
 | |
|             } else {
 | |
|                 /* if disabling set mode, update the time */
 | |
|                 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 | |
|                     (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
 | |
|                     s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 | |
|                     rtc_set_time(s);
 | |
|                 }
 | |
|             }
 | |
|             /* if an interrupt flag is already set when the interrupt
 | |
|              * becomes enabled, raise an interrupt immediately.  */
 | |
|             if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
 | |
|                 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 | |
|                 qemu_irq_raise(s->irq);
 | |
|             } else {
 | |
|                 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
 | |
|                 qemu_irq_lower(s->irq);
 | |
|             }
 | |
|             s->cmos_data[RTC_REG_B] = data;
 | |
| 
 | |
|             if (update_periodic_timer) {
 | |
|                 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
 | |
|                                       old_period);
 | |
|             }
 | |
| 
 | |
|             check_update_timer(s);
 | |
|             break;
 | |
|         case RTC_REG_C:
 | |
|         case RTC_REG_D:
 | |
|             /* cannot write to them */
 | |
|             break;
 | |
|         default:
 | |
|             s->cmos_data[s->cmos_index] = data;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int rtc_to_bcd(RTCState *s, int a)
 | |
| {
 | |
|     if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 | |
|         return a;
 | |
|     } else {
 | |
|         return ((a / 10) << 4) | (a % 10);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int rtc_from_bcd(RTCState *s, int a)
 | |
| {
 | |
|     if ((a & 0xc0) == 0xc0) {
 | |
|         return -1;
 | |
|     }
 | |
|     if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 | |
|         return a;
 | |
|     } else {
 | |
|         return ((a >> 4) * 10) + (a & 0x0f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rtc_get_time(RTCState *s, struct tm *tm)
 | |
| {
 | |
|     tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 | |
|     tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 | |
|     tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
 | |
|     if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 | |
|         tm->tm_hour %= 12;
 | |
|         if (s->cmos_data[RTC_HOURS] & 0x80) {
 | |
|             tm->tm_hour += 12;
 | |
|         }
 | |
|     }
 | |
|     tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
 | |
|     tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 | |
|     tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 | |
|     tm->tm_year =
 | |
|         rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
 | |
|         rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
 | |
| }
 | |
| 
 | |
| static void rtc_set_time(RTCState *s)
 | |
| {
 | |
|     struct tm tm;
 | |
| 
 | |
|     rtc_get_time(s, &tm);
 | |
|     s->base_rtc = mktimegm(&tm);
 | |
|     s->last_update = qemu_clock_get_ns(rtc_clock);
 | |
| 
 | |
|     qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
 | |
| }
 | |
| 
 | |
| static void rtc_set_cmos(RTCState *s, const struct tm *tm)
 | |
| {
 | |
|     int year;
 | |
| 
 | |
|     s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
 | |
|     s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
 | |
|     if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
 | |
|         /* 24 hour format */
 | |
|         s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
 | |
|     } else {
 | |
|         /* 12 hour format */
 | |
|         int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
 | |
|         s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
 | |
|         if (tm->tm_hour >= 12)
 | |
|             s->cmos_data[RTC_HOURS] |= 0x80;
 | |
|     }
 | |
|     s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
 | |
|     s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
 | |
|     s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
 | |
|     year = tm->tm_year + 1900 - s->base_year;
 | |
|     s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
 | |
|     s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
 | |
| }
 | |
| 
 | |
| static void rtc_update_time(RTCState *s)
 | |
| {
 | |
|     struct tm ret;
 | |
|     time_t guest_sec;
 | |
|     int64_t guest_nsec;
 | |
| 
 | |
|     guest_nsec = get_guest_rtc_ns(s);
 | |
|     guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
 | |
|     gmtime_r(&guest_sec, &ret);
 | |
