 396f66f99d
			
		
	
	
		396f66f99d
		
	
	
	
	
		
			
			'can_do_io' is specific to TCG. It was added to other
accelerators in 626cf8f4c6 ("icount: set can_do_io outside
TB execution"), then likely copy/pasted in commit c97d6d2cdf
("i386: hvf: add code base from Google's QEMU repository").
Having it set in non-TCG code is confusing, so remove it from
QTest / HVF / KVM.
Fixes: 626cf8f4c6 ("icount: set can_do_io outside TB execution")
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231129205037.16849-1-philmd@linaro.org>
		
	
			
		
			
				
	
	
		
			608 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			608 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2008 IBM Corporation
 | |
|  *           2008 Red Hat, Inc.
 | |
|  * Copyright 2011 Intel Corporation
 | |
|  * Copyright 2016 Veertu, Inc.
 | |
|  * Copyright 2017 The Android Open Source Project
 | |
|  *
 | |
|  * QEMU Hypervisor.framework support
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of version 2 of the GNU General Public
 | |
|  * License as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * This file contain code under public domain from the hvdos project:
 | |
|  * https://github.com/mist64/hvdos
 | |
|  *
 | |
|  * Parts Copyright (c) 2011 NetApp, Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "sysemu/hvf.h"
 | |
| #include "sysemu/hvf_int.h"
 | |
| #include "sysemu/runstate.h"
 | |
| #include "qemu/guest-random.h"
 | |
| 
 | |
| HVFState *hvf_state;
 | |
| 
 | |
| #ifdef __aarch64__
 | |
| #define HV_VM_DEFAULT NULL
 | |
| #endif
 | |
| 
 | |
| /* Memory slots */
 | |
| 
 | |
| hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
 | |
| {
 | |
|     hvf_slot *slot;
 | |
|     int x;
 | |
|     for (x = 0; x < hvf_state->num_slots; ++x) {
 | |
|         slot = &hvf_state->slots[x];
 | |
|         if (slot->size && start < (slot->start + slot->size) &&
 | |
|             (start + size) > slot->start) {
 | |
|             return slot;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| struct mac_slot {
 | |
|     int present;
 | |
|     uint64_t size;
 | |
|     uint64_t gpa_start;
 | |
|     uint64_t gva;
 | |
| };
 | |
| 
 | |
| struct mac_slot mac_slots[32];
 | |
| 
 | |
| static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
 | |
| {
 | |
|     struct mac_slot *macslot;
 | |
|     hv_return_t ret;
 | |
| 
 | |
|     macslot = &mac_slots[slot->slot_id];
 | |
| 
 | |
|     if (macslot->present) {
 | |
|         if (macslot->size != slot->size) {
 | |
|             macslot->present = 0;
 | |
|             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
 | |
|             assert_hvf_ok(ret);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!slot->size) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     macslot->present = 1;
 | |
|     macslot->gpa_start = slot->start;
 | |
|     macslot->size = slot->size;
 | |
|     ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
 | |
|     assert_hvf_ok(ret);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
 | |
| {
 | |
|     hvf_slot *mem;
 | |
|     MemoryRegion *area = section->mr;
 | |
|     bool writable = !area->readonly && !area->rom_device;
 | |
|     hv_memory_flags_t flags;
 | |
|     uint64_t page_size = qemu_real_host_page_size();
 | |
| 
 | |
|     if (!memory_region_is_ram(area)) {
 | |
|         if (writable) {
 | |
|             return;
 | |
|         } else if (!memory_region_is_romd(area)) {
 | |
|             /*
 | |
|              * If the memory device is not in romd_mode, then we actually want
 | |
|              * to remove the hvf memory slot so all accesses will trap.
 | |
|              */
 | |
|              add = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) ||
 | |
|         !QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) {
 | |
|         /* Not page aligned, so we can not map as RAM */
 | |
|         add = false;
 | |
|     }
 | |
| 
 | |
|     mem = hvf_find_overlap_slot(
 | |
|             section->offset_within_address_space,
 | |
|             int128_get64(section->size));
 | |
| 
 | |
|     if (mem && add) {
 | |
|         if (mem->size == int128_get64(section->size) &&
 | |
|             mem->start == section->offset_within_address_space &&
 | |
|             mem->mem == (memory_region_get_ram_ptr(area) +
