 ba324b3fb4
			
		
	
	
		ba324b3fb4
		
	
	
	
	
		
			
			Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20231221031652.119827-57-richard.henderson@linaro.org>
		
			
				
	
	
		
			474 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			474 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Arm SSE Subsystem System Counter
 | |
|  *
 | |
|  * Copyright (c) 2020 Linaro Limited
 | |
|  * Written by Peter Maydell
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 or
 | |
|  * (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This is a model of the "System counter" which is documented in
 | |
|  * the Arm SSE-123 Example Subsystem Technical Reference Manual:
 | |
|  * https://developer.arm.com/documentation/101370/latest/
 | |
|  *
 | |
|  * The system counter is a non-stop 64-bit up-counter. It provides
 | |
|  * this count value to other devices like the SSE system timer,
 | |
|  * which are driven by this system timestamp rather than directly
 | |
|  * from a clock. Internally to the counter the count is actually
 | |
|  * 88-bit precision (64.24 fixed point), with a programmable scale factor.
 | |
|  *
 | |
|  * The hardware has the optional feature that it supports dynamic
 | |
|  * clock switching, where two clock inputs are connected, and which
 | |
|  * one is used is selected via a CLKSEL input signal. Since the
 | |
|  * users of this device in QEMU don't use this feature, we only model
 | |
|  * the HWCLKSW=0 configuration.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qapi/error.h"
 | |
| #include "trace.h"
 | |
| #include "hw/timer/sse-counter.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/registerfields.h"
 | |
| #include "hw/clock.h"
 | |
| #include "hw/qdev-clock.h"
 | |
| #include "migration/vmstate.h"
 | |
| 
 | |
| /* Registers in the control frame */
 | |
| REG32(CNTCR, 0x0)
 | |
|     FIELD(CNTCR, EN, 0, 1)
 | |
|     FIELD(CNTCR, HDBG, 1, 1)
 | |
|     FIELD(CNTCR, SCEN, 2, 1)
 | |
|     FIELD(CNTCR, INTRMASK, 3, 1)
 | |
|     FIELD(CNTCR, PSLVERRDIS, 4, 1)
 | |
|     FIELD(CNTCR, INTRCLR, 5, 1)
 | |
| /*
 | |
|  * Although CNTCR defines interrupt-related bits, the counter doesn't
 | |
|  * appear to actually have an interrupt output. So INTRCLR is
 | |
|  * effectively a RAZ/WI bit, as are the reserved bits [31:6].
 | |
|  */
 | |
| #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
 | |
|                           R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
 | |
|                           R_CNTCR_PSLVERRDIS_MASK)
 | |
| REG32(CNTSR, 0x4)
 | |
| REG32(CNTCV_LO, 0x8)
 | |
| REG32(CNTCV_HI, 0xc)
 | |
| REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
 | |
| REG32(CNTID, 0x1c)
 | |
|     FIELD(CNTID, CNTSC, 0, 4)
 | |
|     FIELD(CNTID, CNTCS, 16, 1)
 | |
|     FIELD(CNTID, CNTSELCLK, 17, 2)
 | |
|     FIELD(CNTID, CNTSCR_OVR, 19, 1)
 | |
| REG32(CNTSCR0, 0xd0)
 | |
| REG32(CNTSCR1, 0xd4)
 | |
| 
 | |
| /* Registers in the status frame */
 | |
| REG32(STATUS_CNTCV_LO, 0x0)
 | |
| REG32(STATUS_CNTCV_HI, 0x4)
 | |
| 
 | |
| /* Standard ID registers, present in both frames */
 | |
| REG32(PID4, 0xFD0)
 | |
| REG32(PID5, 0xFD4)
 | |
| REG32(PID6, 0xFD8)
 | |
| REG32(PID7, 0xFDC)
 | |
| REG32(PID0, 0xFE0)
 | |
| REG32(PID1, 0xFE4)
 | |
| REG32(PID2, 0xFE8)
 | |
| REG32(PID3, 0xFEC)
 | |
| REG32(CID0, 0xFF0)
 | |
| REG32(CID1, 0xFF4)
 | |
| REG32(CID2, 0xFF8)
 | |
| REG32(CID3, 0xFFC)
 | |
| 
 | |
| /* PID/CID values */
 | |
| static const int control_id[] = {
 | |
|     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
 | |
|     0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
 | |
|     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
 | |
| };
 | |
| 
 | |
| static const int status_id[] = {
 | |
|     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
 | |
|     0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
