 bd8db7d905
			
		
	
	
		bd8db7d905
		
	
	
	
	
		
			
			Mark up the sysreg definitions for the registers trapped by HFGRTR/HFGWTR bits 36..63. Of these, some correspond to RAS registers which we implement as always-UNDEF: these don't need any extra handling for FGT because the UNDEF-to-EL1 always takes priority over any theoretical FGT-trap-to-EL2. Bit 50 (NACCDATA_EL1) is for the ACCDATA_EL1 register which is part of the FEAT_LS64_ACCDATA feature which we don't yet implement. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Fuad Tabba <tabba@google.com> Message-id: 20230130182459.3309057-14-peter.maydell@linaro.org Message-id: 20230127175507.2895013-14-peter.maydell@linaro.org
		
			
				
	
	
		
			2927 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2927 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM Generic Interrupt Controller v3 (emulation)
 | |
|  *
 | |
|  * Copyright (c) 2016 Linaro Limited
 | |
|  * Written by Peter Maydell
 | |
|  *
 | |
|  * This code is licensed under the GPL, version 2 or (at your option)
 | |
|  * any later version.
 | |
|  */
 | |
| 
 | |
| /* This file contains the code for the system register interface
 | |
|  * portions of the GICv3.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "trace.h"
 | |
| #include "gicv3_internal.h"
 | |
| #include "hw/irq.h"
 | |
| #include "cpu.h"
 | |
| #include "target/arm/cpregs.h"
 | |
| #include "sysemu/tcg.h"
 | |
| #include "sysemu/qtest.h"
 | |
| 
 | |
| /*
 | |
|  * Special case return value from hppvi_index(); must be larger than
 | |
|  * the architecturally maximum possible list register index (which is 15)
 | |
|  */
 | |
| #define HPPVI_INDEX_VLPI 16
 | |
| 
 | |
| static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
 | |
| {
 | |
|     return env->gicv3state;
 | |
| }
 | |
| 
 | |
| static bool gicv3_use_ns_bank(CPUARMState *env)
 | |
| {
 | |
|     /* Return true if we should use the NonSecure bank for a banked GIC
 | |
|      * CPU interface register. Note that this differs from the
 | |
|      * access_secure_reg() function because GICv3 banked registers are
 | |
|      * banked even for AArch64, unlike the other CPU system registers.
 | |
|      */
 | |
|     return !arm_is_secure_below_el3(env);
 | |
| }
 | |
| 
 | |
| /* The minimum BPR for the virtual interface is a configurable property */
 | |
| static inline int icv_min_vbpr(GICv3CPUState *cs)
 | |
| {
 | |
|     return 7 - cs->vprebits;
 | |
| }
 | |
| 
 | |
| static inline int ich_num_aprs(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return the number of virtual APR registers (1, 2, or 4) */
 | |
|     int aprmax = 1 << (cs->vprebits - 5);
 | |
|     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
 | |
|     return aprmax;
 | |
| }
 | |
| 
 | |
| /* Simple accessor functions for LR fields */
 | |
| static uint32_t ich_lr_vintid(uint64_t lr)
 | |
| {
 | |
|     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
 | |
| }
 | |
| 
 | |
| static uint32_t ich_lr_pintid(uint64_t lr)
 | |
| {
 | |
|     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
 | |
| }
 | |
| 
 | |
| static uint32_t ich_lr_prio(uint64_t lr)
 | |
| {
 | |
|     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
 | |
| }
 | |
| 
 | |
| static int ich_lr_state(uint64_t lr)
 | |
| {
 | |
|     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
 | |
| }
 | |
| 
 | |
| static bool icv_access(CPUARMState *env, int hcr_flags)
 | |
| {
 | |
|     /* Return true if this ICC_ register access should really be
 | |
|      * directed to an ICV_ access. hcr_flags is a mask of
 | |
|      * HCR_EL2 bits to check: we treat this as an ICV_ access
 | |
|      * if we are in NS EL1 and at least one of the specified
 | |
|      * HCR_EL2 bits is set.
 | |
|      *
 | |
|      * ICV registers fall into four categories:
 | |
|      *  * access if NS EL1 and HCR_EL2.FMO == 1:
 | |
|      *    all ICV regs with '0' in their name
 | |
|      *  * access if NS EL1 and HCR_EL2.IMO == 1:
 | |
|      *    all ICV regs with '1' in their name
 | |
|      *  * access if NS EL1 and either IMO or FMO == 1:
 | |
|      *    CTLR, DIR, PMR, RPR
 | |
|      */
 | |
|     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 | |
|     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
 | |
| 
 | |
|     return flagmatch && arm_current_el(env) == 1
 | |
|         && !arm_is_secure_below_el3(env);
 | |
| }
 | |
| 
 | |
| static int read_vbpr(GICv3CPUState *cs, int grp)
 | |
| {
 | |
|     /* Read VBPR value out of the VMCR field (caller must handle
 | |
|      * VCBPR effects if required)
 | |
|      */
 | |
|     if (grp == GICV3_G0) {
 | |
|         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 | |
|                      ICH_VMCR_EL2_VBPR0_LENGTH);
 | |
|     } else {
 | |
|         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 | |
|                          ICH_VMCR_EL2_VBPR1_LENGTH);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void write_vbpr(GICv3CPUState *cs, int grp, int value)
 | |
| {
 | |
|     /* Write new VBPR1 value, handling the "writing a value less than
 | |
|      * the minimum sets it to the minimum" semantics.
 | |
|      */
 | |
|     int min = icv_min_vbpr(cs);
 | |
| 
 | |
|     if (grp != GICV3_G0) {
 | |
|         min++;
 | |
|     }
 | |
| 
 | |
|     value = MAX(value, min);
 | |
| 
 | |
|     if (grp == GICV3_G0) {
 | |
|         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 | |
|                                      ICH_VMCR_EL2_VBPR0_LENGTH, value);
 | |
|     } else {
 | |
|         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 | |
|                                      ICH_VMCR_EL2_VBPR1_LENGTH, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return a mask word which clears the unimplemented priority bits
 | |
|      * from a priority value for a virtual interrupt. (Not to be confused
 | |
|      * with the group priority, whose mask depends on the value of VBPR
 | |
|      * for the interrupt group.)
 | |
|      */
 | |
|     return ~0U << (8 - cs->vpribits);
 | |
| }
 | |
| 
 | |
| static int ich_highest_active_virt_prio(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Calculate the current running priority based on the set bits
 | |
|      * in the ICH Active Priority Registers.
 | |
|      */
 | |
|     int i;
 | |
|     int aprmax = ich_num_aprs(cs);
 | |
| 
 | |
|     for (i = 0; i < aprmax; i++) {
 | |
|         uint32_t apr = cs->ich_apr[GICV3_G0][i] |
 | |
|             cs->ich_apr[GICV3_G1NS][i];
 | |
| 
 | |
|         if (!apr) {
 | |
|             continue;
 | |
|         }
 | |
|         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
 | |
|     }
 | |
|     /* No current active interrupts: return idle priority */
 | |
|     return 0xff;
 | |
| }
 | |
| 
 | |
| static int hppvi_index(GICv3CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * Return the list register index of the highest priority pending
 | |
|      * virtual interrupt, as per the HighestPriorityVirtualInterrupt
 | |
|      * pseudocode. If no pending virtual interrupts, return -1.
 | |
|      * If the highest priority pending virtual interrupt is a vLPI,
 | |
|      * return HPPVI_INDEX_VLPI.
 | |
|      * (The pseudocode handles checking whether the vLPI is higher
 | |
|      * priority than the highest priority list register at every
 | |
|      * callsite of HighestPriorityVirtualInterrupt; we check it here.)
 | |
|      */
 | |
|     ARMCPU *cpu = ARM_CPU(cs->cpu);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     int idx = -1;
 | |
|     int i;
 | |
|     /* Note that a list register entry with a priority of 0xff will
 | |
|      * never be reported by this function; this is the architecturally
 | |
|      * correct behaviour.
 | |
|      */
 | |
|     int prio = 0xff;
 | |
| 
 | |
|     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
 | |
|         /* Both groups disabled, definitely nothing to do */
 | |
|         return idx;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < cs->num_list_regs; i++) {
 | |
|         uint64_t lr = cs->ich_lr_el2[i];
 | |
|         int thisprio;
 | |
| 
 | |
|         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
 | |
|             /* Not Pending */
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* Ignore interrupts if relevant group enable not set */
 | |
|         if (lr & ICH_LR_EL2_GROUP) {
 | |
|             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 | |
|                 continue;
 | |
|             }
 | |
|         } else {
 | |
|             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         thisprio = ich_lr_prio(lr);
 | |
| 
 | |
|         if (thisprio < prio) {
 | |
|             prio = thisprio;
 | |
|             idx = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * "no pending vLPI" is indicated with prio = 0xff, which always
 | |
|      * fails the priority check here. vLPIs are only considered
 | |
|      * when we are in Non-Secure state.
 | |
|      */
 | |
|     if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
 | |
|         if (cs->hppvlpi.grp == GICV3_G0) {
 | |
|             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
 | |
|                 return HPPVI_INDEX_VLPI;
 | |
|             }
 | |
|         } else {
 | |
|             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
 | |
|                 return HPPVI_INDEX_VLPI;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return idx;
 | |
| }
 | |
| 
 | |
| static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
 | |
| {
 | |
|     /* Return a mask word which clears the subpriority bits from
 | |
|      * a priority value for a virtual interrupt in the specified group.
 | |
|      * This depends on the VBPR value.
