 55e7c29e46
			
		
	
	
		55e7c29e46
		
	
	
	
	
		
			
			The functions use uint16_t or uint32_t values, so show this in the function prototypes. Non-optimizing compilers will avoid unnecessary type conversions when generating calls of these inline functions. stq_le_p, stq_be_p already use similar prototypes. Signed-off-by: Stefan Weil <sw@weilnetz.de> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
		
			
				
	
	
		
			432 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			432 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef BSWAP_H
 | |
| #define BSWAP_H
 | |
| 
 | |
| #include "config-host.h"
 | |
| #include <inttypes.h>
 | |
| #include <limits.h>
 | |
| #include <string.h>
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| #ifdef CONFIG_MACHINE_BSWAP_H
 | |
| # include <sys/endian.h>
 | |
| # include <sys/types.h>
 | |
| # include <machine/bswap.h>
 | |
| #elif defined(CONFIG_BYTESWAP_H)
 | |
| # include <byteswap.h>
 | |
| 
 | |
| static inline uint16_t bswap16(uint16_t x)
 | |
| {
 | |
|     return bswap_16(x);
 | |
| }
 | |
| 
 | |
| static inline uint32_t bswap32(uint32_t x)
 | |
| {
 | |
|     return bswap_32(x);
 | |
| }
 | |
| 
 | |
| static inline uint64_t bswap64(uint64_t x)
 | |
| {
 | |
|     return bswap_64(x);
 | |
| }
 | |
| # else
 | |
| static inline uint16_t bswap16(uint16_t x)
 | |
| {
 | |
|     return (((x & 0x00ff) << 8) |
 | |
|             ((x & 0xff00) >> 8));
 | |
| }
 | |
| 
 | |
| static inline uint32_t bswap32(uint32_t x)
 | |
| {
 | |
|     return (((x & 0x000000ffU) << 24) |
 | |
|             ((x & 0x0000ff00U) <<  8) |
 | |
|             ((x & 0x00ff0000U) >>  8) |
 | |
|             ((x & 0xff000000U) >> 24));
 | |
| }
 | |
| 
 | |
| static inline uint64_t bswap64(uint64_t x)
 | |
| {
 | |
|     return (((x & 0x00000000000000ffULL) << 56) |
 | |
|             ((x & 0x000000000000ff00ULL) << 40) |
 | |
|             ((x & 0x0000000000ff0000ULL) << 24) |
 | |
|             ((x & 0x00000000ff000000ULL) <<  8) |
 | |
|             ((x & 0x000000ff00000000ULL) >>  8) |
 | |
|             ((x & 0x0000ff0000000000ULL) >> 24) |
 | |
|             ((x & 0x00ff000000000000ULL) >> 40) |
 | |
|             ((x & 0xff00000000000000ULL) >> 56));
 | |
| }
 | |
| #endif /* ! CONFIG_MACHINE_BSWAP_H */
 | |
| 
 | |
| static inline void bswap16s(uint16_t *s)
 | |
| {
 | |
|     *s = bswap16(*s);
 | |
| }
 | |
| 
 | |
| static inline void bswap32s(uint32_t *s)
 | |
| {
 | |
|     *s = bswap32(*s);
 | |
| }
 | |
| 
 | |
| static inline void bswap64s(uint64_t *s)
 | |
| {
 | |
|     *s = bswap64(*s);
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define be_bswap(v, size) (v)
 | |
| #define le_bswap(v, size) glue(bswap, size)(v)
 | |
| #define be_bswaps(v, size)
 | |
| #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
 | |
| #else
 | |
| #define le_bswap(v, size) (v)
 | |
| #define be_bswap(v, size) glue(bswap, size)(v)
 | |
| #define le_bswaps(v, size)
 | |
| #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
 | |
| #endif
 | |
| 
 | |
| #define CPU_CONVERT(endian, size, type)\
 | |
| static inline type endian ## size ## _to_cpu(type v)\
 | |
| {\
 | |
|     return glue(endian, _bswap)(v, size);\
 | |
| }\
 | |
| \
 | |
| static inline type cpu_to_ ## endian ## size(type v)\
 | |
| {\
 | |
|     return glue(endian, _bswap)(v, size);\
 | |
| }\
 | |
| \
 | |
| static inline void endian ## size ## _to_cpus(type *p)\
 | |
| {\
 | |
|     glue(endian, _bswaps)(p, size);\
 | |
| }\
 | |
| \
 | |
| static inline void cpu_to_ ## endian ## size ## s(type *p)\
 | |
| {\
 | |
|     glue(endian, _bswaps)(p, size);\
 | |
| }\
 | |
| \
 | |
| static inline type endian ## size ## _to_cpup(const type *p)\
 | |
| {\
 | |
|     return glue(glue(endian, size), _to_cpu)(*p);\
 | |
| }\
 | |
| \
 | |
| static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
 | |
| {\
 | |
