 bcdb90640a
			
		
	
	
		bcdb90640a
		
	
	
	
	
		
			
			The MC146818 is a Real Time Clock, not a timer. Move it under the hw/rtc/ subdirectory. Use copyright statement from 80cabfad163 for "hw/rtc/mc146818rtc.h". Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-Id: <20191003230404.19384-4-philmd@redhat.com> Signed-off-by: Laurent Vivier <laurent@vivier.eu>
		
			
				
	
	
		
			288 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU HPPA hardware system emulator.
 | |
|  * Copyright 2018 Helge Deller <deller@gmx.de>
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu-common.h"
 | |
| #include "cpu.h"
 | |
| #include "elf.h"
 | |
| #include "hw/loader.h"
 | |
| #include "hw/boards.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "sysemu/reset.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "hw/rtc/mc146818rtc.h"
 | |
| #include "hw/ide.h"
 | |
| #include "hw/timer/i8254.h"
 | |
| #include "hw/char/serial.h"
 | |
| #include "hppa_sys.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/log.h"
 | |
| 
 | |
| #define MAX_IDE_BUS 2
 | |
| 
 | |
| static ISABus *hppa_isa_bus(void)
 | |
| {
 | |
|     ISABus *isa_bus;
 | |
|     qemu_irq *isa_irqs;
 | |
|     MemoryRegion *isa_region;
 | |
| 
 | |
|     isa_region = g_new(MemoryRegion, 1);
 | |
|     memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
 | |
|                           NULL, "isa-io", 0x800);
 | |
|     memory_region_add_subregion(get_system_memory(), IDE_HPA,
 | |
|                                 isa_region);
 | |
| 
 | |
|     isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
 | |
|                           &error_abort);
 | |
|     isa_irqs = i8259_init(isa_bus,
 | |
|                           /* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */
 | |
|                           NULL);
 | |
|     isa_bus_irqs(isa_bus, isa_irqs);
 | |
| 
 | |
|     return isa_bus;
 | |
| }
 | |
| 
 | |
| static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr)
 | |
| {
 | |
|     addr &= (0x10000000 - 1);
 | |
|     return addr;
 | |
| }
 | |
| 
 | |
| static HPPACPU *cpu[HPPA_MAX_CPUS];
 | |
| static uint64_t firmware_entry;
 | |
| 
 | |
| static void machine_hppa_init(MachineState *machine)
 | |
| {
 | |
|     const char *kernel_filename = machine->kernel_filename;
 | |
|     const char *kernel_cmdline = machine->kernel_cmdline;
 | |
|     const char *initrd_filename = machine->initrd_filename;
 | |
|     DeviceState *dev;
 | |
|     PCIBus *pci_bus;
 | |
|     ISABus *isa_bus;
 | |
|     qemu_irq rtc_irq, serial_irq;
 | |
|     char *firmware_filename;
 | |
|     uint64_t firmware_low, firmware_high;
 | |
|     long size;
 | |
|     uint64_t kernel_entry = 0, kernel_low, kernel_high;
 | |
|     MemoryRegion *addr_space = get_system_memory();
 | |
|     MemoryRegion *rom_region;
 | |
|     MemoryRegion *ram_region;
 | |
|     MemoryRegion *cpu_region;
 | |
|     long i;
 | |
|     unsigned int smp_cpus = machine->smp.cpus;
 | |
| 
 | |
|     ram_size = machine->ram_size;
 | |
| 
 | |
|     /* Create CPUs.  */
 | |
|     for (i = 0; i < smp_cpus; i++) {
 | |
|         char *name = g_strdup_printf("cpu%ld-io-eir", i);
 | |
|         cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
 | |
| 
 | |
|         cpu_region = g_new(MemoryRegion, 1);
 | |
|         memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
 | |
|                               cpu[i], name, 4);
 | |
|         memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000,
 | |
|                                     cpu_region);
 | |
|         g_free(name);
 | |
|     }
 | |
| 
 | |
|     /* Limit main memory. */
 | |
|     if (ram_size > FIRMWARE_START) {
 | |
|         machine->ram_size = ram_size = FIRMWARE_START;
 | |
|     }
 | |
| 
 | |
|     /* Main memory region. */
 | |
|     ram_region = g_new(MemoryRegion, 1);
 | |
|     memory_region_allocate_system_memory(ram_region, OBJECT(machine),
 | |
|                                          "ram", ram_size);
 | |