 | |
|      * If using VBPR0 then:
 | |
|      *  a BPR of 0 means the group priority bits are [7:1];
 | |
|      *  a BPR of 1 means they are [7:2], and so on down to
 | |
|      *  a BPR of 7 meaning no group priority bits at all.
 | |
|      * If using VBPR1 then:
 | |
|      *  a BPR of 0 is impossible (the minimum value is 1)
 | |
|      *  a BPR of 1 means the group priority bits are [7:1];
 | |
|      *  a BPR of 2 means they are [7:2], and so on down to
 | |
|      *  a BPR of 7 meaning the group priority is [7].
 | |
|      *
 | |
|      * Which BPR to use depends on the group of the interrupt and
 | |
|      * the current ICH_VMCR_EL2.VCBPR settings.
 | |
|      *
 | |
|      * This corresponds to the VGroupBits() pseudocode.
 | |
|      */
 | |
|     int bpr;
 | |
| 
 | |
|     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 | |
|         group = GICV3_G0;
 | |
|     }
 | |
| 
 | |
|     bpr = read_vbpr(cs, group);
 | |
|     if (group == GICV3_G1NS) {
 | |
|         assert(bpr > 0);
 | |
|         bpr--;
 | |
|     }
 | |
| 
 | |
|     return ~0U << (bpr + 1);
 | |
| }
 | |
| 
 | |
| static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
 | |
| {
 | |
|     /* Return true if we can signal this virtual interrupt defined by
 | |
|      * the given list register value; see the pseudocode functions
 | |
|      * CanSignalVirtualInterrupt and CanSignalVirtualInt.
 | |
|      * Compare also icc_hppi_can_preempt() which is the non-virtual
 | |
|      * equivalent of these checks.
 | |
|      */
 | |
|     int grp;
 | |
|     uint32_t mask, prio, rprio, vpmr;
 | |
| 
 | |
|     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 | |
|         /* Virtual interface disabled */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /* We don't need to check that this LR is in Pending state because
 | |
|      * that has already been done in hppvi_index().
 | |
|      */
 | |
| 
 | |
|     prio = ich_lr_prio(lr);
 | |
|     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 | |
|                      ICH_VMCR_EL2_VPMR_LENGTH);
 | |
| 
 | |
|     if (prio >= vpmr) {
 | |
|         /* Priority mask masks this interrupt */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     rprio = ich_highest_active_virt_prio(cs);
 | |
|     if (rprio == 0xff) {
 | |
|         /* No running interrupt so we can preempt */
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 | |
| 
 | |
|     mask = icv_gprio_mask(cs, grp);
 | |
| 
 | |
|     /* We only preempt a running interrupt if the pending interrupt's
 | |
|      * group priority is sufficient (the subpriorities are not considered).
 | |
|      */
 | |
|     if ((prio & mask) < (rprio & mask)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * Return true if we can signal the highest priority pending vLPI.
 | |
|      * We can assume we're Non-secure because hppvi_index() already
 | |
|      * tested for that.
 | |
|      */
 | |
|     uint32_t mask, rprio, vpmr;
 | |
| 
 | |
|     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 | |
|         /* Virtual interface disabled */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 | |
|                      ICH_VMCR_EL2_VPMR_LENGTH);
 | |
| 
 | |
|     if (cs->hppvlpi.prio >= vpmr) {
 | |
|         /* Priority mask masks this interrupt */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     rprio = ich_highest_active_virt_prio(cs);
 | |
|     if (rprio == 0xff) {
 | |
|         /* No running interrupt so we can preempt */
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
 | |
| 
 | |
|     /*
 | |
|      * We only preempt a running interrupt if the pending interrupt's
 | |
|      * group priority is sufficient (the subpriorities are not considered).
 | |
|      */
 | |
|     if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
 | |
|                                                 uint32_t *misr)
 | |
| {
 | |
|     /* Return a set of bits indicating the EOI maintenance interrupt status
 | |
|      * for each list register. The EOI maintenance interrupt status is
 | |
|      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
 | |
|      * (see the GICv3 spec for the ICH_EISR_EL2 register).
 | |
|      * If misr is not NULL then we should also collect the information
 | |
|      * about the MISR.EOI, MISR.NP and MISR.U bits.
 | |
|      */
 | |
|     uint32_t value = 0;
 | |
|     int validcount = 0;
 | |
|     bool seenpending = false;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < cs->num_list_regs; i++) {
 | |
|         uint64_t lr = cs->ich_lr_el2[i];
 | |
| 
 | |
|         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
 | |
|             == ICH_LR_EL2_EOI) {
 | |
|             value |= (1 << i);
 | |
|         }
 | |
|         if ((lr & ICH_LR_EL2_STATE_MASK)) {
 | |
|             validcount++;
 | |
|         }
 | |
|         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
 | |
|             seenpending = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (misr) {
 | |
|         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
 | |
|             *misr |= ICH_MISR_EL2_U;
 | |
|         }
 | |
|         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
 | |
|             *misr |= ICH_MISR_EL2_NP;
 | |
|         }
 | |
|         if (value) {
 | |
|             *misr |= ICH_MISR_EL2_EOI;
 | |
|         }
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return a set of bits indicating the maintenance interrupt status
 | |
|      * (as seen in the ICH_MISR_EL2 register).
 | |
|      */
 | |
|     uint32_t value = 0;
 | |
| 
 | |
|     /* Scan list registers and fill in the U, NP and EOI bits */
 | |
|     eoi_maintenance_interrupt_state(cs, &value);
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
 | |
|         (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
 | |
|         value |= ICH_MISR_EL2_LRENP;
 | |
|     }
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
 | |
|         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 | |
|         value |= ICH_MISR_EL2_VGRP0E;
 | |
|     }
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
 | |
|         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 | |
|         value |= ICH_MISR_EL2_VGRP0D;
 | |
|     }
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
 | |
|         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 | |
|         value |= ICH_MISR_EL2_VGRP1E;
 | |
|     }
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
 | |
|         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 | |
|         value |= ICH_MISR_EL2_VGRP1D;
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * Tell the CPU about any pending virtual interrupts.
 | |
|      * This should only be called for changes that affect the
 | |
|      * vIRQ and vFIQ status and do not change the maintenance
 | |
|      * interrupt status. This means that unlike gicv3_cpuif_virt_update()
 | |
|      * this function won't recursively call back into the GIC code.
 | |
|      * The main use of this is when the redistributor has changed the
 | |
|      * highest priority pending virtual LPI.
 | |
|      */
 | |
|     int idx;
 | |
|     int irqlevel = 0;
 | |
|     int fiqlevel = 0;
 | |
| 
 | |
|     idx = hppvi_index(cs);
 | |
|     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
 | |
|                                   cs->hppvlpi.irq, cs->hppvlpi.grp,
 | |
|                                   cs->hppvlpi.prio);
 | |
|     if (idx == HPPVI_INDEX_VLPI) {
 | |
|         if (icv_hppvlpi_can_preempt(cs)) {
 | |
|             if (cs->hppvlpi.grp == GICV3_G0) {
 | |
|                 fiqlevel = 1;
 | |
|             } else {
 | |
|                 irqlevel = 1;
 | |
|             }
 | |
|         }
 | |
|     } else if (idx >= 0) {
 | |
|         uint64_t lr = cs->ich_lr_el2[idx];
 | |
| 
 | |
|         if (icv_hppi_can_preempt(cs, lr)) {
 | |
|             /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
 | |
|             if (lr & ICH_LR_EL2_GROUP) {
 | |
|                 irqlevel = 1;
 | |
|             } else {
 | |
|                 fiqlevel = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 | |
|     qemu_set_irq(cs->parent_vfiq, fiqlevel);
 | |
|     qemu_set_irq(cs->parent_virq, irqlevel);
 | |
| }
 | |
| 
 | |
| static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * Tell the CPU about any pending virtual interrupts or
 | |
|      * maintenance interrupts, following a change to the state
 | |
|      * of the CPU interface relevant to virtual interrupts.
 | |
|      *
 | |
|      * CAUTION: this function will call qemu_set_irq() on the
 | |
|      * CPU maintenance IRQ line, which is typically wired up
 | |
|      * to the GIC as a per-CPU interrupt. This means that it
 | |
|      * will recursively call back into the GIC code via
 | |
|      * gicv3_redist_set_irq() and thus into the CPU interface code's
 | |
|      * gicv3_cpuif_update(). It is therefore important that this
 | |
|      * function is only called as the final action of a CPU interface
 | |
|      * register write implementation, after all the GIC state
 | |
|      * fields have been updated. gicv3_cpuif_update() also must
 | |
|      * not cause this function to be called, but that happens
 | |
|      * naturally as a result of there being no architectural
 | |
|      * linkage between the physical and virtual GIC logic.