|     *p = glue(glue(cpu_to_, endian), size)(v);\
 | |
| }
 | |
| 
 | |
| CPU_CONVERT(be, 16, uint16_t)
 | |
| CPU_CONVERT(be, 32, uint32_t)
 | |
| CPU_CONVERT(be, 64, uint64_t)
 | |
| 
 | |
| CPU_CONVERT(le, 16, uint16_t)
 | |
| CPU_CONVERT(le, 32, uint32_t)
 | |
| CPU_CONVERT(le, 64, uint64_t)
 | |
| 
 | |
| /* len must be one of 1, 2, 4 */
 | |
| static inline uint32_t qemu_bswap_len(uint32_t value, int len)
 | |
| {
 | |
|     return bswap32(value) >> (32 - 8 * len);
 | |
| }
 | |
| 
 | |
| /* Unions for reinterpreting between floats and integers.  */
 | |
| 
 | |
| typedef union {
 | |
|     float32 f;
 | |
|     uint32_t l;
 | |
| } CPU_FloatU;
 | |
| 
 | |
| typedef union {
 | |
|     float64 d;
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     struct {
 | |
|         uint32_t upper;
 | |
|         uint32_t lower;
 | |
|     } l;
 | |
| #else
 | |
|     struct {
 | |
|         uint32_t lower;
 | |
|         uint32_t upper;
 | |
|     } l;
 | |
| #endif
 | |
|     uint64_t ll;
 | |
| } CPU_DoubleU;
 | |
| 
 | |
| typedef union {
 | |
|      floatx80 d;
 | |
|      struct {
 | |
|          uint64_t lower;
 | |
|          uint16_t upper;
 | |
|      } l;
 | |
| } CPU_LDoubleU;
 | |
| 
 | |
| typedef union {
 | |
|     float128 q;
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     struct {
 | |
|         uint32_t upmost;
 | |
|         uint32_t upper;
 | |
|         uint32_t lower;
 | |
|         uint32_t lowest;
 | |
|     } l;
 | |
|     struct {
 | |
|         uint64_t upper;
 | |
|         uint64_t lower;
 | |
|     } ll;
 | |
| #else
 | |
|     struct {
 | |
|         uint32_t lowest;
 | |
|         uint32_t lower;
 | |
|         uint32_t upper;
 | |
|         uint32_t upmost;
 | |
|     } l;
 | |
|     struct {
 | |
|         uint64_t lower;
 | |
|         uint64_t upper;
 | |
|     } ll;
 | |
| #endif
 | |
| } CPU_QuadU;
 | |
| 
 | |
| /* unaligned/endian-independent pointer access */
 | |
| 
 | |
| /*
 | |
|  * the generic syntax is:
 | |
|  *
 | |
|  * load: ld{type}{sign}{size}{endian}_p(ptr)
 | |
|  *
 | |
|  * store: st{type}{size}{endian}_p(ptr, val)
 | |
|  *
 | |
|  * Note there are small differences with the softmmu access API!
 | |
|  *
 | |
|  * type is:
 | |
|  * (empty): integer access
 | |
|  *   f    : float access
 | |
|  *
 | |
|  * sign is:
 | |
|  * (empty): for floats or 32 bit size
 | |
|  *   u    : unsigned
 | |
|  *   s    : signed
 | |
|  *
 | |
|  * size is:
 | |
|  *   b: 8 bits
 | |
|  *   w: 16 bits
 | |
|  *   l: 32 bits
 | |
|  *   q: 64 bits
 | |
|  *
 | |
|  * endian is:
 | |
|  * (empty): host endian
 | |
|  *   be   : big endian
 | |
|  *   le   : little endian
 | |
|  */
 | |
| 
 | |
| static inline int ldub_p(const void *ptr)
 | |
| {
 | |
|     return *(uint8_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline int ldsb_p(const void *ptr)
 | |
| {
 | |
|     return *(int8_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline void stb_p(void *ptr, uint8_t v)
 | |
| {
 | |
|     *(uint8_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| /* Any compiler worth its salt will turn these memcpy into native unaligned
 | |
|    operations.  Thus we don't need to play games with packed attributes, or
 | |
|    inline byte-by-byte stores.  */
 | |
| 
 | |
| static inline int lduw_p(const void *ptr)
 | |
| {
 | |
|     uint16_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline int ldsw_p(const void *ptr)
 | |
| {
 | |
|     int16_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline void stw_p(void *ptr, uint16_t v)
 | |
| {
 | |
|     memcpy(ptr, &v, sizeof(v));
 | |
| }
 | |
| 
 | |
| static inline int ldl_p(const void *ptr)
 | |
| {
 | |
|     int32_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline void stl_p(void *ptr, uint32_t v)
 | |
| {
 | |
|     memcpy(ptr, &v, sizeof(v));
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_p(const void *ptr)
 | |
| {
 | |