 | |
|             section->offset_within_region)) {
 | |
|             return; /* Same region was attempted to register, go away. */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Region needs to be reset. set the size to 0 and remap it. */
 | |
|     if (mem) {
 | |
|         mem->size = 0;
 | |
|         if (do_hvf_set_memory(mem, 0)) {
 | |
|             error_report("Failed to reset overlapping slot");
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!add) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (area->readonly ||
 | |
|         (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
 | |
|         flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
 | |
|     } else {
 | |
|         flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
 | |
|     }
 | |
| 
 | |
|     /* Now make a new slot. */
 | |
|     int x;
 | |
| 
 | |
|     for (x = 0; x < hvf_state->num_slots; ++x) {
 | |
|         mem = &hvf_state->slots[x];
 | |
|         if (!mem->size) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (x == hvf_state->num_slots) {
 | |
|         error_report("No free slots");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     mem->size = int128_get64(section->size);
 | |
|     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
 | |
|     mem->start = section->offset_within_address_space;
 | |
|     mem->region = area;
 | |
| 
 | |
|     if (do_hvf_set_memory(mem, flags)) {
 | |
|         error_report("Error registering new memory slot");
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     if (!cpu->vcpu_dirty) {
 | |
|         hvf_get_registers(cpu);
 | |
|         cpu->vcpu_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hvf_cpu_synchronize_state(CPUState *cpu)
 | |
| {
 | |
|     if (!cpu->vcpu_dirty) {
 | |
|         run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
 | |
|                                              run_on_cpu_data arg)
 | |
| {
 | |
|     /* QEMU state is the reference, push it to HVF now and on next entry */
 | |
|     cpu->vcpu_dirty = true;
 | |
| }
 | |
| 
 | |
| static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| static void hvf_cpu_synchronize_post_init(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
 | |
| {
 | |
|     hvf_slot *slot;
 | |
| 
 | |
|     slot = hvf_find_overlap_slot(
 | |
|             section->offset_within_address_space,
 | |
|             int128_get64(section->size));
 | |
| 
 | |
|     /* protect region against writes; begin tracking it */
 | |
|     if (on) {
 | |
|         slot->flags |= HVF_SLOT_LOG;
 | |
|         hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
 | |
|                       HV_MEMORY_READ | HV_MEMORY_EXEC);
 | |
|     /* stop tracking region*/
 | |
|     } else {
 | |
|         slot->flags &= ~HVF_SLOT_LOG;
 | |
|         hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
 | |
|                       HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hvf_log_start(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section, int old, int new)
 | |
| {
 | |
|     if (old != 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     hvf_set_dirty_tracking(section, 1);
 | |
| }
 | |
| 
 | |
| static void hvf_log_stop(MemoryListener *listener,
 | |
|                          MemoryRegionSection *section, int old, int new)
 | |
| {
 | |
|     if (new != 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     hvf_set_dirty_tracking(section, 0);
 | |
| }
 | |
| 
 | |
| static void hvf_log_sync(MemoryListener *listener,
 | |
|                          MemoryRegionSection *section)
 | |
| {
 | |
|     /*
 | |
|      * sync of dirty pages is handled elsewhere; just make sure we keep
 | |
|      * tracking the region.
 | |
|      */
 | |
|     hvf_set_dirty_tracking(section, 1);
 | |
| }
 | |
| 
 | |
| static void hvf_region_add(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section)
 | |
| {
 | |
|     hvf_set_phys_mem(section, true);
 | |
| }
 | |
| 
 | |
| static void hvf_region_del(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section)
 | |
| {
 | |
|     hvf_set_phys_mem(section, false);
 | |
| }
 | |
| 
 | |
| static MemoryListener hvf_memory_listener = {
 | |
|     .name = "hvf",
 | |
|     .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