 | |
|      */
 | |
|     ARMCPU *cpu = ARM_CPU(cs->cpu);
 | |
|     int maintlevel = 0;
 | |
| 
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
 | |
|         maintenance_interrupt_state(cs) != 0) {
 | |
|         maintlevel = 1;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
 | |
|     qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
 | |
| }
 | |
| 
 | |
| static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int regno = ri->opc2 & 3;
 | |
|     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 | |
|     uint64_t value = cs->ich_apr[grp][regno];
 | |
| 
 | |
|     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int regno = ri->opc2 & 3;
 | |
|     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 | |
| 
 | |
|     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
 | |
| 
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 | |
|     uint64_t bpr;
 | |
|     bool satinc = false;
 | |
| 
 | |
|     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 | |
|         /* reads return bpr0 + 1 saturated to 7, writes ignored */
 | |
|         grp = GICV3_G0;
 | |
|         satinc = true;
 | |
|     }
 | |
| 
 | |
|     bpr = read_vbpr(cs, grp);
 | |
| 
 | |
|     if (satinc) {
 | |
|         bpr++;
 | |
|         bpr = MIN(bpr, 7);
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 | |
| 
 | |
|     return bpr;
 | |
| }
 | |
| 
 | |
| static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 | |
| 
 | |
|     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
 | |
|                               gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 | |
|         /* reads return bpr0 + 1 saturated to 7, writes ignored */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     write_vbpr(cs, grp, value);
 | |
| 
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 | |
|                       ICH_VMCR_EL2_VPMR_LENGTH);
 | |
| 
 | |
|     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     value &= icv_fullprio_mask(cs);
 | |
| 
 | |
|     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 | |
|                                  ICH_VMCR_EL2_VPMR_LENGTH, value);
 | |
| 
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int enbit;
 | |
|     uint64_t value;
 | |
| 
 | |
|     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 | |
|     value = extract64(cs->ich_vmcr_el2, enbit, 1);
 | |
| 
 | |
|     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 | |
|                                 gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int enbit;
 | |
| 
 | |
|     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 | |
|                                  gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 | |
| 
 | |
|     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
 | |
|     gicv3_cpuif_virt_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
 | |
|      * should match the ones reported in ich_vtr_read().
 | |
|      */
 | |
|     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 | |
|         ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
 | |
| 
 | |
|     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
 | |
|         value |= ICC_CTLR_EL1_EOIMODE;
 | |
|     }
 | |
| 
 | |
|     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 | |
|         value |= ICC_CTLR_EL1_CBPR;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
 | |
|                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
 | |
|     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
 | |
|                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
 | |
| 
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int prio = ich_highest_active_virt_prio(cs);
 | |
| 
 | |
|     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
 | |
|     return prio;
 | |
| }
 | |
| 
 | |
| static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 | |
|     int idx = hppvi_index(cs);
 | |
|     uint64_t value = INTID_SPURIOUS;
 | |
| 
 | |
|     if (idx == HPPVI_INDEX_VLPI) {
 | |
|         if (cs->hppvlpi.grp == grp) {
 | |
|             value = cs->hppvlpi.irq;
 | |
|         }
 | |
|     } else if (idx >= 0) {
 | |
|         uint64_t lr = cs->ich_lr_el2[idx];
 | |
|         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 | |
| 
 | |
|         if (grp == thisgrp) {
 | |
|             value = ich_lr_vintid(lr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
 | |
|                                gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
 | |
| {
 | |
|     /* Activate the interrupt in the specified list register
 | |
|      * by moving it from Pending to Active state, and update the
 | |
|      * Active Priority Registers.
 | |
|      */
 | |
|     uint32_t mask = icv_gprio_mask(cs, grp);
 | |
|     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
 | |
|     int aprbit = prio >> (8 - cs->vprebits);
 | |
|     int regno = aprbit / 32;
 | |
|     int regbit = aprbit % 32;
 | |
| 
 | |
|     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 | |
|     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
 | |
|     cs->ich_apr[grp][regno] |= (1 << regbit);
 | |
| }
 | |
| 
 | |
| static void icv_activate_vlpi(GICv3CPUState *cs)
 | |
| {
 | |
|     uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
 | |
|     int prio = cs->hppvlpi.prio & mask;
 | |
|     int aprbit = prio >> (8 - cs->vprebits);
 | |
|     int regno = aprbit / 32;
 | |
|     int regbit = aprbit % 32;
 | |
| 
 | |
|     cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
 | |
|     gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
 | |
| }
 | |
| 
 | |
| static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 | |
|     int idx = hppvi_index(cs);
 | |
|     uint64_t intid = INTID_SPURIOUS;
 | |
| 
 | |
|     if (idx == HPPVI_INDEX_VLPI) {
 | |
|         if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
 | |
|             intid = cs->hppvlpi.irq;
 | |
|             icv_activate_vlpi(cs);
 | |
|         }
 | |
|     } else if (idx >= 0) {
 | |
|         uint64_t lr = cs->ich_lr_el2[idx];
 | |
|         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 | |
| 
 | |
|         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
 | |
|             intid = ich_lr_vintid(lr);
 | |
|             if (!gicv3_intid_is_special(intid)) {
 | |
|                 icv_activate_irq(cs, idx, grp);
 | |
|             } else {
 | |
|                 /* Interrupt goes from Pending to Invalid */
 | |
|                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 | |
|                 /* We will now return the (bogus) ID from the list register,
 | |
|                  * as per the pseudocode.
 | |
|                  */
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
 | |
|                              gicv3_redist_affid(cs), intid);
 | |
| 
 | |
|     gicv3_cpuif_virt_update(cs);
 | |
| 
 | |
|     return intid;
 | |
| }
 | |
| 
 | |
| static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * Return a mask word which clears the unimplemented priority bits
 | |
|      * from a priority value for a physical interrupt. (Not to be confused
 | |
|      * with the group priority, whose mask depends on the value of BPR
 | |
|      * for the interrupt group.)
 | |
|      */
 | |
|     return ~0U << (8 - cs->pribits);
 | |
| }
 | |
| 
 | |
| static inline int icc_min_bpr(GICv3CPUState *cs)
 | |
| {
 | |
|     /* The minimum BPR for the physical interface. */
 | |
|     return 7 - cs->prebits;
 | |
| }
 | |
| 
 | |
| static inline int icc_min_bpr_ns(GICv3CPUState *cs)
 | |
| {
 | |
|     return icc_min_bpr(cs) + 1;
 | |
| }
 | |
| 
 | |
| static inline int icc_num_aprs(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return the number of APR registers (1, 2, or 4) */
 | |
|     int aprmax = 1 << MAX(cs->prebits - 5, 0);
 | |
|     assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
 | |
|     return aprmax;
 | |
| }
 | |
| 
 | |
| static int icc_highest_active_prio(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Calculate the current running priority based on the set bits
 | |
|      * in the Active Priority Registers.
 | |
|      */
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < icc_num_aprs(cs); i++) {
 | |
|         uint32_t apr = cs->icc_apr[GICV3_G0][i] |
 | |
|             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
 | |
| 
 | |
|         if (!apr) {
 | |
|             continue;
 | |
|         }
 | |
|         return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
 | |
|     }
 | |
|     /* No current active interrupts: return idle priority */
 | |
|     return 0xff;
 | |
| }
 | |
| 
 | |
| static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
 | |
| {
 | |
|     /* Return a mask word which clears the subpriority bits from
 | |
|      * a priority value for an interrupt in the specified group.
 | |
|      * This depends on the BPR value. For CBPR0 (S or NS):
 | |
|      *  a BPR of 0 means the group priority bits are [7:1];
 | |
|      *  a BPR of 1 means they are [7:2], and so on down to
 | |
|      *  a BPR of 7 meaning no group priority bits at all.
 | |
|      * For CBPR1 NS:
 | |
|      *  a BPR of 0 is impossible (the minimum value is 1)
 | |
|      *  a BPR of 1 means the group priority bits are [7:1];
 | |
|      *  a BPR of 2 means they are [7:2], and so on down to
 | |
|      *  a BPR of 7 meaning the group priority is [7].
 | |
|      *
 | |
|      * Which BPR to use depends on the group of the interrupt and
 | |
|      * the current ICC_CTLR.CBPR settings.
 | |
|      *
 | |
|      * This corresponds to the GroupBits() pseudocode.
 | |
|      */
 | |
|     int bpr;
 | |
| 
 | |
|     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
 | |
|         (group == GICV3_G1NS &&
 | |
|          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 | |
|         group = GICV3_G0;
 | |
|     }
 | |
| 
 | |
|     bpr = cs->icc_bpr[group] & 7;
 | |
| 
 | |
|     if (group == GICV3_G1NS) {
 | |
|         assert(bpr > 0);
 | |
|         bpr--;
 | |
|     }
 | |
| 
 | |
|     return ~0U << (bpr + 1);
 | |
| }
 | |
| 
 | |
| static bool icc_no_enabled_hppi(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return true if there is no pending interrupt, or the
 | |
|      * highest priority pending interrupt is in a group which has been
 | |
|      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
 | |
|      */
 | |
|     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
 | |
| }
 | |
| 
 | |
| static bool icc_hppi_can_preempt(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return true if we have a pending interrupt of sufficient
 | |
|      * priority to preempt.
 | |
|      */
 | |
|     int rprio;
 | |
|     uint32_t mask;
 | |
| 
 | |
|     if (icc_no_enabled_hppi(cs)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (cs->hppi.prio >= cs->icc_pmr_el1) {
 | |
|         /* Priority mask masks this interrupt */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     rprio = icc_highest_active_prio(cs);
 | |
|     if (rprio == 0xff) {
 | |
|         /* No currently running interrupt so we can preempt */
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     mask = icc_gprio_mask(cs, cs->hppi.grp);
 | |
| 
 | |
|     /* We only preempt a running interrupt if the pending interrupt's
 | |
|      * group priority is sufficient (the subpriorities are not considered).
