 ba324b3fb4
			
		
	
	
		ba324b3fb4
		
	
	
	
	
		
			
			Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20231221031652.119827-57-richard.henderson@linaro.org>
		
			
				
	
	
		
			453 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			453 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * IMX EPIT Timer
 | |
|  *
 | |
|  * Copyright (c) 2008 OK Labs
 | |
|  * Copyright (c) 2011 NICTA Pty Ltd
 | |
|  * Originally written by Hans Jiang
 | |
|  * Updated by Peter Chubb
 | |
|  * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
 | |
|  * Updated by Axel Heider
 | |
|  *
 | |
|  * This code is licensed under GPL version 2 or later.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "hw/timer/imx_epit.h"
 | |
| #include "migration/vmstate.h"
 | |
| #include "hw/irq.h"
 | |
| #include "hw/misc/imx_ccm.h"
 | |
| #include "qemu/module.h"
 | |
| #include "qemu/log.h"
 | |
| 
 | |
| #ifndef DEBUG_IMX_EPIT
 | |
| #define DEBUG_IMX_EPIT 0
 | |
| #endif
 | |
| 
 | |
| #define DPRINTF(fmt, args...) \
 | |
|     do { \
 | |
|         if (DEBUG_IMX_EPIT) { \
 | |
|             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \
 | |
|                                              __func__, ##args); \
 | |
|         } \
 | |
|     } while (0)
 | |
| 
 | |
| static const char *imx_epit_reg_name(uint32_t reg)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0:
 | |
|         return "CR";
 | |
|     case 1:
 | |
|         return "SR";
 | |
|     case 2:
 | |
|         return "LR";
 | |
|     case 3:
 | |
|         return "CMP";
 | |
|     case 4:
 | |
|         return "CNT";
 | |
|     default:
 | |
|         return "[?]";
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Exact clock frequencies vary from board to board.
 | |
|  * These are typical.
 | |
|  */
 | |
| static const IMXClk imx_epit_clocks[] =  {
 | |
|     CLK_NONE,      /* 00 disabled */
 | |
|     CLK_IPG,       /* 01 ipg_clk, ~532MHz */
 | |
|     CLK_IPG_HIGH,  /* 10 ipg_clk_highfreq */
 | |
|     CLK_32k,       /* 11 ipg_clk_32k -- ~32kHz */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Update interrupt status
 | |
|  */
 | |
| static void imx_epit_update_int(IMXEPITState *s)
 | |
| {
 | |
|     if ((s->sr & SR_OCIF) && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) {
 | |
|         qemu_irq_raise(s->irq);
 | |
|     } else {
 | |
|         qemu_irq_lower(s->irq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t imx_epit_get_freq(IMXEPITState *s)
 | |
| {
 | |
|     uint32_t clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, CR_CLKSRC_BITS);
 | |
|     uint32_t prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, CR_PRESCALE_BITS);
 | |
|     uint32_t f_in = imx_ccm_get_clock_frequency(s->ccm, imx_epit_clocks[clksrc]);
 | |
|     uint32_t freq = f_in / prescaler;
 | |
|     DPRINTF("ptimer frequency is %u\n", freq);
 | |
|     return freq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called both on hardware (device) reset and software reset.
 | |
|  */
 | |
| static void imx_epit_reset(IMXEPITState *s, bool is_hard_reset)
 | |
| {
 | |
|     /* Soft reset doesn't touch some bits; hard reset clears them */
 | |
|     if (is_hard_reset) {
 | |
|         s->cr = 0;
 | |
|     } else {
 | |
|         s->cr &= (CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN);
 | |
|     }
 | |
|     s->sr = 0;
 | |
|     s->lr = EPIT_TIMER_MAX;
 | |
|     s->cmp = 0;
 | |
|     ptimer_transaction_begin(s->timer_cmp);
 | |
|     ptimer_transaction_begin(s->timer_reload);
 | |
| 
 | |
|     /*
 | |
|      * The reset switches off the input clock, so even if the CR.EN is still
 | |
|      * set, the timers are no longer running.
 | |
|      */
 | |
|     assert(imx_epit_get_freq(s) == 0);
 | |
|     ptimer_stop(s->timer_cmp);
 | |
|     ptimer_stop(s->timer_reload);
 | |
|     /* init both timers to EPIT_TIMER_MAX */
 | |
|     ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1);
 | |
|     ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1);
 | |
|     ptimer_transaction_commit(s->timer_cmp);
 | |
|     ptimer_transaction_commit(s->timer_reload);
 | |
| }
 | |
| 
 | |
| static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size)
