 960b389b7d
			
		
	
	
		960b389b7d
		
	
	
	
	
		
			
			Add a leading 'z' to improve grepping. When one wants to search for uses of zicsr they're more likely to do 'grep -i zicsr' than 'grep -i icsr'. Suggested-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Message-ID: <20231012164604.398496-3-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
		
			
				
	
	
		
			475 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			475 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU RISC-V Boot Helper
 | |
|  *
 | |
|  * Copyright (c) 2017 SiFive, Inc.
 | |
|  * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2 or later, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/datadir.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "exec/cpu-defs.h"
 | |
| #include "hw/boards.h"
 | |
| #include "hw/loader.h"
 | |
| #include "hw/riscv/boot.h"
 | |
| #include "hw/riscv/boot_opensbi.h"
 | |
| #include "elf.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "sysemu/reset.h"
 | |
| 
 | |
| #include <libfdt.h>
 | |
| 
 | |
| bool riscv_is_32bit(RISCVHartArrayState *harts)
 | |
| {
 | |
|     return harts->harts[0].env.misa_mxl_max == MXL_RV32;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the per-socket PLIC hart topology configuration string
 | |
|  * (caller must free with g_free())
 | |
|  */
 | |
| char *riscv_plic_hart_config_string(int hart_count)
 | |
| {
 | |
|     g_autofree const char **vals = g_new(const char *, hart_count + 1);
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < hart_count; i++) {
 | |
|         CPUState *cs = qemu_get_cpu(i);
 | |
|         CPURISCVState *env = &RISCV_CPU(cs)->env;
 | |
| 
 | |
|         if (kvm_enabled()) {
 | |
|             vals[i] = "S";
 | |
|         } else if (riscv_has_ext(env, RVS)) {
 | |
|             vals[i] = "MS";
 | |
|         } else {
 | |
|             vals[i] = "M";
 | |
|         }
 | |
|     }
 | |
|     vals[i] = NULL;
 | |
| 
 | |
|     /* g_strjoinv() obliges us to cast away const here */
 | |
|     return g_strjoinv(",", (char **)vals);
 | |
| }
 | |
| 
 | |
| target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
 | |
|                                           target_ulong firmware_end_addr) {
 | |
|     if (riscv_is_32bit(harts)) {
 | |
|         return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
 | |
|     } else {
 | |
|         return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
 | |
|     }
 | |
| }
 | |
| 
 | |
| const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
 | |
| {
 | |
|     if (riscv_is_32bit(harts)) {
 | |
|         return RISCV32_BIOS_BIN;
 | |
|     }
 | |
| 
 | |
|     return RISCV64_BIOS_BIN;
 | |
| }
 | |
| 
 | |
| static char *riscv_find_bios(const char *bios_filename)
 | |
| {
 | |
|     char *filename;
 | |
| 
 | |
|     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
 | |
|     if (filename == NULL) {
 | |
|         if (!qtest_enabled()) {
 | |
|             /*
 | |
|              * We only ship OpenSBI binary bios images in the QEMU source.
 | |
|              * For machines that use images other than the default bios,
 | |
|              * running QEMU test will complain hence let's suppress the error
 | |
|              * report for QEMU testing.
 | |
|              */
 | |
|             error_report("Unable to find the RISC-V BIOS \"%s\"",
 | |
|                          bios_filename);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return filename;
 | |
| }
 | |
| 
 | |
| char *riscv_find_firmware(const char *firmware_filename,
 | |
|                           const char *default_machine_firmware)
 | |
| {
 | |
|     char *filename = NULL;
 | |
| 
 | |
|     if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
 | |
|         /*
 | |
|          * The user didn't specify -bios, or has specified "-bios default".
 | |
|          * That means we are going to load the OpenSBI binary included in
 | |
|          * the QEMU source.
 | |
|          */
 | |
|         filename = riscv_find_bios(default_machine_firmware);
 | |
|     } else if (strcmp(firmware_filename, "none")) {
 | |
|         filename = riscv_find_bios(firmware_filename);
 | |
|     }
 | |
| 
 | |
|     return filename;
 | |
| }
 | |
| 
 | |
| target_ulong riscv_find_and_load_firmware(MachineState *machine,
 | |
|                                           const char *default_machine_firmware,
 | |
|                                           hwaddr firmware_load_addr,
 | |
|                                           symbol_fn_t sym_cb)
 | |
| {
 | |
|     char *firmware_filename;
 | |
|     target_ulong firmware_end_addr = firmware_load_addr;