 | |
|     .region_add = hvf_region_add,
 | |
|     .region_del = hvf_region_del,
 | |
|     .log_start = hvf_log_start,
 | |
|     .log_stop = hvf_log_stop,
 | |
|     .log_sync = hvf_log_sync,
 | |
| };
 | |
| 
 | |
| static void dummy_signal(int sig)
 | |
| {
 | |
| }
 | |
| 
 | |
| bool hvf_allowed;
 | |
| 
 | |
| static int hvf_accel_init(MachineState *ms)
 | |
| {
 | |
|     int x;
 | |
|     hv_return_t ret;
 | |
|     HVFState *s;
 | |
| 
 | |
|     ret = hv_vm_create(HV_VM_DEFAULT);
 | |
|     assert_hvf_ok(ret);
 | |
| 
 | |
|     s = g_new0(HVFState, 1);
 | |
| 
 | |
|     s->num_slots = ARRAY_SIZE(s->slots);
 | |
|     for (x = 0; x < s->num_slots; ++x) {
 | |
|         s->slots[x].size = 0;
 | |
|         s->slots[x].slot_id = x;
 | |
|     }
 | |
| 
 | |
|     QTAILQ_INIT(&s->hvf_sw_breakpoints);
 | |
| 
 | |
|     hvf_state = s;
 | |
|     memory_listener_register(&hvf_memory_listener, &address_space_memory);
 | |
| 
 | |
|     return hvf_arch_init();
 | |
| }
 | |
| 
 | |
| static inline int hvf_gdbstub_sstep_flags(void)
 | |
| {
 | |
|     return SSTEP_ENABLE | SSTEP_NOIRQ;
 | |
| }
 | |
| 
 | |
| static void hvf_accel_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     AccelClass *ac = ACCEL_CLASS(oc);
 | |
|     ac->name = "HVF";
 | |
|     ac->init_machine = hvf_accel_init;
 | |
|     ac->allowed = &hvf_allowed;
 | |
|     ac->gdbstub_supported_sstep_flags = hvf_gdbstub_sstep_flags;
 | |
| }
 | |
| 
 | |
| static const TypeInfo hvf_accel_type = {
 | |
|     .name = TYPE_HVF_ACCEL,
 | |
|     .parent = TYPE_ACCEL,
 | |
|     .class_init = hvf_accel_class_init,
 | |
| };
 | |
| 
 | |
| static void hvf_type_init(void)
 | |
| {
 | |
|     type_register_static(&hvf_accel_type);
 | |
| }
 | |
| 
 | |
| type_init(hvf_type_init);
 | |
| 
 | |
| static void hvf_vcpu_destroy(CPUState *cpu)
 | |
| {
 | |
|     hv_return_t ret = hv_vcpu_destroy(cpu->accel->fd);
 | |
|     assert_hvf_ok(ret);
 | |
| 
 | |
|     hvf_arch_vcpu_destroy(cpu);
 | |
|     g_free(cpu->accel);
 | |
|     cpu->accel = NULL;
 | |
| }
 | |
| 
 | |
| static int hvf_init_vcpu(CPUState *cpu)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     cpu->accel = g_new0(AccelCPUState, 1);
 | |
| 
 | |
|     /* init cpu signals */
 | |
|     struct sigaction sigact;
 | |
| 
 | |
|     memset(&sigact, 0, sizeof(sigact));
 | |
|     sigact.sa_handler = dummy_signal;
 | |
|     sigaction(SIG_IPI, &sigact, NULL);
 | |
| 
 | |
|     pthread_sigmask(SIG_BLOCK, NULL, &cpu->accel->unblock_ipi_mask);
 | |
|     sigdelset(&cpu->accel->unblock_ipi_mask, SIG_IPI);
 | |
| 
 | |
| #ifdef __aarch64__
 | |
|     r = hv_vcpu_create(&cpu->accel->fd,
 | |
|                        (hv_vcpu_exit_t **)&cpu->accel->exit, NULL);
 | |
| #else
 | |
|     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->accel->fd, HV_VCPU_DEFAULT);
 | |
| #endif
 | |
|     cpu->vcpu_dirty = 1;
 | |
|     assert_hvf_ok(r);
 | |
| 
 | |
|     cpu->accel->guest_debug_enabled = false;
 | |
| 
 | |
|     return hvf_arch_init_vcpu(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The HVF-specific vCPU thread function. This one should only run when the host
 | |
|  * CPU supports the VMX "unrestricted guest" feature.
 | |
|  */
 | |
| static void *hvf_cpu_thread_fn(void *arg)
 | |
| {
 | |
|     CPUState *cpu = arg;
 | |
| 
 | |
|     int r;
 | |
| 
 | |
|     assert(hvf_enabled());
 | |
| 
 | |
|     rcu_register_thread();
 | |
| 
 | |
|     bql_lock();
 | |
|     qemu_thread_get_self(cpu->thread);
 | |
| 
 | |
|     cpu->thread_id = qemu_get_thread_id();
 | |
|     current_cpu = cpu;
 | |
| 
 | |
|     hvf_init_vcpu(cpu);
 | |
| 
 | |
|     /* signal CPU creation */
 | |
|     cpu_thread_signal_created(cpu);
 | |
|     qemu_guest_random_seed_thread_part2(cpu->random_seed);
 | |
| 
 | |
|     do {
 | |
|         if (cpu_can_run(cpu)) {
 | |
|             r = hvf_vcpu_exec(cpu);
 | |
|             if (r == EXCP_DEBUG) {
 | |
|                 cpu_handle_guest_debug(cpu);
 | |
|             }
 | |
|         }
 | |
|         qemu_wait_io_event(cpu);
 | |
|     } while (!cpu->unplug || cpu_can_run(cpu));
 | |
| 
 | |
|     hvf_vcpu_destroy(cpu);
 | |
|     cpu_thread_signal_destroyed(cpu);
 | |
|     bql_unlock();
 | |
|     rcu_unregister_thread();