 | |
|     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
 | |
| };
 | |
| 
 | |
| static void sse_counter_notify_users(SSECounter *s)
 | |
| {
 | |
|     /*
 | |
|      * Notify users of the count timestamp that they may
 | |
|      * need to recalculate.
 | |
|      */
 | |
|     notifier_list_notify(&s->notifier_list, NULL);
 | |
| }
 | |
| 
 | |
| static bool sse_counter_enabled(SSECounter *s)
 | |
| {
 | |
|     return (s->cntcr & R_CNTCR_EN_MASK) != 0;
 | |
| }
 | |
| 
 | |
| uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
 | |
| {
 | |
|     if (!sse_counter_enabled(s)) {
 | |
|         return UINT64_MAX;
 | |
|     }
 | |
| 
 | |
|     tick -= s->ticks_then;
 | |
| 
 | |
|     if (s->cntcr & R_CNTCR_SCEN_MASK) {
 | |
|         /* Adjust the tick count to account for the scale factor */
 | |
|         tick = muldiv64(tick, 0x01000000, s->cntscr0);
 | |
|     }
 | |
| 
 | |
|     return s->ns_then + clock_ticks_to_ns(s->clk, tick);
 | |
| }
 | |
| 
 | |
| void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
 | |
| {
 | |
|     /*
 | |
|      * For the moment we assume that both we and the devices
 | |
|      * which consume us last for the life of the simulation,
 | |
|      * and so there is no mechanism for removing a notifier.
 | |
|      */
 | |
|     notifier_list_add(&s->notifier_list, notifier);
 | |
| }
 | |
| 
 | |
| uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
 | |
| {
 | |
|     /* Return the CNTCV value for a particular timestamp (clock ns value). */
 | |
|     uint64_t ticks;
 | |
| 
 | |
|     if (!sse_counter_enabled(s)) {
 | |
|         /* Counter is disabled and does not increment */
 | |
|         return s->ticks_then;
 | |
|     }
 | |
| 
 | |
|     ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
 | |
|     if (s->cntcr & R_CNTCR_SCEN_MASK) {
 | |
|         /*
 | |
|          * Scaling is enabled. The CNTSCR value is the amount added to
 | |
|          * the underlying 88-bit counter for every tick of the
 | |
|          * underlying clock; CNTCV is the top 64 bits of that full
 | |
|          * 88-bit value. Multiplying the tick count by CNTSCR tells us
 | |
|          * how much the full 88-bit counter has moved on; we then
 | |
|          * divide that by 0x01000000 to find out how much the 64-bit
 | |
|          * visible portion has advanced. muldiv64() gives us the
 | |
|          * necessary at-least-88-bit precision for the intermediate
 | |
|          * result.
 | |
|          */
 | |
|         ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
 | |
|     }
 | |
|     return s->ticks_then + ticks;
 | |
| }
 | |
| 
 | |
| static uint64_t sse_cntcv(SSECounter *s)
 | |
| {
 | |
|     /* Return the CNTCV value for the current time */
 | |
|     return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
| }
 | |
| 
 | |
| static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
 | |
| {
 | |
|     /*
 | |
|      * Write one 32-bit half of the counter value; startbit is the
 | |
|      * bit position of this half in the 64-bit word, either 0 or 32.
 | |
|      */
 | |
|     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|     uint64_t cntcv = sse_counter_for_timestamp(s, now);
 | |
| 
 | |
|     cntcv = deposit64(cntcv, startbit, 32, value);
 | |
|     s->ticks_then = cntcv;
 | |
|     s->ns_then = now;
 | |
|     sse_counter_notify_users(s);
 | |
| }
 | |
| 
 | |
| static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
 | |
|                                          unsigned size)
 | |
| {
 | |
|     SSECounter *s = SSE_COUNTER(opaque);
 | |
|     uint64_t r;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case A_CNTCR:
 | |
|         r = s->cntcr;
 | |
|         break;
 | |
|     case A_CNTSR:
 | |
|         /*
 | |
|          * The only bit here is DBGH, indicating that the counter has been