 | |
| {
 | |
|     IMXEPITState *s = IMX_EPIT(opaque);
 | |
|     uint32_t reg_value = 0;
 | |
| 
 | |
|     switch (offset >> 2) {
 | |
|     case 0: /* Control Register */
 | |
|         reg_value = s->cr;
 | |
|         break;
 | |
| 
 | |
|     case 1: /* Status Register */
 | |
|         reg_value = s->sr;
 | |
|         break;
 | |
| 
 | |
|     case 2: /* LR - ticks*/
 | |
|         reg_value = s->lr;
 | |
|         break;
 | |
| 
 | |
|     case 3: /* CMP */
 | |
|         reg_value = s->cmp;
 | |
|         break;
 | |
| 
 | |
|     case 4: /* CNT */
 | |
|         reg_value = ptimer_get_count(s->timer_reload);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
 | |
|                       HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset >> 2), reg_value);
 | |
| 
 | |
|     return reg_value;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called from a ptimer_transaction_begin/commit block for
 | |
|  * s->timer_cmp, but outside of a transaction block of s->timer_reload,
 | |
|  * so the proper counter value is read.
 | |
|  */
 | |
| static void imx_epit_update_compare_timer(IMXEPITState *s)
 | |
| {
 | |
|     uint64_t counter = 0;
 | |
|     bool is_oneshot = false;
 | |
|     /*
 | |
|      * The compare timer only has to run if the timer peripheral is active
 | |
|      * and there is an input clock, Otherwise it can be switched off.
 | |
|      */
 | |
|     bool is_active = (s->cr & CR_EN) && imx_epit_get_freq(s);
 | |
|     if (is_active) {
 | |
|         /*
 | |
|          * Calculate next timeout for compare timer. Reading the reload
 | |
|          * counter returns proper results only if pending transactions
 | |
|          * on it are committed here. Otherwise stale values are be read.
 | |
|          */
 | |
|         counter = ptimer_get_count(s->timer_reload);
 | |
|         uint64_t limit = ptimer_get_limit(s->timer_cmp);
 | |
|         /*
 | |
|          * The compare timer is a periodic timer if the limit is at least
 | |
|          * the compare value. Otherwise it may fire at most once in the
 | |
|          * current round.
 | |
|          */
 | |
|         is_oneshot = (limit < s->cmp);
 | |
|         if (counter >= s->cmp) {
 | |
|             /* The compare timer fires in the current round. */
 | |
|             counter -= s->cmp;
 | |
|         } else if (!is_oneshot) {
 | |
|             /*
 | |
|              * The compare timer fires after a reload, as it is below the
 | |
|              * compare value already in this round. Note that the counter
 | |
|              * value calculated below can be above the 32-bit limit, which
 | |
|              * is legal here because the compare timer is an internal
 | |
|              * helper ptimer only.
 | |
|              */
 | |
|             counter += limit - s->cmp;
 | |
|         } else {
 | |
|             /*
 | |
|              * The compare timer won't fire in this round, and the limit is
 | |
|              * set to a value below the compare value. This practically means
 | |
|              * it will never fire, so it can be switched off.
 | |
|              */
 | |
|             is_active = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Set the compare timer and let it run, or stop it. This is agnostic
 | |
|      * of CR.OCIEN bit, as this bit affects interrupt generation only. The
 | |
|      * compare timer needs to run even if no interrupts are to be generated,
 | |
|      * because the SR.OCIF bit must be updated also.
 | |
|      * Note that the timer might already be stopped or be running with
 | |
|      * counter values. However, finding out when an update is needed and
 | |
|      * when not is not trivial. It's much easier applying the setting again,
 | |
|      * as this does not harm either and the overhead is negligible.
 | |
|      */
 | |
|     if (is_active) {
 | |
|         ptimer_set_count(s->timer_cmp, counter);
 | |
|         ptimer_run(s->timer_cmp, is_oneshot ? 1 : 0);
 | |
|     } else {
 | |
|         ptimer_stop(s->timer_cmp);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static void imx_epit_write_cr(IMXEPITState *s, uint32_t value)
 | |
| {
 | |
|     uint32_t oldcr = s->cr;