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void hvf_start_vcpu_thread(CPUState *cpu)
 | |
| {
 | |
|     char thread_name[VCPU_THREAD_NAME_SIZE];
 | |
| 
 | |
|     /*
 | |
|      * HVF currently does not support TCG, and only runs in
 | |
|      * unrestricted-guest mode.
 | |
|      */
 | |
|     assert(hvf_enabled());
 | |
| 
 | |
|     cpu->thread = g_malloc0(sizeof(QemuThread));
 | |
|     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
 | |
|     qemu_cond_init(cpu->halt_cond);
 | |
| 
 | |
|     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
 | |
|              cpu->cpu_index);
 | |
|     qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
 | |
|                        cpu, QEMU_THREAD_JOINABLE);
 | |
| }
 | |
| 
 | |
| static int hvf_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
 | |
| {
 | |
|     struct hvf_sw_breakpoint *bp;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = hvf_find_sw_breakpoint(cpu, addr);
 | |
|         if (bp) {
 | |
|             bp->use_count++;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         bp = g_new(struct hvf_sw_breakpoint, 1);
 | |
|         bp->pc = addr;
 | |
|         bp->use_count = 1;
 | |
|         err = hvf_arch_insert_sw_breakpoint(cpu, bp);
 | |
|         if (err) {
 | |
|             g_free(bp);
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_INSERT_HEAD(&hvf_state->hvf_sw_breakpoints, bp, entry);
 | |
|     } else {
 | |
|         err = hvf_arch_insert_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         err = hvf_update_guest_debug(cpu);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hvf_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
 | |
| {
 | |
|     struct hvf_sw_breakpoint *bp;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = hvf_find_sw_breakpoint(cpu, addr);
 | |
|         if (!bp) {
 | |
|             return -ENOENT;
 | |
|         }
 | |
| 
 | |
|         if (bp->use_count > 1) {
 | |
|             bp->use_count--;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         err = hvf_arch_remove_sw_breakpoint(cpu, bp);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
 | |
|         g_free(bp);
 | |
|     } else {
 | |
|         err = hvf_arch_remove_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         err = hvf_update_guest_debug(cpu);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hvf_remove_all_breakpoints(CPUState *cpu)
 | |
| {
 | |
|     struct hvf_sw_breakpoint *bp, *next;
 | |
|     CPUState *tmpcpu;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &hvf_state->hvf_sw_breakpoints, entry, next) {
 | |
|         if (hvf_arch_remove_sw_breakpoint(cpu, bp) != 0) {
 | |
|             /* Try harder to find a CPU that currently sees the breakpoint. */
 | |
|             CPU_FOREACH(tmpcpu)
 | |
|             {
 | |
|                 if (hvf_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
 | |
|         g_free(bp);
 | |
|     }
 | |
|     hvf_arch_remove_all_hw_breakpoints();
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         hvf_update_guest_debug(cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
 | |
| 
 | |
|     ops->create_vcpu_thread = hvf_start_vcpu_thread;
 | |
|     ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
 | |
| 
 | |
|     ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
 | |
|     ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
 | |
|     ops->synchronize_state = hvf_cpu_synchronize_state;
 | |
|     ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
 | |
| 
 | |
|     ops->insert_breakpoint = hvf_insert_breakpoint;
 | |
|     ops->remove_breakpoint = hvf_remove_breakpoint;
 | |
|     ops->remove_all_breakpoints = hvf_remove_all_breakpoints;
 | |
|     ops->update_guest_debug = hvf_update_guest_debug;
 | |
|     ops->supports_guest_debug = hvf_arch_supports_guest_debug;
 | |
| };
 | |
| static const TypeInfo hvf_accel_ops_type = {
 | |
|     .name = ACCEL_OPS_NAME("hvf"),
 | |
| 
 | |
|     .parent = TYPE_ACCEL_OPS,
 | |
|     .class_init = hvf_accel_ops_class_init,
 | |
|     .abstract = true,
 | |
| };
 | |
| static void hvf_accel_ops_register_types(void)
 | |
| {
 | |
|     type_register_static(&hvf_accel_ops_type);
 | |
| }
 | |
| type_init(hvf_accel_ops_register_types);
 |