 | |
|      */
 | |
|     if ((cs->hppi.prio & mask) < (rprio & mask)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void gicv3_cpuif_update(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Tell the CPU about its highest priority pending interrupt */
 | |
|     int irqlevel = 0;
 | |
|     int fiqlevel = 0;
 | |
|     ARMCPU *cpu = ARM_CPU(cs->cpu);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     g_assert(qemu_mutex_iothread_locked());
 | |
| 
 | |
|     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
 | |
|                              cs->hppi.grp, cs->hppi.prio);
 | |
| 
 | |
|     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         /* If a Security-enabled GIC sends a G1S interrupt to a
 | |
|          * Security-disabled CPU, we must treat it as if it were G0.
 | |
|          */
 | |
|         cs->hppi.grp = GICV3_G0;
 | |
|     }
 | |
| 
 | |
|     if (icc_hppi_can_preempt(cs)) {
 | |
|         /* We have an interrupt: should we signal it as IRQ or FIQ?
 | |
|          * This is described in the GICv3 spec section 4.6.2.
 | |
|          */
 | |
|         bool isfiq;
 | |
| 
 | |
|         switch (cs->hppi.grp) {
 | |
|         case GICV3_G0:
 | |
|             isfiq = true;
 | |
|             break;
 | |
|         case GICV3_G1:
 | |
|             isfiq = (!arm_is_secure(env) ||
 | |
|                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
 | |
|             break;
 | |
|         case GICV3_G1NS:
 | |
|             isfiq = arm_is_secure(env);
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
| 
 | |
|         if (isfiq) {
 | |
|             fiqlevel = 1;
 | |
|         } else {
 | |
|             irqlevel = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 | |
| 
 | |
|     qemu_set_irq(cs->parent_fiq, fiqlevel);
 | |
|     qemu_set_irq(cs->parent_irq, irqlevel);
 | |
| }
 | |
| 
 | |
| static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint32_t value = cs->icc_pmr_el1;
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO | HCR_IMO)) {
 | |
|         return icv_pmr_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 | |
|         (env->cp15.scr_el3 & SCR_FIQ)) {
 | |
|         /* NS access and Group 0 is inaccessible to NS: return the
 | |
|          * NS view of the current priority
 | |
|          */
 | |
|         if ((value & 0x80) == 0) {
 | |
|             /* Secure priorities not visible to NS */
 | |
|             value = 0;
 | |
|         } else if (value != 0xff) {
 | |
|             value = (value << 1) & 0xff;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO | HCR_IMO)) {
 | |
|         return icv_pmr_write(env, ri, value);
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 | |
|         (env->cp15.scr_el3 & SCR_FIQ)) {
 | |
|         /* NS access and Group 0 is inaccessible to NS: return the
 | |
|          * NS view of the current priority
 | |
|          */
 | |
|         if (!(cs->icc_pmr_el1 & 0x80)) {
 | |
|             /* Current PMR in the secure range, don't allow NS to change it */
 | |
|             return;
 | |
|         }
 | |
|         value = (value >> 1) | 0x80;
 | |
|     }
 | |
|     value &= icc_fullprio_mask(cs);
 | |
|     cs->icc_pmr_el1 = value;
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| static void icc_activate_irq(GICv3CPUState *cs, int irq)
 | |
| {
 | |
|     /* Move the interrupt from the Pending state to Active, and update
 | |
|      * the Active Priority Registers
 | |
|      */
 | |
|     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
 | |
|     int prio = cs->hppi.prio & mask;
 | |
|     int aprbit = prio >> (8 - cs->prebits);
 | |
|     int regno = aprbit / 32;
 | |
|     int regbit = aprbit % 32;
 | |
| 
 | |
|     cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
 | |
| 
 | |
|     if (irq < GIC_INTERNAL) {
 | |
|         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
 | |
|         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
 | |
|         gicv3_redist_update(cs);
 | |
|     } else if (irq < GICV3_LPI_INTID_START) {
 | |
|         gicv3_gicd_active_set(cs->gic, irq);
 | |
|         gicv3_gicd_pending_clear(cs->gic, irq);
 | |
|         gicv3_update(cs->gic, irq, 1);
 | |
|     } else {
 | |
|         gicv3_redist_lpi_pending(cs, irq, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
 | |
| {
 | |
|     /* Return the highest priority pending interrupt register value
 | |
|      * for group 0.
 | |
|      */
 | |
|     bool irq_is_secure;
 | |
| 
 | |
|     if (cs->hppi.prio == 0xff) {
 | |
|         return INTID_SPURIOUS;
 | |
|     }
 | |
| 
 | |
|     /* Check whether we can return the interrupt or if we should return
 | |
|      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
 | |
|      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 | |
|      * is always zero.)
 | |
|      */
 | |
|     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 | |
|                      (cs->hppi.grp != GICV3_G1NS));
 | |
| 
 | |
|     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
 | |
|         return INTID_SPURIOUS;
 | |
|     }
 | |
|     if (irq_is_secure && !arm_is_secure(env)) {
 | |
|         /* Secure interrupts not visible to Nonsecure */
 | |
|         return INTID_SPURIOUS;
 | |
|     }
 | |
| 
 | |
|     if (cs->hppi.grp != GICV3_G0) {
 | |
|         /* Indicate to EL3 that there's a Group 1 interrupt for the other
 | |
|          * state pending.
 | |
|          */
 | |
|         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
 | |
|     }
 | |
| 
 | |
|     return cs->hppi.irq;
 | |
| }
 | |
| 
 | |
| static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
 | |
| {
 | |
|     /* Return the highest priority pending interrupt register value
 | |
|      * for group 1.
 | |
|      */
 | |
|     bool irq_is_secure;
 | |
| 
 | |
|     if (cs->hppi.prio == 0xff) {
 | |
|         return INTID_SPURIOUS;
 | |
|     }
 | |
| 
 | |
|     /* Check whether we can return the interrupt or if we should return
 | |
|      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
 | |
|      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 | |
|      * is always zero.)
 | |
|      */
 | |
|     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 | |
|                      (cs->hppi.grp != GICV3_G1NS));
 | |
| 
 | |
|     if (cs->hppi.grp == GICV3_G0) {
 | |
|         /* Group 0 interrupts not visible via HPPIR1 */
 | |
|         return INTID_SPURIOUS;
 | |
|     }
 | |
|     if (irq_is_secure) {
 | |
|         if (!arm_is_secure(env)) {
 | |
|             /* Secure interrupts not visible in Non-secure */
 | |
|             return INTID_SPURIOUS;
 | |
|         }
 | |
|     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
 | |
|         /* Group 1 non-secure interrupts not visible in Secure EL1 */
 | |
|         return INTID_SPURIOUS;
 | |
|     }
 | |
| 
 | |
|     return cs->hppi.irq;
 | |
| }
 | |
| 
 | |
| static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t intid;
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO)) {
 | |
|         return icv_iar_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     if (!icc_hppi_can_preempt(cs)) {
 | |
|         intid = INTID_SPURIOUS;
 | |
|     } else {
 | |
|         intid = icc_hppir0_value(cs, env);
 | |
|     }
 | |
| 
 | |
|     if (!gicv3_intid_is_special(intid)) {
 | |
|         icc_activate_irq(cs, intid);
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
 | |
|     return intid;
 | |
| }
 | |
| 
 | |
| static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t intid;
 | |
| 
 | |
|     if (icv_access(env, HCR_IMO)) {
 | |
|         return icv_iar_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     if (!icc_hppi_can_preempt(cs)) {
 | |
|         intid = INTID_SPURIOUS;
 | |
|     } else {
 | |
|         intid = icc_hppir1_value(cs, env);
 | |
|     }
 | |
| 
 | |
|     if (!gicv3_intid_is_special(intid)) {
 | |
|         icc_activate_irq(cs, intid);
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
 | |
|     return intid;
 | |
| }
 | |
| 
 | |
| static void icc_drop_prio(GICv3CPUState *cs, int grp)
 | |
| {
 | |
|     /* Drop the priority of the currently active interrupt in
 | |
|      * the specified group.
 | |
|      *
 | |
|      * Note that we can guarantee (because of the requirement to nest
 | |
|      * ICC_IAR reads [which activate an interrupt and raise priority]
 | |
|      * with ICC_EOIR writes [which drop the priority for the interrupt])
 | |
|      * that the interrupt we're being called for is the highest priority
 | |
|      * active interrupt, meaning that it has the lowest set bit in the
 | |
|      * APR registers.
 | |
|      *
 | |
|      * If the guest does not honour the ordering constraints then the
 | |
|      * behaviour of the GIC is UNPREDICTABLE, which for us means that
 | |
|      * the values of the APR registers might become incorrect and the
 | |
|      * running priority will be wrong, so interrupts that should preempt
 | |
|      * might not do so, and interrupts that should not preempt might do so.
 | |
|      */
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < icc_num_aprs(cs); i++) {
 | |
|         uint64_t *papr = &cs->icc_apr[grp][i];
 | |
| 
 | |
|         if (!*papr) {
 | |
|             continue;
 | |
|         }
 | |
|         /* Clear the lowest set bit */
 | |
|         *papr &= *papr - 1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* running priority change means we need an update for this cpu i/f */
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return true if we should split priority drop and interrupt
 | |
|      * deactivation, ie whether the relevant EOIMode bit is set.
 | |
|      */
 | |
|     if (arm_is_el3_or_mon(env)) {
 | |
|         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
 | |
|     }
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
 | |
|     } else {
 | |
|         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int icc_highest_active_group(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return the group with the highest priority active interrupt.
 | |
|      * We can do this by just comparing the APRs to see which one
 | |
|      * has the lowest set bit.
 | |
|      * (If more than one group is active at the same priority then
 | |
|      * we're in UNPREDICTABLE territory.)