 | |
| 
 | |
|     s->cr = value & 0x03ffffff;
 | |
| 
 | |
|     if (s->cr & CR_SWR) {
 | |
|         /*
 | |
|          * Reset clears CR.SWR again. It does not touch CR.EN, but the timers
 | |
|          * are still stopped because the input clock is disabled.
 | |
|          */
 | |
|         imx_epit_reset(s, false);
 | |
|     } else {
 | |
|         uint32_t freq;
 | |
|         uint32_t toggled_cr_bits = oldcr ^ s->cr;
 | |
|         /* re-initialize the limits if CR.RLD has changed */
 | |
|         bool set_limit = toggled_cr_bits & CR_RLD;
 | |
|         /* set the counter if the timer got just enabled and CR.ENMOD is set */
 | |
|         bool is_switched_on = (toggled_cr_bits & s->cr) & CR_EN;
 | |
|         bool set_counter = is_switched_on && (s->cr & CR_ENMOD);
 | |
| 
 | |
|         ptimer_transaction_begin(s->timer_cmp);
 | |
|         ptimer_transaction_begin(s->timer_reload);
 | |
|         freq = imx_epit_get_freq(s);
 | |
|         if (freq) {
 | |
|             ptimer_set_freq(s->timer_reload, freq);
 | |
|             ptimer_set_freq(s->timer_cmp, freq);
 | |
|         }
 | |
| 
 | |
|         if (set_limit || set_counter) {
 | |
|             uint64_t limit = (s->cr & CR_RLD) ? s->lr : EPIT_TIMER_MAX;
 | |
|             ptimer_set_limit(s->timer_reload, limit, set_counter ? 1 : 0);
 | |
|             if (set_limit) {
 | |
|                 ptimer_set_limit(s->timer_cmp, limit, 0);
 | |
|             }
 | |
|         }
 | |
|         /*
 | |
|          * If there is an input clock and the peripheral is enabled, then
 | |
|          * ensure the wall clock timer is ticking. Otherwise stop the timers.
 | |
|          * The compare timer will be updated later.
 | |
|          */
 | |
|         if (freq && (s->cr & CR_EN)) {
 | |
|             ptimer_run(s->timer_reload, 0);
 | |
|         } else {
 | |
|             ptimer_stop(s->timer_reload);
 | |
|         }
 | |
|         /* Commit changes to reload timer, so they can propagate. */
 | |
|         ptimer_transaction_commit(s->timer_reload);
 | |
|         /* Update compare timer based on the committed reload timer value. */
 | |
|         imx_epit_update_compare_timer(s);
 | |
|         ptimer_transaction_commit(s->timer_cmp);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The interrupt state can change due to:
 | |
|      * - reset clears both SR.OCIF and CR.OCIE
 | |
|      * - write to CR.EN or CR.OCIE
 | |
|      */
 | |
|     imx_epit_update_int(s);
 | |
| }
 | |
| 
 | |
| static void imx_epit_write_sr(IMXEPITState *s, uint32_t value)
 | |
| {
 | |
|     /* writing 1 to SR.OCIF clears this bit and turns the interrupt off */
 | |
|     if (value & SR_OCIF) {
 | |
|         s->sr = 0; /* SR.OCIF is the only bit in this register anyway */
 | |
|         imx_epit_update_int(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void imx_epit_write_lr(IMXEPITState *s, uint32_t value)
 | |
| {
 | |
|     s->lr = value;
 | |
| 
 | |
|     ptimer_transaction_begin(s->timer_cmp);
 | |
|     ptimer_transaction_begin(s->timer_reload);
 | |
|     if (s->cr & CR_RLD) {
 | |
|         /* Also set the limit if the LRD bit is set */
 | |
|         /* If IOVW bit is set then set the timer value */
 | |
|         ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW);
 | |
|         ptimer_set_limit(s->timer_cmp, s->lr, 0);
 | |
|     } else if (s->cr & CR_IOVW) {
 | |
|         /* If IOVW bit is set then set the timer value */
 | |
|         ptimer_set_count(s->timer_reload, s->lr);
 | |
|     }
 | |
|     /* Commit the changes to s->timer_reload, so they can propagate. */
 | |
|     ptimer_transaction_commit(s->timer_reload);
 | |
|     /* Update the compare timer based on the committed reload timer value. */
 | |
|     imx_epit_update_compare_timer(s);
 | |
|     ptimer_transaction_commit(s->timer_cmp);
 | |
| }
 | |
| 
 | |
| static void imx_epit_write_cmp(IMXEPITState *s, uint32_t value)
 | |
| {
 | |
|     s->cmp = value;
 | |
| 
 | |
|     /* Update the compare timer based on the committed reload timer value. */
 | |
|     ptimer_transaction_begin(s->timer_cmp);
 | |
|     imx_epit_update_compare_timer(s);
 | |
|     ptimer_transaction_commit(s->timer_cmp);