 | |
| 
 | |
|     firmware_filename = riscv_find_firmware(machine->firmware,
 | |
|                                             default_machine_firmware);
 | |
| 
 | |
|     if (firmware_filename) {
 | |
|         /* If not "none" load the firmware */
 | |
|         firmware_end_addr = riscv_load_firmware(firmware_filename,
 | |
|                                                 firmware_load_addr, sym_cb);
 | |
|         g_free(firmware_filename);
 | |
|     }
 | |
| 
 | |
|     return firmware_end_addr;
 | |
| }
 | |
| 
 | |
| target_ulong riscv_load_firmware(const char *firmware_filename,
 | |
|                                  hwaddr firmware_load_addr,
 | |
|                                  symbol_fn_t sym_cb)
 | |
| {
 | |
|     uint64_t firmware_entry, firmware_end;
 | |
|     ssize_t firmware_size;
 | |
| 
 | |
|     g_assert(firmware_filename != NULL);
 | |
| 
 | |
|     if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
 | |
|                          &firmware_entry, NULL, &firmware_end, NULL,
 | |
|                          0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
 | |
|         return firmware_end;
 | |
|     }
 | |
| 
 | |
|     firmware_size = load_image_targphys_as(firmware_filename,
 | |
|                                            firmware_load_addr,
 | |
|                                            current_machine->ram_size, NULL);
 | |
| 
 | |
|     if (firmware_size > 0) {
 | |
|         return firmware_load_addr + firmware_size;
 | |
|     }
 | |
| 
 | |
|     error_report("could not load firmware '%s'", firmware_filename);
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry)
 | |
| {
 | |
|     const char *filename = machine->initrd_filename;
 | |
|     uint64_t mem_size = machine->ram_size;
 | |
|     void *fdt = machine->fdt;
 | |
|     hwaddr start, end;
 | |
|     ssize_t size;
 | |
| 
 | |
|     g_assert(filename != NULL);
 | |
| 
 | |
|     /*
 | |
|      * We want to put the initrd far enough into RAM that when the
 | |
|      * kernel is uncompressed it will not clobber the initrd. However
 | |
|      * on boards without much RAM we must ensure that we still leave
 | |
|      * enough room for a decent sized initrd, and on boards with large
 | |
|      * amounts of RAM we must avoid the initrd being so far up in RAM
 | |
|      * that it is outside lowmem and inaccessible to the kernel.
 | |
|      * So for boards with less  than 256MB of RAM we put the initrd
 | |
|      * halfway into RAM, and for boards with 256MB of RAM or more we put
 | |
|      * the initrd at 128MB.
 | |
|      */
 | |
|     start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
 | |
| 
 | |
|     size = load_ramdisk(filename, start, mem_size - start);
 | |
|     if (size == -1) {
 | |
|         size = load_image_targphys(filename, start, mem_size - start);
 | |
|         if (size == -1) {
 | |
|             error_report("could not load ramdisk '%s'", filename);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
 | |
|     if (fdt) {
 | |
|         end = start + size;
 | |
|         qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", start);
 | |
|         qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", end);
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong riscv_load_kernel(MachineState *machine,
 | |
|                                RISCVHartArrayState *harts,
 | |
|                                target_ulong kernel_start_addr,
 | |
|                                bool load_initrd,
 | |
|                                symbol_fn_t sym_cb)
 | |
| {
 | |
|     const char *kernel_filename = machine->kernel_filename;
 | |
|     uint64_t kernel_load_base, kernel_entry;
 | |
|     void *fdt = machine->fdt;
 | |
| 
 | |
|     g_assert(kernel_filename != NULL);
 | |
| 
 | |
|     /*
 | |
|      * NB: Use low address not ELF entry point to ensure that the fw_dynamic
 | |
|      * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
 | |
|      * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
 | |
|      * the (expected) load address load address. This allows kernels to have
 | |
|      * separate SBI and ELF entry points (used by FreeBSD, for example).
 | |
|      */
 | |
|     if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
 | |
|                          NULL, &kernel_load_base, NULL, NULL, 0,
 | |
|                          EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
 | |
|         kernel_entry = kernel_load_base;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
 | |
|                        NULL, NULL, NULL) > 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (load_image_targphys_as(kernel_filename, kernel_start_addr,