 | |
|      */
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
 | |
|         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
 | |
|         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
 | |
|         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
 | |
| 
 | |
|         if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
 | |
|             return GICV3_G1NS;
 | |
|         }
 | |
|         if (g1ctz < g0ctz) {
 | |
|             return GICV3_G1;
 | |
|         }
 | |
|         if (g0ctz < 32) {
 | |
|             return GICV3_G0;
 | |
|         }
 | |
|     }
 | |
|     /* No set active bits? UNPREDICTABLE; return -1 so the caller
 | |
|      * ignores the spurious EOI attempt.
 | |
|      */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
 | |
| {
 | |
|     if (irq < GIC_INTERNAL) {
 | |
|         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
 | |
|         gicv3_redist_update(cs);
 | |
|     } else {
 | |
|         gicv3_gicd_active_clear(cs->gic, irq);
 | |
|         gicv3_update(cs->gic, irq, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
 | |
| {
 | |
|     /* Return true if we should split priority drop and interrupt
 | |
|      * deactivation, ie whether the virtual EOIMode bit is set.
 | |
|      */
 | |
|     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
 | |
| }
 | |
| 
 | |
| static int icv_find_active(GICv3CPUState *cs, int irq)
 | |
| {
 | |
|     /* Given an interrupt number for an active interrupt, return the index
 | |
|      * of the corresponding list register, or -1 if there is no match.
 | |
|      * Corresponds to FindActiveVirtualInterrupt pseudocode.
 | |
|      */
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < cs->num_list_regs; i++) {
 | |
|         uint64_t lr = cs->ich_lr_el2[i];
 | |
| 
 | |
|         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
 | |
| {
 | |
|     /* Deactivate the interrupt in the specified list register index */
 | |
|     uint64_t lr = cs->ich_lr_el2[idx];
 | |
| 
 | |
|     if (lr & ICH_LR_EL2_HW) {
 | |
|         /* Deactivate the associated physical interrupt */
 | |
|         int pirq = ich_lr_pintid(lr);
 | |
| 
 | |
|         if (pirq < INTID_SECURE) {
 | |
|             icc_deactivate_irq(cs, pirq);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear the 'active' part of the state, so ActivePending->Pending
 | |
|      * and Active->Invalid.
 | |
|      */
 | |
|     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
 | |
|     cs->ich_lr_el2[idx] = lr;
 | |
| }
 | |
| 
 | |
| static void icv_increment_eoicount(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Increment the EOICOUNT field in ICH_HCR_EL2 */
 | |
|     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
 | |
|                              ICH_HCR_EL2_EOICOUNT_LENGTH);
 | |
| 
 | |
|     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
 | |
|                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
 | |
| }
 | |
| 
 | |
| static int icv_drop_prio(GICv3CPUState *cs)
 | |
| {
 | |
|     /* Drop the priority of the currently active virtual interrupt
 | |
|      * (favouring group 0 if there is a set active bit at
 | |
|      * the same priority for both group 0 and group 1).
 | |
|      * Return the priority value for the bit we just cleared,
 | |
|      * or 0xff if no bits were set in the AP registers at all.
 | |
|      * Note that though the ich_apr[] are uint64_t only the low
 | |
|      * 32 bits are actually relevant.
 | |
|      */
 | |
|     int i;
 | |
|     int aprmax = ich_num_aprs(cs);
 | |
| 
 | |
|     for (i = 0; i < aprmax; i++) {
 | |
|         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
 | |
|         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
 | |
|         int apr0count, apr1count;
 | |
| 
 | |
|         if (!*papr0 && !*papr1) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* We can't just use the bit-twiddling hack icc_drop_prio() does
 | |
|          * because we need to return the bit number we cleared so
 | |
|          * it can be compared against the list register's priority field.
 | |
|          */
 | |
|         apr0count = ctz32(*papr0);
 | |
|         apr1count = ctz32(*papr1);
 | |
| 
 | |
|         if (apr0count <= apr1count) {
 | |
|             *papr0 &= *papr0 - 1;
 | |
|             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
 | |
|         } else {
 | |
|             *papr1 &= *papr1 - 1;
 | |
|             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
 | |
|         }
 | |
|     }
 | |
|     return 0xff;
 | |
| }
 | |
| 
 | |
| static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Deactivate interrupt */
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int idx;
 | |
|     int irq = value & 0xffffff;
 | |
| 
 | |
|     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (irq >= GICV3_MAXIRQ) {
 | |
|         /* Also catches special interrupt numbers and LPIs */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!icv_eoi_split(env, cs)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     idx = icv_find_active(cs, irq);
 | |
| 
 | |
|     if (idx < 0) {
 | |
|         /* No list register matching this, so increment the EOI count
 | |
|          * (might trigger a maintenance interrupt)
 | |
|          */
 | |
|         icv_increment_eoicount(cs);
 | |
|     } else {
 | |
|         icv_deactivate_irq(cs, idx);
 | |
|     }
 | |
| 
 | |
|     gicv3_cpuif_virt_update(cs);
 | |
| }
 | |
| 
 | |
| static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* End of Interrupt */
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int irq = value & 0xffffff;
 | |
|     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 | |
|     int idx, dropprio;
 | |
| 
 | |
|     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
 | |
|                                gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (gicv3_intid_is_special(irq)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* We implement the IMPDEF choice of "drop priority before doing
 | |
|      * error checks" (because that lets us avoid scanning the AP
 | |
|      * registers twice).
 | |
|      */
 | |
|     dropprio = icv_drop_prio(cs);
 | |
|     if (dropprio == 0xff) {
 | |
|         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
 | |
|          * whether the list registers are checked in this
 | |
|          * situation; we choose not to.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     idx = icv_find_active(cs, irq);
 | |
| 
 | |
|     if (idx < 0) {
 | |
|         /* No valid list register corresponding to EOI ID */
 | |
|         icv_increment_eoicount(cs);
 | |
|     } else {
 | |
|         uint64_t lr = cs->ich_lr_el2[idx];
 | |
|         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 | |
|         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
 | |
| 
 | |
|         if (thisgrp == grp && lr_gprio == dropprio) {
 | |
|             if (!icv_eoi_split(env, cs)) {
 | |
|                 /* Priority drop and deactivate not split: deactivate irq now */
 | |
|                 icv_deactivate_irq(cs, idx);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     gicv3_cpuif_virt_update(cs);
 | |
| }
 | |
| 
 | |
| static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* End of Interrupt */
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int irq = value & 0xffffff;
 | |
|     int grp;
 | |
|     bool is_eoir0 = ri->crm == 8;
 | |
| 
 | |
|     if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
 | |
|         icv_eoir_write(env, ri, value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
 | |
|                                gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if ((irq >= cs->gic->num_irq) &&
 | |
|         !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
 | |
|         /* This handles two cases:
 | |
|          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
 | |
|          * to the GICC_EOIR, the GIC ignores that write.
 | |
|          * 2. If software writes the number of a non-existent interrupt
 | |
|          * this must be a subcase of "value written does not match the last
 | |
|          * valid interrupt value read from the Interrupt Acknowledge
 | |
|          * register" and so this is UNPREDICTABLE. We choose to ignore it.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     grp = icc_highest_active_group(cs);
 | |
|     switch (grp) {
 | |
|     case GICV3_G0:
 | |
|         if (!is_eoir0) {
 | |
|             return;
 | |
|         }
 | |
|         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
 | |
|             && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|     case GICV3_G1:
 | |
|         if (is_eoir0) {
 | |
|             return;
 | |
|         }
 | |
|         if (!arm_is_secure(env)) {
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|     case GICV3_G1NS:
 | |
|         if (is_eoir0) {
 | |
|             return;
 | |
|         }
 | |
|         if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "%s: IRQ %d isn't active\n", __func__, irq);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     icc_drop_prio(cs, grp);
 | |
| 
 | |
|     if (!icc_eoi_split(env, cs)) {
 | |
|         /* Priority drop and deactivate not split: deactivate irq now */
 | |
|         icc_deactivate_irq(cs, irq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO)) {
 | |
|         return icv_hppir_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     value = icc_hppir0_value(cs, env);
 | |
|     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     if (icv_access(env, HCR_IMO)) {
 | |
|         return icv_hppir_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     value = icc_hppir1_value(cs, env);
 | |
|     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
 | |
|     bool satinc = false;
 | |
|     uint64_t bpr;
 | |
| 
 | |
|     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
 | |
|         return icv_bpr_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 | |
|         grp = GICV3_G1NS;
 | |
|     }
 | |
| 
 | |
|     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
 | |
|         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
 | |
|         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
 | |
|          * modify BPR0
 | |
|          */
 | |
|         grp = GICV3_G0;
 | |
|     }
 | |
| 
 | |
|     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
 | |
|         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 | |
|         /* reads return bpr0 + 1 sat to 7, writes ignored */
 | |
|         grp = GICV3_G0;
 | |
|         satinc = true;
 | |
|     }
 | |
| 
 | |
|     bpr = cs->icc_bpr[grp];
 | |
|     if (satinc) {
 | |
|         bpr++;
 | |
|         bpr = MIN(bpr, 7);
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 | |
| 
 | |
|     return bpr;
 | |
| }
 | |
| 
 | |
| static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
 | |
|     uint64_t minval;
 | |
| 
 | |
|     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
 | |
|         icv_bpr_write(env, ri, value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
 | |
|                               gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 | |
|         grp = GICV3_G1NS;
 | |
|     }
 | |
| 
 | |
|     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
 | |
|         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
 | |
|         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
 | |
|          * modify BPR0
 | |
|          */
 | |
|         grp = GICV3_G0;
 | |
|     }
 | |
| 
 | |
|     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
 | |
|         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 | |
|         /* reads return bpr0 + 1 sat to 7, writes ignored */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
 | |
|     if (value < minval) {
 | |
|         value = minval;
 | |
|     }
 | |
| 
 | |
|     cs->icc_bpr[grp] = value & 7;
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     int regno = ri->opc2 & 3;
 | |
|     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
 | |
| 
 | |
|     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
 | |
|         return icv_ap_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 | |
|         grp = GICV3_G1NS;
 | |
|     }
 | |
| 
 | |
|     value = cs->icc_apr[grp][regno];
 | |
| 
 | |
|     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     int regno = ri->opc2 & 3;
 | |
|     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
 | |
| 
 | |
|     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
 | |
|         icv_ap_write(env, ri, value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 | |
|         grp = GICV3_G1NS;
 | |
|     }
 | |
| 
 | |
|     /* It's not possible to claim that a Non-secure interrupt is active
 | |
|      * at a priority outside the Non-secure range (128..255), since this
 | |
|      * would otherwise allow malicious NS code to block delivery of S interrupts
 | |
|      * by writing a bad value to these registers.