 | |
| }
 | |
| 
 | |
| static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value,
 | |
|                            unsigned size)
 | |
| {
 | |
|     IMXEPITState *s = IMX_EPIT(opaque);
 | |
| 
 | |
|     DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset >> 2),
 | |
|             (uint32_t)value);
 | |
| 
 | |
|     switch (offset >> 2) {
 | |
|     case 0: /* CR */
 | |
|         imx_epit_write_cr(s, (uint32_t)value);
 | |
|         break;
 | |
| 
 | |
|     case 1: /* SR */
 | |
|         imx_epit_write_sr(s, (uint32_t)value);
 | |
|         break;
 | |
| 
 | |
|     case 2: /* LR */
 | |
|         imx_epit_write_lr(s, (uint32_t)value);
 | |
|         break;
 | |
| 
 | |
|     case 3: /* CMP */
 | |
|         imx_epit_write_cmp(s, (uint32_t)value);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
 | |
|                       HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void imx_epit_cmp(void *opaque)
 | |
| {
 | |
|     IMXEPITState *s = IMX_EPIT(opaque);
 | |
| 
 | |
|     /* The cmp ptimer can't be running when the peripheral is disabled */
 | |
|     assert(s->cr & CR_EN);
 | |
| 
 | |
|     DPRINTF("sr was %d\n", s->sr);
 | |
|     /* Set interrupt status bit SR.OCIF and update the interrupt state */
 | |
|     s->sr |= SR_OCIF;
 | |
|     imx_epit_update_int(s);
 | |
| }
 | |
| 
 | |
| static void imx_epit_reload(void *opaque)
 | |
| {
 | |
|     /* No action required on rollover of timer_reload */
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps imx_epit_ops = {
 | |
|     .read = imx_epit_read,
 | |
|     .write = imx_epit_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_imx_timer_epit = {
 | |
|     .name = TYPE_IMX_EPIT,
 | |
|     .version_id = 3,
 | |
|     .minimum_version_id = 3,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_UINT32(cr, IMXEPITState),
 | |
|         VMSTATE_UINT32(sr, IMXEPITState),
 | |
|         VMSTATE_UINT32(lr, IMXEPITState),
 | |
|         VMSTATE_UINT32(cmp, IMXEPITState),
 | |
|         VMSTATE_PTIMER(timer_reload, IMXEPITState),
 | |
|         VMSTATE_PTIMER(timer_cmp, IMXEPITState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void imx_epit_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     IMXEPITState *s = IMX_EPIT(dev);
 | |
|     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 | |
| 
 | |
|     DPRINTF("\n");
 | |
| 
 | |
|     sysbus_init_irq(sbd, &s->irq);
 | |
|     memory_region_init_io(&s->iomem, OBJECT(s), &imx_epit_ops, s, TYPE_IMX_EPIT,
 | |
|                           0x00001000);
 | |
|     sysbus_init_mmio(sbd, &s->iomem);
 | |
| 
 | |
|     /*
 | |
|      * The reload timer keeps running when the peripheral is enabled. It is a
 | |
|      * kind of wall clock that does not generate any interrupts. The callback
 | |
|      * needs to be provided, but it does nothing as the ptimer already supports
 | |
|      * all necessary reloading functionality.
 | |
|      */
 | |
|     s->timer_reload = ptimer_init(imx_epit_reload, s, PTIMER_POLICY_LEGACY);
 | |
| 
 | |
|     /*
 | |
|      * The compare timer is running only when the peripheral configuration is
 | |
|      * in a state that will generate compare interrupts.
 | |
|      */
 | |
|     s->timer_cmp = ptimer_init(imx_epit_cmp, s, PTIMER_POLICY_LEGACY);
 | |
| }
 | |
| 
 | |
| static void imx_epit_dev_reset(DeviceState *dev)
 | |
| {
 | |
|     IMXEPITState *s = IMX_EPIT(dev);
 | |
|     imx_epit_reset(s, true);
 | |
| }
 | |
| 
 | |
| static void imx_epit_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc  = DEVICE_CLASS(klass);
 | |
| 
 | |
|     dc->realize = imx_epit_realize;
 | |
|     dc->reset = imx_epit_dev_reset;
 | |
|     dc->vmsd = &vmstate_imx_timer_epit;
 | |
|     dc->desc = "i.MX periodic timer";
 | |
| }
 | |
| 
 | |
| static const TypeInfo imx_epit_info = {
 | |
|     .name = TYPE_IMX_EPIT,
 | |
|     .parent = TYPE_SYS_BUS_DEVICE,
 | |
|     .instance_size = sizeof(IMXEPITState),
 | |
|     .class_init = imx_epit_class_init,
 | |
| };
 | |
| 
 | |
| static void imx_epit_register_types(void)
 | |
| {
 | |
|     type_register_static(&imx_epit_info);
 | |
| }
 | |
| 
 | |
| type_init(imx_epit_register_types)
 |