|     memory_region_add_subregion(addr_space, 0, ram_region);
 | |
| 
 | |
|     /* Init Dino (PCI host bus chip).  */
 | |
|     pci_bus = dino_init(addr_space, &rtc_irq, &serial_irq);
 | |
|     assert(pci_bus);
 | |
| 
 | |
|     /* Create ISA bus. */
 | |
|     isa_bus = hppa_isa_bus();
 | |
|     assert(isa_bus);
 | |
| 
 | |
|     /* Realtime clock, used by firmware for PDC_TOD call. */
 | |
|     mc146818_rtc_init(isa_bus, 2000, rtc_irq);
 | |
| 
 | |
|     /* Serial code setup.  */
 | |
|     if (serial_hd(0)) {
 | |
|         uint32_t addr = DINO_UART_HPA + 0x800;
 | |
|         serial_mm_init(addr_space, addr, 0, serial_irq,
 | |
|                        115200, serial_hd(0), DEVICE_BIG_ENDIAN);
 | |
|     }
 | |
| 
 | |
|     /* SCSI disk setup. */
 | |
|     dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a"));
 | |
|     lsi53c8xx_handle_legacy_cmdline(dev);
 | |
| 
 | |
|     /* Network setup.  e1000 is good enough, failing Tulip support.  */
 | |
|     for (i = 0; i < nb_nics; i++) {
 | |
|         pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL);
 | |
|     }
 | |
| 
 | |
|     /* Load firmware.  Given that this is not "real" firmware,
 | |
|        but one explicitly written for the emulation, we might as
 | |
|        well load it directly from an ELF image.  */
 | |
|     firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
 | |
|                                        bios_name ? bios_name :
 | |
|                                        "hppa-firmware.img");
 | |
|     if (firmware_filename == NULL) {
 | |
|         error_report("no firmware provided");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     size = load_elf(firmware_filename, NULL, NULL, NULL,
 | |
|                     &firmware_entry, &firmware_low, &firmware_high,
 | |
|                     true, EM_PARISC, 0, 0);
 | |
| 
 | |
|     /* Unfortunately, load_elf sign-extends reading elf32.  */
 | |
|     firmware_entry = (target_ureg)firmware_entry;
 | |
|     firmware_low = (target_ureg)firmware_low;
 | |
|     firmware_high = (target_ureg)firmware_high;
 | |
| 
 | |
|     if (size < 0) {
 | |
|         error_report("could not load firmware '%s'", firmware_filename);
 | |
|         exit(1);
 | |
|     }
 | |
|     qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64
 | |
|                   "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n",
 | |
|                   firmware_low, firmware_high, firmware_entry);
 | |
|     if (firmware_low < ram_size || firmware_high >= FIRMWARE_END) {
 | |
|         error_report("Firmware overlaps with memory or IO space");
 | |
|         exit(1);
 | |
|     }
 | |
|     g_free(firmware_filename);
 | |
| 
 | |
|     rom_region = g_new(MemoryRegion, 1);
 | |
|     memory_region_init_ram(rom_region, NULL, "firmware",
 | |
|                            (FIRMWARE_END - FIRMWARE_START), &error_fatal);
 | |
|     memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region);
 | |
| 
 | |
|     /* Load kernel */
 | |
|     if (kernel_filename) {
 | |
|         size = load_elf(kernel_filename, NULL, &cpu_hppa_to_phys,
 | |
|                         NULL, &kernel_entry, &kernel_low, &kernel_high,
 | |
|                         true, EM_PARISC, 0, 0);
 | |
| 
 | |
|         /* Unfortunately, load_elf sign-extends reading elf32.  */
 | |
|         kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry);
 | |
|         kernel_low = (target_ureg)kernel_low;
 | |
|         kernel_high = (target_ureg)kernel_high;
 | |
| 
 | |
|         if (size < 0) {
 | |
|             error_report("could not load kernel '%s'", kernel_filename);
 | |
|             exit(1);
 | |
|         }
 | |
|         qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64
 | |
|                       "-0x%08" PRIx64 ", entry at 0x%08" PRIx64
 | |
|                       ", size %" PRIu64 " kB\n",
 | |
|                       kernel_low, kernel_high, kernel_entry, size / KiB);
 | |
| 
 | |
|         if (kernel_cmdline) {