 | |
|      */
 | |
|     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Deactivate interrupt */
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int irq = value & 0xffffff;
 | |
|     bool irq_is_secure, single_sec_state, irq_is_grp0;
 | |
|     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO | HCR_IMO)) {
 | |
|         icv_dir_write(env, ri, value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (irq >= cs->gic->num_irq) {
 | |
|         /* Also catches special interrupt numbers and LPIs */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!icc_eoi_split(env, cs)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int grp = gicv3_irq_group(cs->gic, cs, irq);
 | |
| 
 | |
|     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
 | |
|     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
 | |
|     irq_is_grp0 = grp == GICV3_G0;
 | |
| 
 | |
|     /* Check whether we're allowed to deactivate this interrupt based
 | |
|      * on its group and the current CPU state.
 | |
|      * These checks are laid out to correspond to the spec's pseudocode.
 | |
|      */
 | |
|     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
 | |
|     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
 | |
|     /* No need to include !IsSecure in route_*_to_el2 as it's only
 | |
|      * tested in cases where we know !IsSecure is true.
 | |
|      */
 | |
|     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 | |
|     route_fiq_to_el2 = hcr_el2 & HCR_FMO;
 | |
|     route_irq_to_el2 = hcr_el2 & HCR_IMO;
 | |
| 
 | |
|     switch (arm_current_el(env)) {
 | |
|     case 3:
 | |
|         break;
 | |
|     case 2:
 | |
|         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
 | |
|             break;
 | |
|         }
 | |
|         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
|     case 1:
 | |
|         if (!arm_is_secure_below_el3(env)) {
 | |
|             if (single_sec_state && irq_is_grp0 &&
 | |
|                 !route_fiq_to_el3 && !route_fiq_to_el2) {
 | |
|                 break;
 | |
|             }
 | |
|             if (!irq_is_secure && !irq_is_grp0 &&
 | |
|                 !route_irq_to_el3 && !route_irq_to_el2) {
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             if (irq_is_grp0 && !route_fiq_to_el3) {
 | |
|                 break;
 | |
|             }
 | |
|             if (!irq_is_grp0 &&
 | |
|                 (!irq_is_secure || !single_sec_state) &&
 | |
|                 !route_irq_to_el3) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     icc_deactivate_irq(cs, irq);
 | |
| }
 | |
| 
 | |
| static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int prio;
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO | HCR_IMO)) {
 | |
|         return icv_rpr_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     prio = icc_highest_active_prio(cs);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
 | |
|         /* NS GIC access and Group 0 is inaccessible to NS */
 | |
|         if ((prio & 0x80) == 0) {
 | |
|             /* NS mustn't see priorities in the Secure half of the range */
 | |
|             prio = 0;
 | |
|         } else if (prio != 0xff) {
 | |
|             /* Non-idle priority: show the Non-secure view of it */
 | |
|             prio = (prio << 1) & 0xff;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
 | |
|     return prio;
 | |
| }
 | |
| 
 | |
| static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
 | |
|                              uint64_t value, int grp, bool ns)
 | |
| {
 | |
|     GICv3State *s = cs->gic;
 | |
| 
 | |
|     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
 | |
|     uint64_t aff = extract64(value, 48, 8) << 16 |
 | |
|         extract64(value, 32, 8) << 8 |
 | |
|         extract64(value, 16, 8);
 | |
|     uint32_t targetlist = extract64(value, 0, 16);
 | |
|     uint32_t irq = extract64(value, 24, 4);
 | |
|     bool irm = extract64(value, 40, 1);
 | |
|     int i;
 | |
| 
 | |
|     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
 | |
|         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
 | |
|          * interrupts as Group 0 interrupts and must send Secure Group 0
 | |
|          * interrupts to the target CPUs.
 | |
|          */
 | |
|         grp = GICV3_G0;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
 | |
|                                  aff, targetlist);
 | |
| 
 | |
|     for (i = 0; i < s->num_cpu; i++) {
 | |
|         GICv3CPUState *ocs = &s->cpu[i];
 | |
| 
 | |
|         if (irm) {
 | |
|             /* IRM == 1 : route to all CPUs except self */
 | |
|             if (cs == ocs) {
 | |
|                 continue;
 | |
|             }
 | |
|         } else {
 | |
|             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
 | |
|              * where the corresponding bit is set in targetlist
 | |
|              */
 | |
|             int aff0;
 | |
| 
 | |
|             if (ocs->gicr_typer >> 40 != aff) {
 | |
|                 continue;
 | |
|             }
 | |
|             aff0 = extract64(ocs->gicr_typer, 32, 8);
 | |
|             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* The redistributor will check against its own GICR_NSACR as needed */
 | |
|         gicv3_redist_send_sgi(ocs, grp, irq, ns);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Generate Secure Group 0 SGI. */
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     bool ns = !arm_is_secure(env);
 | |
| 
 | |
|     icc_generate_sgi(env, cs, value, GICV3_G0, ns);
 | |
| }
 | |
| 
 | |
| static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Generate Group 1 SGI for the current Security state */
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp;
 | |
|     bool ns = !arm_is_secure(env);
 | |
| 
 | |
|     grp = ns ? GICV3_G1NS : GICV3_G1;
 | |
|     icc_generate_sgi(env, cs, value, grp, ns);
 | |
| }
 | |
| 
 | |
| static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     /* Generate Group 1 SGI for the Security state that is not
 | |
|      * the current state
 | |
|      */
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp;
 | |
|     bool ns = !arm_is_secure(env);
 | |
| 
 | |
|     grp = ns ? GICV3_G1 : GICV3_G1NS;
 | |
|     icc_generate_sgi(env, cs, value, grp, ns);
 | |
| }
 | |
| 
 | |
| static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
 | |
|     uint64_t value;
 | |
| 
 | |
|     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
 | |
|         return icv_igrpen_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 | |
|         grp = GICV3_G1NS;
 | |
|     }
 | |
| 
 | |
|     value = cs->icc_igrpen[grp];
 | |
|     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 | |
|                                 gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
 | |
| 
 | |
|     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
 | |
|         icv_igrpen_write(env, ri, value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 | |
|                                  gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 | |
|         grp = GICV3_G1NS;
 | |
|     }
 | |
| 
 | |
|     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
 | |
|     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
 | |
|     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
 | |
|     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
 | |
|     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
 | |
|     uint64_t value;
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO | HCR_IMO)) {
 | |
|         return icv_ctlr_read(env, ri);
 | |
|     }
 | |
| 
 | |
|     value = cs->icc_ctlr_el1[bank];
 | |
|     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
 | |
|     uint64_t mask;
 | |
| 
 | |
|     if (icv_access(env, HCR_FMO | HCR_IMO)) {
 | |
|         icv_ctlr_write(env, ri, value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     /* Only CBPR and EOIMODE can be RW;
 | |
|      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
 | |
|      * the asseciated priority-based routing of them);
 | |
|      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
 | |
|         mask = ICC_CTLR_EL1_EOIMODE;
 | |
|     } else {
 | |
|         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
 | |
|     }
 | |
| 
 | |
|     cs->icc_ctlr_el1[bank] &= ~mask;
 | |
|     cs->icc_ctlr_el1[bank] |= (value & mask);
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     value = cs->icc_ctlr_el3;
 | |
|     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
 | |
|         value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
 | |
|     }
 | |
|     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
 | |
|         value |= ICC_CTLR_EL3_CBPR_EL1NS;
 | |
|     }
 | |
|     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
 | |
|         value |= ICC_CTLR_EL3_EOIMODE_EL1S;
 | |
|     }
 | |
|     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
 | |
|         value |= ICC_CTLR_EL3_CBPR_EL1S;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t mask;
 | |
| 
 | |
|     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
 | |
|     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
 | |
|     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
 | |
|         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
 | |
|     }
 | |
|     if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
 | |
|         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
 | |
|     }
 | |
| 
 | |
|     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
 | |
|     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
 | |
|         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
 | |
|     }
 | |
|     if (value & ICC_CTLR_EL3_CBPR_EL1S) {
 | |
|         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
 | |
|     }
 | |
| 
 | |
|     /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
 | |
|     mask = ICC_CTLR_EL3_EOIMODE_EL3;
 | |
| 
 | |
|     cs->icc_ctlr_el3 &= ~mask;
 | |
|     cs->icc_ctlr_el3 |= (value & mask);
 | |
|     gicv3_cpuif_update(cs);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
 | |
|                                           const ARMCPRegInfo *ri, bool isread)
 | |
| {
 | |
|     CPAccessResult r = CP_ACCESS_OK;
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
 | |
|         el == 1 && !arm_is_secure_below_el3(env)) {
 | |
|         /* Takes priority over a possible EL3 trap */
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
 | |
|         switch (el) {
 | |
|         case 1:
 | |
|             /* Note that arm_hcr_el2_eff takes secure state into account.  */
 | |
|             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
 | |
|                 r = CP_ACCESS_TRAP_EL3;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             r = CP_ACCESS_TRAP_EL3;
 | |
|             break;
 | |
|         case 3:
 | |
|             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
 | |
|                 r = CP_ACCESS_TRAP_EL3;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
 | |
|         r = CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gicv3_dir_access(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri, bool isread)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
 | |