 | |
|                                current_machine->ram_size, NULL) > 0) {
 | |
|         kernel_entry = kernel_start_addr;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     error_report("could not load kernel '%s'", kernel_filename);
 | |
|     exit(1);
 | |
| 
 | |
| out:
 | |
|     /*
 | |
|      * For 32 bit CPUs 'kernel_entry' can be sign-extended by
 | |
|      * load_elf_ram_sym().
 | |
|      */
 | |
|     if (riscv_is_32bit(harts)) {
 | |
|         kernel_entry = extract64(kernel_entry, 0, 32);
 | |
|     }
 | |
| 
 | |
|     if (load_initrd && machine->initrd_filename) {
 | |
|         riscv_load_initrd(machine, kernel_entry);
 | |
|     }
 | |
| 
 | |
|     if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
 | |
|         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 | |
|                                 machine->kernel_cmdline);
 | |
|     }
 | |
| 
 | |
|     return kernel_entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function makes an assumption that the DRAM interval
 | |
|  * 'dram_base' + 'dram_size' is contiguous.
 | |
|  *
 | |
|  * Considering that 'dram_end' is the lowest value between
 | |
|  * the end of the DRAM block and MachineState->ram_size, the
 | |
|  * FDT location will vary according to 'dram_base':
 | |
|  *
 | |
|  * - if 'dram_base' is less that 3072 MiB, the FDT will be
 | |
|  * put at the lowest value between 3072 MiB and 'dram_end';
 | |
|  *
 | |
|  * - if 'dram_base' is higher than 3072 MiB, the FDT will be
 | |
|  * put at 'dram_end'.
 | |
|  *
 | |
|  * The FDT is fdt_packed() during the calculation.
 | |
|  */
 | |
| uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
 | |
|                                 MachineState *ms)
 | |
| {
 | |
|     int ret = fdt_pack(ms->fdt);
 | |
|     hwaddr dram_end, temp;
 | |
|     int fdtsize;
 | |
| 
 | |
|     /* Should only fail if we've built a corrupted tree */
 | |
|     g_assert(ret == 0);
 | |
| 
 | |
|     fdtsize = fdt_totalsize(ms->fdt);
 | |
|     if (fdtsize <= 0) {
 | |
|         error_report("invalid device-tree");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * A dram_size == 0, usually from a MemMapEntry[].size element,
 | |
|      * means that the DRAM block goes all the way to ms->ram_size.
 | |
|      */
 | |
|     dram_end = dram_base;
 | |
|     dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;
 | |
| 
 | |
|     /*
 | |
|      * We should put fdt as far as possible to avoid kernel/initrd overwriting
 | |
|      * its content. But it should be addressable by 32 bit system as well.
 | |
|      * Thus, put it at an 2MB aligned address that less than fdt size from the
 | |
|      * end of dram or 3GB whichever is lesser.
 | |
|      */
 | |
|     temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
 | |
| 
 | |
|     return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'fdt_addr' is received as hwaddr because boards might put
 | |
|  * the FDT beyond 32-bit addressing boundary.
 | |
|  */
 | |
| void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
 | |
| {
 | |
|     uint32_t fdtsize = fdt_totalsize(fdt);
 | |
| 
 | |
|     /* copy in the device tree */
 | |
|     qemu_fdt_dumpdtb(fdt, fdtsize);
 | |
| 
 | |
|     rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
 | |
|                           &address_space_memory);
 | |
|     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
 | |
|                         rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
 | |
| }
 | |
| 
 | |
| void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
 | |
|                                   hwaddr rom_size, uint32_t reset_vec_size,
 | |
|                                   uint64_t kernel_entry)
 | |
| {
 | |
|     struct fw_dynamic_info dinfo;
 | |
|     size_t dinfo_len;
 | |
| 
 | |
|     if (sizeof(dinfo.magic) == 4) {
 | |
|         dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
 | |
|         dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
 | |
|         dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
 | |
|         dinfo.next_addr = cpu_to_le32(kernel_entry);
 | |
|     } else {
 | |
|         dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
 | |
|         dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
 | |
|         dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
 | |
|         dinfo.next_addr = cpu_to_le64(kernel_entry);
 | |
|     }
 | |
|     dinfo.options = 0;
 | |
|     dinfo.boot_hart = 0;
 | |
|     dinfo_len = sizeof(dinfo);
 | |
| 
 | |
|     /**
 | |