| 
 | |
|     /* Is SET flag of Register B disabled? */
 | |
|     if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
 | |
|         rtc_set_cmos(s, &ret);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int update_in_progress(RTCState *s)
 | |
| {
 | |
|     int64_t guest_nsec;
 | |
| 
 | |
|     if (!rtc_running(s)) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (timer_pending(s->update_timer)) {
 | |
|         int64_t next_update_time = timer_expire_time_ns(s->update_timer);
 | |
|         /* Latch UIP until the timer expires.  */
 | |
|         if (qemu_clock_get_ns(rtc_clock) >=
 | |
|             (next_update_time - UIP_HOLD_LENGTH)) {
 | |
|             s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     guest_nsec = get_guest_rtc_ns(s);
 | |
|     /* UIP bit will be set at last 244us of every second. */
 | |
|     if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
 | |
|         (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
 | |
|                                  unsigned size)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
|     int ret;
 | |
|     if ((addr & 1) == 0) {
 | |
|         return 0xff;
 | |
|     } else {
 | |
|         switch(s->cmos_index) {
 | |
|         case RTC_IBM_PS2_CENTURY_BYTE:
 | |
|             s->cmos_index = RTC_CENTURY;
 | |
|             /* fall through */
 | |
|         case RTC_CENTURY:
 | |
|         case RTC_SECONDS:
 | |
|         case RTC_MINUTES:
 | |
|         case RTC_HOURS:
 | |
|         case RTC_DAY_OF_WEEK:
 | |
|         case RTC_DAY_OF_MONTH:
 | |
|         case RTC_MONTH:
 | |
|         case RTC_YEAR:
 | |
|             /* if not in set mode, calibrate cmos before
 | |
|              * reading*/
 | |
|             if (rtc_running(s)) {
 | |
|                 rtc_update_time(s);
 | |
|             }
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             break;
 | |
|         case RTC_REG_A:
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             if (update_in_progress(s)) {
 | |
|                 ret |= REG_A_UIP;
 | |
|             }
 | |
|             break;
 | |
|         case RTC_REG_C:
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             qemu_irq_lower(s->irq);
 | |
|             s->cmos_data[RTC_REG_C] = 0x00;
 | |
|             if (ret & (REG_C_UF | REG_C_AF)) {
 | |
|                 check_update_timer(s);
 | |
|             }
 | |
| 
 | |
|             if(s->irq_coalesced &&
 | |
|                     (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
 | |
|                     s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
 | |
|                 s->irq_reinject_on_ack_count++;
 | |
|                 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
 | |
|                 DPRINTF_C("cmos: injecting on ack\n");
 | |
|                 if (rtc_policy_slew_deliver_irq(s)) {
 | |
|                     s->irq_coalesced--;
 | |
|                     DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 | |
|                               s->irq_coalesced);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             break;
 | |
|         }
 | |
|         CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
 | |
|                      s->cmos_index, ret);
 | |
|         return ret;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void rtc_set_memory(ISADevice *dev, int addr, int val)
 | |
| {
 | |
|     RTCState *s = MC146818_RTC(dev);
 | |
|     if (addr >= 0 && addr <= 127)
 | |
|         s->cmos_data[addr] = val;
 | |
| }
 | |
| 
 | |
| int rtc_get_memory(ISADevice *dev, int addr)
 | |
| {
 | |
|     RTCState *s = MC146818_RTC(dev);
 | |
|     assert(addr >= 0 && addr <= 127);
 | |
|     return s->cmos_data[addr];
 | |
| }
 | |
| 
 | |
| static void rtc_set_date_from_host(ISADevice *dev)
 | |
| {
 | |
|     RTCState *s = MC146818_RTC(dev);
 | |
|     struct tm tm;
 | |
| 
 | |
|     qemu_get_timedate(&tm, 0);
 | |
| 
 | |
|     s->base_rtc = mktimegm(&tm);
 | |
|     s->last_update = qemu_clock_get_ns(rtc_clock);
 | |
|     s->offset = 0;
 | |
| 
 | |
|     /* set the CMOS date */
 | |
|     rtc_set_cmos(s, &tm);
 | |
| }
 | |
| 
 | |
| static int rtc_pre_save(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     rtc_update_time(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int rtc_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
 | |
|         rtc_set_time(s);
 | |
|         s->offset = 0;
 | |
|         check_update_timer(s);
 | |
|     }
 | |
| 
 | |
|     /* The periodic timer is deterministic in record/replay mode,
 | |
|      * so there is no need to update it after loading the vmstate.
 | |
|      * Reading RTC here would misalign record and replay.