|         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
 | |
|         /* Takes priority over a possible EL3 trap */
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return gicv3_irqfiq_access(env, ri, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gicv3_sgi_access(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri, bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1 &&
 | |
|         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
 | |
|         /* Takes priority over a possible EL3 trap */
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return gicv3_irqfiq_access(env, ri, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gicv3_fiq_access(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri, bool isread)
 | |
| {
 | |
|     CPAccessResult r = CP_ACCESS_OK;
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
 | |
|         el == 1 && !arm_is_secure_below_el3(env)) {
 | |
|         /* Takes priority over a possible EL3 trap */
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     if (env->cp15.scr_el3 & SCR_FIQ) {
 | |
|         switch (el) {
 | |
|         case 1:
 | |
|             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
 | |
|                 r = CP_ACCESS_TRAP_EL3;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             r = CP_ACCESS_TRAP_EL3;
 | |
|             break;
 | |
|         case 3:
 | |
|             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
 | |
|                 r = CP_ACCESS_TRAP_EL3;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
 | |
|         r = CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gicv3_irq_access(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri, bool isread)
 | |
| {
 | |
|     CPAccessResult r = CP_ACCESS_OK;
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
 | |
|         el == 1 && !arm_is_secure_below_el3(env)) {
 | |
|         /* Takes priority over a possible EL3 trap */
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     if (env->cp15.scr_el3 & SCR_IRQ) {
 | |
|         switch (el) {
 | |
|         case 1:
 | |
|             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
 | |
|                 r = CP_ACCESS_TRAP_EL3;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             r = CP_ACCESS_TRAP_EL3;
 | |
|             break;
 | |
|         case 3:
 | |
|             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
 | |
|                 r = CP_ACCESS_TRAP_EL3;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
 | |
|         r = CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
 | |
|         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 | |
|         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
 | |
|     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
 | |
|         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 | |
|         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
 | |
|     cs->icc_pmr_el1 = 0;
 | |
|     cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
 | |
|     cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
 | |
|     cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
 | |
|     memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
 | |
|     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
 | |
|     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
 | |
|         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
 | |
|         ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
 | |
| 
 | |
|     memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
 | |
|     cs->ich_hcr_el2 = 0;
 | |
|     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
 | |
|     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
 | |
|         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
 | |
|         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
 | |
|     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
 | |
|       .readfn = icc_pmr_read,
 | |
|       .writefn = icc_pmr_write,
 | |
|       /* We hang the whole cpu interface reset routine off here
 | |
|        * rather than parcelling it out into one little function
 | |
|        * per register
 | |
|        */
 | |
|       .resetfn = icc_reset,
 | |
|     },
 | |
|     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_R, .accessfn = gicv3_fiq_access,
 | |
|       .readfn = icc_iar0_read,
 | |
|     },
 | |
|     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_fiq_access,
 | |
|       .writefn = icc_eoir_write,
 | |
|     },
 | |
|     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_R, .accessfn = gicv3_fiq_access,
 | |
|       .readfn = icc_hppir0_read,
 | |
|     },
 | |
|     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_fiq_access,
 | |
|       .readfn = icc_bpr_read,
 | |
|       .writefn = icc_bpr_write,
 | |
|     },
 | |
|     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_fiq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
|     /* All the ICC_AP1R*_EL1 registers are banked */
 | |
|     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
|     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_dir_access,
 | |
|       .writefn = icc_dir_write,
 | |
|     },
 | |
|     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_R, .accessfn = gicv3_irqfiq_access,
 | |
|       .readfn = icc_rpr_read,
 | |
|     },
 | |
|     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_sgi_access,
 | |
|       .writefn = icc_sgi1r_write,
 | |
|     },
 | |
|     { .name = "ICC_SGI1R",
 | |
|       .cp = 15, .opc1 = 0, .crm = 12,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_sgi_access,
 | |
|       .writefn = icc_sgi1r_write,
 | |
|     },
 | |
|     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_sgi_access,
 | |
|       .writefn = icc_asgi1r_write,
 | |
|     },
 | |
|     { .name = "ICC_ASGI1R",
 | |
|       .cp = 15, .opc1 = 1, .crm = 12,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_sgi_access,
 | |
|       .writefn = icc_asgi1r_write,
 | |
|     },
 | |
|     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_sgi_access,
 | |
|       .writefn = icc_sgi0r_write,
 | |
|     },
 | |
|     { .name = "ICC_SGI0R",
 | |
|       .cp = 15, .opc1 = 2, .crm = 12,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_sgi_access,
 | |
|       .writefn = icc_sgi0r_write,
 | |
|     },
 | |
|     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_R, .accessfn = gicv3_irq_access,
 | |
|       .readfn = icc_iar1_read,
 | |
|     },
 | |
|     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_W, .accessfn = gicv3_irq_access,
 | |
|       .writefn = icc_eoir_write,
 | |
|     },
 | |
|     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_R, .accessfn = gicv3_irq_access,
 | |
|       .readfn = icc_hppir1_read,
 | |
|     },
 | |
|     /* This register is banked */
 | |
|     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irq_access,
 | |
|       .readfn = icc_bpr_read,
 | |
|       .writefn = icc_bpr_write,
 | |
|     },
 | |
|     /* This register is banked */
 | |
|     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
 | |
|       .readfn = icc_ctlr_el1_read,
 | |
|       .writefn = icc_ctlr_el1_write,
 | |
|     },
 | |
|     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
 | |
|       .access = PL1_RW,
 | |
|       /* We don't support IRQ/FIQ bypass and system registers are
 | |
|        * always enabled, so all our bits are RAZ/WI or RAO/WI.
 | |
|        * This register is banked but since it's constant we don't
 | |
|        * need to do anything special.
 | |
|        */
 | |
|       .resetvalue = 0x7,
 | |
|     },
 | |
|     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_fiq_access,
 | |
|       .fgt = FGT_ICC_IGRPENN_EL1,
 | |
|       .readfn = icc_igrpen_read,
 | |
|       .writefn = icc_igrpen_write,
 | |
|     },
 | |
|     /* This register is banked */
 | |
|     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irq_access,
 | |
|       .fgt = FGT_ICC_IGRPENN_EL1,
 | |
|       .readfn = icc_igrpen_read,
 | |
|       .writefn = icc_igrpen_write,
 | |
|     },
 | |
|     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
 | |
|       .access = PL2_RW,
 | |
|       /* We don't support IRQ/FIQ bypass and system registers are
 | |
|        * always enabled, so all our bits are RAZ/WI or RAO/WI.
 | |
|        */
 | |
|       .resetvalue = 0xf,
 | |
|     },
 | |
|     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL3_RW,
 | |
|       .readfn = icc_ctlr_el3_read,
 | |
|       .writefn = icc_ctlr_el3_write,
 | |
|     },
 | |
|     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
 | |
|       .access = PL3_RW,
 | |
|       /* We don't support IRQ/FIQ bypass and system registers are
 | |
|        * always enabled, so all our bits are RAZ/WI or RAO/WI.
 | |
|        */
 | |
|       .resetvalue = 0xf,
 | |
|     },
 | |
|     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL3_RW,
 | |
|       .readfn = icc_igrpen1_el3_read,
 | |
|       .writefn = icc_igrpen1_el3_write,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
 | |
|     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_fiq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
|     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
 | |
|     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_fiq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
|     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_fiq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
|     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
|     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .accessfn = gicv3_irq_access,
 | |
|       .readfn = icc_ap_read,
 | |
|       .writefn = icc_ap_write,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int regno = ri->opc2 & 3;
 | |
|     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 | |
|     uint64_t value;
 | |
| 
 | |
|     value = cs->ich_apr[grp][regno];
 | |
|     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int regno = ri->opc2 & 3;
 | |
|     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 | |
| 
 | |
|     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value = cs->ich_hcr_el2;
 | |
| 
 | |
|     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
 | |
|         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
 | |
|         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
 | |
|         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
 | |
|         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
 | |
| 
 | |
|     cs->ich_hcr_el2 = value;
 | |
|     gicv3_cpuif_virt_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value = cs->ich_vmcr_el2;
 | |
| 
 | |
|     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
| 
 | |
|     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
 | |
| 
 | |
|     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
 | |
|         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
 | |
|         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
 | |
|     value |= ICH_VMCR_EL2_VFIQEN;
 | |
| 
 | |
|     cs->ich_vmcr_el2 = value;
 | |
|     /* Enforce "writing BPRs to less than minimum sets them to the minimum"
 | |
|      * by reading and writing back the fields.