|     uint64_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline void stq_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     memcpy(ptr, &v, sizeof(v));
 | |
| }
 | |
| 
 | |
| static inline int lduw_le_p(const void *ptr)
 | |
| {
 | |
|     return (uint16_t)le_bswap(lduw_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldsw_le_p(const void *ptr)
 | |
| {
 | |
|     return (int16_t)le_bswap(lduw_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldl_le_p(const void *ptr)
 | |
| {
 | |
|     return le_bswap(ldl_p(ptr), 32);
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_le_p(const void *ptr)
 | |
| {
 | |
|     return le_bswap(ldq_p(ptr), 64);
 | |
| }
 | |
| 
 | |
| static inline void stw_le_p(void *ptr, uint16_t v)
 | |
| {
 | |
|     stw_p(ptr, le_bswap(v, 16));
 | |
| }
 | |
| 
 | |
| static inline void stl_le_p(void *ptr, uint32_t v)
 | |
| {
 | |
|     stl_p(ptr, le_bswap(v, 32));
 | |
| }
 | |
| 
 | |
| static inline void stq_le_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     stq_p(ptr, le_bswap(v, 64));
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_le_p(const void *ptr)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.l = ldl_le_p(ptr);
 | |
|     return u.f;
 | |
| }
 | |
| 
 | |
| static inline void stfl_le_p(void *ptr, float32 v)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.f = v;
 | |
|     stl_le_p(ptr, u.l);
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_le_p(const void *ptr)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.ll = ldq_le_p(ptr);
 | |
|     return u.d;
 | |
| }
 | |
| 
 | |
| static inline void stfq_le_p(void *ptr, float64 v)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.d = v;
 | |
|     stq_le_p(ptr, u.ll);
 | |
| }
 | |
| 
 | |
| static inline int lduw_be_p(const void *ptr)
 | |
| {
 | |
|     return (uint16_t)be_bswap(lduw_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldsw_be_p(const void *ptr)
 | |
| {
 | |
|     return (int16_t)be_bswap(lduw_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldl_be_p(const void *ptr)
 | |
| {
 | |
|     return be_bswap(ldl_p(ptr), 32);
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_be_p(const void *ptr)
 | |
| {
 | |
|     return be_bswap(ldq_p(ptr), 64);
 | |
| }
 | |
| 
 | |
| static inline void stw_be_p(void *ptr, uint16_t v)
 | |
| {
 | |
|     stw_p(ptr, be_bswap(v, 16));
 | |
| }
 | |
| 
 | |
| static inline void stl_be_p(void *ptr, uint32_t v)
 | |
| {
 | |
|     stl_p(ptr, be_bswap(v, 32));
 | |
| }
 | |
| 
 | |
| static inline void stq_be_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     stq_p(ptr, be_bswap(v, 64));
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_be_p(const void *ptr)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.l = ldl_be_p(ptr);
 | |
|     return u.f;
 | |
| }
 | |
| 
 | |
| static inline void stfl_be_p(void *ptr, float32 v)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.f = v;
 | |
|     stl_be_p(ptr, u.l);
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_be_p(const void *ptr)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.ll = ldq_be_p(ptr);
 | |
|     return u.d;
 | |
| }
 | |
| 
 | |
| static inline void stfq_be_p(void *ptr, float64 v)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.d = v;
 | |
|     stq_be_p(ptr, u.ll);
 | |
| }
 | |
| 
 | |
| static inline unsigned long leul_to_cpu(unsigned long v)
 | |
| {
 | |
|     /* In order to break an include loop between here and
 | |
|        qemu-common.h, don't rely on HOST_LONG_BITS.  */
 | |
| #if ULONG_MAX == UINT32_MAX
 | |
|     return le_bswap(v, 32);
 | |
| #elif ULONG_MAX == UINT64_MAX
 | |
|     return le_bswap(v, 64);
 | |
| #else
 | |
| # error Unknown sizeof long
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #undef le_bswap
 | |
| #undef be_bswap
 | |
| #undef le_bswaps
 | |
| #undef be_bswaps
 | |
| 
 | |
| #endif /* BSWAP_H */
 |