 | |
|      */
 | |
|     if (replay_mode == REPLAY_MODE_NONE) {
 | |
|         uint64_t now = qemu_clock_get_ns(rtc_clock);
 | |
|         if (now < s->next_periodic_time ||
 | |
|             now > (s->next_periodic_time + get_max_clock_jump())) {
 | |
|             periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (version_id >= 2) {
 | |
|         if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 | |
|             rtc_coalesced_timer_update(s);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
 | |
| {
 | |
|     RTCState *s = (RTCState *)opaque;
 | |
|     return s->irq_reinject_on_ack_count != 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
 | |
|     .name = "mc146818rtc/irq_reinject_on_ack_count",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = rtc_irq_reinject_on_ack_count_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_rtc = {
 | |
|     .name = "mc146818rtc",
 | |
|     .version_id = 3,
 | |
|     .minimum_version_id = 1,
 | |
|     .pre_save = rtc_pre_save,
 | |
|     .post_load = rtc_post_load,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_BUFFER(cmos_data, RTCState),
 | |
|         VMSTATE_UINT8(cmos_index, RTCState),
 | |
|         VMSTATE_UNUSED(7*4),
 | |
|         VMSTATE_TIMER_PTR(periodic_timer, RTCState),
 | |
|         VMSTATE_INT64(next_periodic_time, RTCState),
 | |
|         VMSTATE_UNUSED(3*8),
 | |
|         VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
 | |
|         VMSTATE_UINT32_V(period, RTCState, 2),
 | |
|         VMSTATE_UINT64_V(base_rtc, RTCState, 3),
 | |
|         VMSTATE_UINT64_V(last_update, RTCState, 3),
 | |
|         VMSTATE_INT64_V(offset, RTCState, 3),
 | |
|         VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
 | |
|         VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
|     .subsections = (const VMStateDescription*[]) {
 | |
|         &vmstate_rtc_irq_reinject_on_ack_count,
 | |
|         NULL
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void rtc_notify_clock_reset(Notifier *notifier, void *data)
 | |
| {
 | |
|     RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
 | |
|     int64_t now = *(int64_t *)data;
 | |
| 
 | |
|     rtc_set_date_from_host(ISA_DEVICE(s));
 | |
|     periodic_timer_update(s, now, 0);
 | |
|     check_update_timer(s);
 | |
| 
 | |
|     if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 | |
|         rtc_coalesced_timer_update(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
 | |
|    BIOS will read it and start S3 resume at POST Entry */
 | |
| static void rtc_notify_suspend(Notifier *notifier, void *data)
 | |
| {
 | |
|     RTCState *s = container_of(notifier, RTCState, suspend_notifier);
 | |
|     rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
 | |
| }
 | |
| 
 | |
| static void rtc_reset(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
 | |
|     s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
 | |
|     check_update_timer(s);
 | |
| 
 | |
|     qemu_irq_lower(s->irq);
 | |
| 
 | |
|     if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 | |
|         s->irq_coalesced = 0;
 | |
|         s->irq_reinject_on_ack_count = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps cmos_ops = {
 | |
|     .read = cmos_ioport_read,
 | |
|     .write = cmos_ioport_write,
 | |
|     .impl = {
 | |
|         .min_access_size = 1,
 | |
|         .max_access_size = 1,
 | |
|     },
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
 | |
| {
 | |
|     RTCState *s = MC146818_RTC(obj);
 | |
| 
 | |
|     rtc_update_time(s);
 | |
|     rtc_get_time(s, current_tm);
 | |
| }
 | |
| 
 | |
| static void rtc_realizefn(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     ISADevice *isadev = ISA_DEVICE(dev);
 | |
|     RTCState *s = MC146818_RTC(dev);
 | |
|     int base = 0x70;
 | |
| 
 | |
|     s->cmos_data[RTC_REG_A] = 0x26;
 | |
|     s->cmos_data[RTC_REG_B] = 0x02;
 | |
|     s->cmos_data[RTC_REG_C] = 0x00;
 | |
|     s->cmos_data[RTC_REG_D] = 0x80;
 | |
| 
 | |
|     /* This is for historical reasons.  The default base year qdev property
 | |
|      * was set to 2000 for most machine types before the century byte was
 | |
|      * implemented.
 | |
|      *
 | |
|      * This if statement means that the century byte will be always 0
 | |
|      * (at least until 2079...) for base_year = 1980, but will be set
 | |
|      * correctly for base_year = 2000.