 | |
|      */
 | |
|     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
 | |
|     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
 | |
| 
 | |
|     gicv3_cpuif_virt_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int regno = ri->opc2 | ((ri->crm & 1) << 3);
 | |
|     uint64_t value;
 | |
| 
 | |
|     /* This read function handles all of:
 | |
|      * 64-bit reads of the whole LR
 | |
|      * 32-bit reads of the low half of the LR
 | |
|      * 32-bit reads of the high half of the LR
 | |
|      */
 | |
|     if (ri->state == ARM_CP_STATE_AA32) {
 | |
|         if (ri->crm >= 14) {
 | |
|             value = extract64(cs->ich_lr_el2[regno], 32, 32);
 | |
|             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
 | |
|         } else {
 | |
|             value = extract64(cs->ich_lr_el2[regno], 0, 32);
 | |
|             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
 | |
|         }
 | |
|     } else {
 | |
|         value = cs->ich_lr_el2[regno];
 | |
|         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     int regno = ri->opc2 | ((ri->crm & 1) << 3);
 | |
| 
 | |
|     /* This write function handles all of:
 | |
|      * 64-bit writes to the whole LR
 | |
|      * 32-bit writes to the low half of the LR
 | |
|      * 32-bit writes to the high half of the LR
 | |
|      */
 | |
|     if (ri->state == ARM_CP_STATE_AA32) {
 | |
|         if (ri->crm >= 14) {
 | |
|             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
 | |
|             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
 | |
|         } else {
 | |
|             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
 | |
|             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
 | |
|         }
 | |
|     } else {
 | |
|         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
 | |
|     }
 | |
| 
 | |
|     /* Enforce RES0 bits in priority field */
 | |
|     if (cs->vpribits < 8) {
 | |
|         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
 | |
|                           8 - cs->vpribits, 0);
 | |
|     }
 | |
| 
 | |
|     cs->ich_lr_el2[regno] = value;
 | |
|     gicv3_cpuif_virt_update(cs);
 | |
| }
 | |
| 
 | |
| static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value;
 | |
| 
 | |
|     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
 | |
|         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
 | |
|         | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
 | |
|         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
 | |
|         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
 | |
| 
 | |
|     if (cs->gic->revision < 4) {
 | |
|         value |= ICH_VTR_EL2_NV4;
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value = maintenance_interrupt_state(cs);
 | |
| 
 | |
|     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
 | |
| 
 | |
|     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     GICv3CPUState *cs = icc_cs_from_env(env);
 | |
|     uint64_t value = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < cs->num_list_regs; i++) {
 | |
|         uint64_t lr = cs->ich_lr_el2[i];
 | |
| 
 | |
|         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
 | |
|             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
 | |
|             value |= (1 << i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
 | |
|     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
|     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
|     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_hcr_read,
 | |
|       .writefn = ich_hcr_write,
 | |
|     },
 | |
|     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_R,
 | |
|       .readfn = ich_vtr_read,
 | |
|     },
 | |
|     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_R,
 | |
|       .readfn = ich_misr_read,
 | |
|     },
 | |
|     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_R,
 | |
|       .readfn = ich_eisr_read,
 | |
|     },
 | |
|     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_R,
 | |
|       .readfn = ich_elrsr_read,
 | |
|     },
 | |
|     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_vmcr_read,
 | |
|       .writefn = ich_vmcr_write,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
 | |
|     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
|     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
 | |
|     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
|     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
|     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
|     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
 | |
|       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = ich_ap_read,
 | |
|       .writefn = ich_ap_write,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
 | |
| {
 | |
|     GICv3CPUState *cs = opaque;
 | |
| 
 | |
|     gicv3_cpuif_update(cs);
 | |
|     /*
 | |
|      * Because vLPIs are only pending in NonSecure state,
 | |
|      * an EL change can change the VIRQ/VFIQ status (but
 | |
|      * cannot affect the maintenance interrupt state)
 | |
|      */
 | |
|     gicv3_cpuif_virt_irq_fiq_update(cs);
 | |
| }
 | |
| 
 | |
| void gicv3_init_cpuif(GICv3State *s)
 | |
| {
 | |
|     /* Called from the GICv3 realize function; register our system
 | |
|      * registers with the CPU
 | |
|      */
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->num_cpu; i++) {
 | |
|         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
 | |
|         GICv3CPUState *cs = &s->cpu[i];
 | |
| 
 | |
|         /*
 | |
|          * If the CPU doesn't define a GICv3 configuration, probably because
 | |
|          * in real hardware it doesn't have one, then we use default values
 | |
|          * matching the one used by most Arm CPUs. This applies to:
 | |
|          *  cpu->gic_num_lrs
 | |
|          *  cpu->gic_vpribits
 | |
|          *  cpu->gic_vprebits
 | |
|          *  cpu->gic_pribits
 | |
|          */
 | |
| 
 | |
|         /* Note that we can't just use the GICv3CPUState as an opaque pointer
 | |
|          * in define_arm_cp_regs_with_opaque(), because when we're called back
 | |
|          * it might be with code translated by CPU 0 but run by CPU 1, in
 | |
|          * which case we'd get the wrong value.
 | |
|          * So instead we define the regs with no ri->opaque info, and
 | |
|          * get back to the GICv3CPUState from the CPUARMState.
 | |
|          *
 | |
|          * These CP regs callbacks can be called from either TCG or HVF code.
 | |
|          */
 | |
|         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
 | |
| 
 | |
|         /*
 | |
|          * The CPU implementation specifies the number of supported
 | |
|          * bits of physical priority. For backwards compatibility
 | |
|          * of migration, we have a compat property that forces use
 | |
|          * of 8 priority bits regardless of what the CPU really has.
 | |
|          */
 | |
|         if (s->force_8bit_prio) {
 | |
|             cs->pribits = 8;
 | |
|         } else {
 | |
|             cs->pribits = cpu->gic_pribits ?: 5;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * The GICv3 has separate ID register fields for virtual priority
 | |
|          * and preemption bit values, but only a single ID register field
 | |
|          * for the physical priority bits. The preemption bit count is
 | |
|          * always the same as the priority bit count, except that 8 bits
 | |
|          * of priority means 7 preemption bits. We precalculate the
 | |
|          * preemption bits because it simplifies the code and makes the
 | |
|          * parallels between the virtual and physical bits of the GIC
 | |
|          * a bit clearer.
 | |
|          */
 | |
|         cs->prebits = cs->pribits;
 | |
|         if (cs->prebits == 8) {
 | |
|             cs->prebits--;
 | |
|         }
 | |
|         /*
 | |
|          * Check that CPU code defining pribits didn't violate
 | |
|          * architectural constraints our implementation relies on.
 | |
|          */
 | |
|         g_assert(cs->pribits >= 4 && cs->pribits <= 8);
 | |
| 
 | |
|         /*
 | |
|          * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
 | |
|          * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
 | |
|          */
 | |
|         if (cs->prebits >= 6) {
 | |
|             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
 | |
|         }
 | |
|         if (cs->prebits == 7) {
 | |
|             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
 | |
|         }
 | |
| 
 | |
|         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
 | |
|             int j;
 | |
| 
 | |
|             cs->num_list_regs = cpu->gic_num_lrs ?: 4;
 | |
|             cs->vpribits = cpu->gic_vpribits ?: 5;
 | |
|             cs->vprebits = cpu->gic_vprebits ?: 5;
 | |
| 
 | |
|             /* Check against architectural constraints: getting these
 | |
|              * wrong would be a bug in the CPU code defining these,
 | |
|              * and the implementation relies on them holding.
 | |
|              */
 | |
|             g_assert(cs->vprebits <= cs->vpribits);
 | |
|             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
 | |
|             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
 | |
| 
 | |
|             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
 | |
| 
 | |
|             for (j = 0; j < cs->num_list_regs; j++) {
 | |
|                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
 | |
|                  * are split into two cp15 regs, LR (the low part, with the
 | |
|                  * same encoding as the AArch64 LR) and LRC (the high part).
 | |
|                  */
 | |
|                 ARMCPRegInfo lr_regset[] = {
 | |
|                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|                       .opc0 = 3, .opc1 = 4, .crn = 12,
 | |
|                       .crm = 12 + (j >> 3), .opc2 = j & 7,
 | |
|                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|                       .access = PL2_RW,
 | |
|                       .readfn = ich_lr_read,
 | |
|                       .writefn = ich_lr_write,
 | |
|                     },
 | |
|                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
 | |
|                       .cp = 15, .opc1 = 4, .crn = 12,
 | |
|                       .crm = 14 + (j >> 3), .opc2 = j & 7,
 | |
|                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|                       .access = PL2_RW,
 | |
|                       .readfn = ich_lr_read,
 | |
|                       .writefn = ich_lr_write,
 | |
|                     },
 | |
|                 };
 | |
|                 define_arm_cp_regs(cpu, lr_regset);
 | |
|             }
 | |
|             if (cs->vprebits >= 6) {
 | |
|                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
 | |
|             }
 | |
|             if (cs->vprebits == 7) {
 | |
|                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
 | |
|             }
 | |
|         }
 | |
|         if (tcg_enabled() || qtest_enabled()) {
 | |
|             /*
 | |
|              * We can only trap EL changes with TCG. However the GIC interrupt
 | |
|              * state only changes on EL changes involving EL2 or EL3, so for
 | |
|              * the non-TCG case this is OK, as EL2 and EL3 can't exist.
 | |
|              */
 | |
|             arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
 | |
|         } else {
 | |
|             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2));
 | |
|             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3));
 | |
|         }
 | |
|     }
 | |
| }
 |