|      * copy the dynamic firmware info. This information is specific to
 | |
|      * OpenSBI but doesn't break any other firmware as long as they don't
 | |
|      * expect any certain value in "a2" register.
 | |
|      */
 | |
|     if (dinfo_len > (rom_size - reset_vec_size)) {
 | |
|         error_report("not enough space to store dynamic firmware info");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
 | |
|                            rom_base + reset_vec_size,
 | |
|                            &address_space_memory);
 | |
| }
 | |
| 
 | |
| void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
 | |
|                                hwaddr start_addr,
 | |
|                                hwaddr rom_base, hwaddr rom_size,
 | |
|                                uint64_t kernel_entry,
 | |
|                                uint64_t fdt_load_addr)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t start_addr_hi32 = 0x00000000;
 | |
|     uint32_t fdt_load_addr_hi32 = 0x00000000;
 | |
| 
 | |
|     if (!riscv_is_32bit(harts)) {
 | |
|         start_addr_hi32 = start_addr >> 32;
 | |
|         fdt_load_addr_hi32 = fdt_load_addr >> 32;
 | |
|     }
 | |
|     /* reset vector */
 | |
|     uint32_t reset_vec[10] = {
 | |
|         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */
 | |
|         0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */
 | |
|         0xf1402573,                  /*     csrr   a0, mhartid  */
 | |
|         0,
 | |
|         0,
 | |
|         0x00028067,                  /*     jr     t0 */
 | |
|         start_addr,                  /* start: .dword */
 | |
|         start_addr_hi32,
 | |
|         fdt_load_addr,               /* fdt_laddr: .dword */
 | |
|         fdt_load_addr_hi32,
 | |
|                                      /* fw_dyn: */
 | |
|     };
 | |
|     if (riscv_is_32bit(harts)) {
 | |
|         reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */
 | |
|         reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */
 | |
|     } else {
 | |
|         reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */
 | |
|         reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */
 | |
|     }
 | |
| 
 | |
|     if (!harts->harts[0].cfg.ext_zicsr) {
 | |
|         /*
 | |
|          * The Zicsr extension has been disabled, so let's ensure we don't
 | |
|          * run the CSR instruction. Let's fill the address with a non
 | |
|          * compressed nop.
 | |
|          */
 | |
|         reset_vec[2] = 0x00000013;   /*     addi   x0, x0, 0 */
 | |
|     }
 | |
| 
 | |
|     /* copy in the reset vector in little_endian byte order */
 | |
|     for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
 | |
|         reset_vec[i] = cpu_to_le32(reset_vec[i]);
 | |
|     }
 | |
|     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
 | |
|                           rom_base, &address_space_memory);
 | |
|     riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
 | |
|                                  kernel_entry);
 | |
| }
 | |
| 
 | |
| void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
 | |
| {
 | |
|     CPUState *cs;
 | |
| 
 | |
|     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
 | |
|         RISCVCPU *riscv_cpu = RISCV_CPU(cs);
 | |
|         riscv_cpu->env.kernel_addr = kernel_addr;
 | |
|         riscv_cpu->env.fdt_addr = fdt_addr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void riscv_setup_firmware_boot(MachineState *machine)
 | |
| {
 | |
|     if (machine->kernel_filename) {
 | |
|         FWCfgState *fw_cfg;
 | |
|         fw_cfg = fw_cfg_find();
 | |
| 
 | |
|         assert(fw_cfg);
 | |
|         /*
 | |
|          * Expose the kernel, the command line, and the initrd in fw_cfg.
 | |
|          * We don't process them here at all, it's all left to the
 | |
|          * firmware.
 | |
|          */
 | |
|         load_image_to_fw_cfg(fw_cfg,
 | |
|                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
 | |
|                              machine->kernel_filename,
 | |
|                              true);
 | |
|         load_image_to_fw_cfg(fw_cfg,
 | |
|                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
 | |
|                              machine->initrd_filename, false);
 | |
| 
 | |
|         if (machine->kernel_cmdline) {
 | |
|             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 | |
|                            strlen(machine->kernel_cmdline) + 1);
 | |
|             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
 | |
|                               machine->kernel_cmdline);
 | |
|         }
 | |
|     }
 | |
| }
 |