 | |
|      */
 | |
|     if (s->base_year == 2000) {
 | |
|         s->base_year = 0;
 | |
|     }
 | |
| 
 | |
|     rtc_set_date_from_host(isadev);
 | |
| 
 | |
|     switch (s->lost_tick_policy) {
 | |
| #ifdef TARGET_I386
 | |
|     case LOST_TICK_POLICY_SLEW:
 | |
|         s->coalesced_timer =
 | |
|             timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
 | |
|         break;
 | |
| #endif
 | |
|     case LOST_TICK_POLICY_DISCARD:
 | |
|         break;
 | |
|     default:
 | |
|         error_setg(errp, "Invalid lost tick policy.");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
 | |
|     s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
 | |
|     check_update_timer(s);
 | |
| 
 | |
|     s->clock_reset_notifier.notify = rtc_notify_clock_reset;
 | |
|     qemu_clock_register_reset_notifier(rtc_clock,
 | |
|                                        &s->clock_reset_notifier);
 | |
| 
 | |
|     s->suspend_notifier.notify = rtc_notify_suspend;
 | |
|     qemu_register_suspend_notifier(&s->suspend_notifier);
 | |
| 
 | |
|     memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
 | |
|     isa_register_ioport(isadev, &s->io, base);
 | |
| 
 | |
|     /* register rtc 0x70 port for coalesced_pio */
 | |
|     memory_region_set_flush_coalesced(&s->io);
 | |
|     memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
 | |
|                           s, "rtc-index", 1);
 | |
|     memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
 | |
|     memory_region_add_coalescing(&s->coalesced_io, 0, 1);
 | |
| 
 | |
|     qdev_set_legacy_instance_id(dev, base, 3);
 | |
|     qemu_register_reset(rtc_reset, s);
 | |
| 
 | |
|     object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
 | |
| 
 | |
|     qdev_init_gpio_out(dev, &s->irq, 1);
 | |
| }
 | |
| 
 | |
| ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
 | |
| {
 | |
|     DeviceState *dev;
 | |
|     ISADevice *isadev;
 | |
|     RTCState *s;
 | |
| 
 | |
|     isadev = isa_create(bus, TYPE_MC146818_RTC);
 | |
|     dev = DEVICE(isadev);
 | |
|     s = MC146818_RTC(isadev);
 | |
|     qdev_prop_set_int32(dev, "base_year", base_year);
 | |
|     qdev_init_nofail(dev);
 | |
|     if (intercept_irq) {
 | |
|         qdev_connect_gpio_out(dev, 0, intercept_irq);
 | |
|     } else {
 | |
|         isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
 | |
|     }
 | |
|     QLIST_INSERT_HEAD(&rtc_devices, s, link);
 | |
| 
 | |
|     object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(s),
 | |
|                               "date", NULL);
 | |
| 
 | |
|     return isadev;
 | |
| }
 | |
| 
 | |
| static Property mc146818rtc_properties[] = {
 | |
|     DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
 | |
|     DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
 | |
|                                lost_tick_policy, LOST_TICK_POLICY_DISCARD),
 | |
|     DEFINE_PROP_END_OF_LIST(),
 | |
| };
 | |
| 
 | |
| static void rtc_resetdev(DeviceState *d)
 | |
| {
 | |
|     RTCState *s = MC146818_RTC(d);
 | |
| 
 | |
|     /* Reason: VM do suspend self will set 0xfe
 | |
|      * Reset any values other than 0xfe(Guest suspend case) */
 | |
|     if (s->cmos_data[0x0f] != 0xfe) {
 | |
|         s->cmos_data[0x0f] = 0x00;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rtc_class_initfn(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
| 
 | |
|     dc->realize = rtc_realizefn;
 | |
|     dc->reset = rtc_resetdev;
 | |
|     dc->vmsd = &vmstate_rtc;
 | |
|     dc->props = mc146818rtc_properties;
 | |
|     /* Reason: needs to be wired up by rtc_init() */
 | |
|     dc->user_creatable = false;
 | |
| }
 | |
| 
 | |
| static const TypeInfo mc146818rtc_info = {
 | |
|     .name          = TYPE_MC146818_RTC,
 | |
|     .parent        = TYPE_ISA_DEVICE,
 | |
|     .instance_size = sizeof(RTCState),
 | |
|     .class_init    = rtc_class_initfn,
 | |
| };
 | |
| 
 | |
| static void mc146818rtc_register_types(void)
 | |
| {
 | |
|     type_register_static(&mc146818rtc_info);
 | |
| }
 | |
| 
 | |
| type_init(mc146818rtc_register_types)
 |