 | |
|             cpu[0]->env.gr[24] = 0x4000;
 | |
|             pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
 | |
|                              TARGET_PAGE_SIZE, kernel_cmdline);
 | |
|         }
 | |
| 
 | |
|         if (initrd_filename) {
 | |
|             ram_addr_t initrd_base;
 | |
|             int64_t initrd_size;
 | |
| 
 | |
|             initrd_size = get_image_size(initrd_filename);
 | |
|             if (initrd_size < 0) {
 | |
|                 error_report("could not load initial ram disk '%s'",
 | |
|                              initrd_filename);
 | |
|                 exit(1);
 | |
|             }
 | |
| 
 | |
|             /* Load the initrd image high in memory.
 | |
|                Mirror the algorithm used by palo:
 | |
|                (1) Due to sign-extension problems and PDC,
 | |
|                put the initrd no higher than 1G.
 | |
|                (2) Reserve 64k for stack.  */
 | |
|             initrd_base = MIN(ram_size, 1 * GiB);
 | |
|             initrd_base = initrd_base - 64 * KiB;
 | |
|             initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
 | |
| 
 | |
|             if (initrd_base < kernel_high) {
 | |
|                 error_report("kernel and initial ram disk too large!");
 | |
|                 exit(1);
 | |
|             }
 | |
| 
 | |
|             load_image_targphys(initrd_filename, initrd_base, initrd_size);
 | |
|             cpu[0]->env.gr[23] = initrd_base;
 | |
|             cpu[0]->env.gr[22] = initrd_base + initrd_size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!kernel_entry) {
 | |
|         /* When booting via firmware, tell firmware if we want interactive
 | |
|          * mode (kernel_entry=1), and to boot from CD (gr[24]='d')
 | |
|          * or hard disc * (gr[24]='c').
 | |
|          */
 | |
|         kernel_entry = boot_menu ? 1 : 0;
 | |
|         cpu[0]->env.gr[24] = machine->boot_order[0];
 | |
|     }
 | |
| 
 | |
|     /* We jump to the firmware entry routine and pass the
 | |
|      * various parameters in registers. After firmware initialization,
 | |
|      * firmware will start the Linux kernel with ramdisk and cmdline.
 | |
|      */
 | |
|     cpu[0]->env.gr[26] = ram_size;
 | |
|     cpu[0]->env.gr[25] = kernel_entry;
 | |
| 
 | |
|     /* tell firmware how many SMP CPUs to present in inventory table */
 | |
|     cpu[0]->env.gr[21] = smp_cpus;
 | |
| }
 | |
| 
 | |
| static void hppa_machine_reset(MachineState *ms)
 | |
| {
 | |
|     unsigned int smp_cpus = ms->smp.cpus;
 | |
|     int i;
 | |
| 
 | |
|     qemu_devices_reset();
 | |
| 
 | |
|     /* Start all CPUs at the firmware entry point.
 | |
|      *  Monarch CPU will initialize firmware, secondary CPUs
 | |
|      *  will enter a small idle look and wait for rendevouz. */
 | |
|     for (i = 0; i < smp_cpus; i++) {
 | |
|         cpu_set_pc(CPU(cpu[i]), firmware_entry);
 | |
|         cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
 | |
|     }
 | |
| 
 | |
|     /* already initialized by machine_hppa_init()? */
 | |
|     if (cpu[0]->env.gr[26] == ram_size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu[0]->env.gr[26] = ram_size;
 | |
|     cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
 | |
|     cpu[0]->env.gr[24] = 'c';
 | |
|     /* gr22/gr23 unused, no initrd while reboot. */
 | |
|     cpu[0]->env.gr[21] = smp_cpus;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void machine_hppa_machine_init(MachineClass *mc)
 | |
| {
 | |
|     mc->desc = "HPPA generic machine";
 | |
|     mc->default_cpu_type = TYPE_HPPA_CPU;
 | |
|     mc->init = machine_hppa_init;
 | |
|     mc->reset = hppa_machine_reset;
 | |
|     mc->block_default_type = IF_SCSI;
 | |
|     mc->max_cpus = HPPA_MAX_CPUS;
 | |
|     mc->default_cpus = 1;
 | |
|     mc->is_default = 1;
 | |
|     mc->default_ram_size = 512 * MiB;
 | |
|     mc->default_boot_order = "cd";
 | |
| }
 | |
| 
 | |
| DEFINE_MACHINE("hppa", machine_hppa_machine_init)
 |