 | |
|          * halted via the Halt-on-Debug signal. We don't implement halting
 | |
|          * debug, so the whole register always reads as zero.
 | |
|          */
 | |
|         r = 0;
 | |
|         break;
 | |
|     case A_CNTCV_LO:
 | |
|         r = extract64(sse_cntcv(s), 0, 32);
 | |
|         break;
 | |
|     case A_CNTCV_HI:
 | |
|         r = extract64(sse_cntcv(s), 32, 32);
 | |
|         break;
 | |
|     case A_CNTID:
 | |
|         /*
 | |
|          * For our implementation:
 | |
|          *  - CNTSCR can only be written when CNTCR.EN == 0
 | |
|          *  - HWCLKSW=0, so selected clock is always CLK0
 | |
|          *  - counter scaling is implemented
 | |
|          */
 | |
|         r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
 | |
|         break;
 | |
|     case A_CNTSCR:
 | |
|     case A_CNTSCR0:
 | |
|         r = s->cntscr0;
 | |
|         break;
 | |
|     case A_CNTSCR1:
 | |
|         /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
 | |
|         r = 0;
 | |
|         break;
 | |
|     case A_PID4 ... A_CID3:
 | |
|         r = control_id[(offset - A_PID4) / 4];
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Counter control frame read: bad offset 0x%x",
 | |
|                       (unsigned)offset);
 | |
|         r = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     trace_sse_counter_control_read(offset, r, size);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static void sse_counter_control_write(void *opaque, hwaddr offset,
 | |
|                                       uint64_t value, unsigned size)
 | |
| {
 | |
|     SSECounter *s = SSE_COUNTER(opaque);
 | |
| 
 | |
|     trace_sse_counter_control_write(offset, value, size);
 | |
| 
 | |
|     switch (offset) {
 | |
|     case A_CNTCR:
 | |
|         /*
 | |
|          * Although CNTCR defines interrupt-related bits, the counter doesn't
 | |
|          * appear to actually have an interrupt output. So INTRCLR is
 | |
|          * effectively a RAZ/WI bit, as are the reserved bits [31:6].
 | |
|          * The documentation does not explicitly say so, but we assume
 | |
|          * that changing the scale factor while the counter is enabled
 | |
|          * by toggling CNTCR.SCEN has the same behaviour (making the counter
 | |
|          * value UNKNOWN) as changing it by writing to CNTSCR, and so we
 | |
|          * don't need to try to recalculate for that case.
 | |
|          */
 | |
|         value &= CNTCR_VALID_MASK;
 | |
|         if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
 | |
|             /*
 | |
|              * Whether the counter is being enabled or disabled, the
 | |
|              * required action is the same: sync the (ns_then, ticks_then)
 | |
|              * tuple.
 | |
|              */
 | |
|             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|             s->ticks_then = sse_counter_for_timestamp(s, now);
 | |
|             s->ns_then = now;
 | |
|             sse_counter_notify_users(s);
 | |
|         }
 | |
|         s->cntcr = value;
 | |
|         break;
 | |
|     case A_CNTCV_LO:
 | |
|         sse_write_cntcv(s, value, 0);
 | |
|         break;
 | |
|     case A_CNTCV_HI:
 | |
|         sse_write_cntcv(s, value, 32);
 | |
|         break;
 | |
|     case A_CNTSCR:
 | |
|     case A_CNTSCR0:
 | |
|         /*
 | |
|          * If the scale registers are changed when the counter is enabled,
 | |
|          * the count value becomes UNKNOWN. So we don't try to recalculate
 | |
|          * anything here but only do it on a write to CNTCR.EN.
 | |
|          */
 | |
|         s->cntscr0 = value;
 | |
|         break;
 | |
|     case A_CNTSCR1:
 | |
|         /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
 | |
|         break;
 | |
|     case A_CNTSR:
 | |
|     case A_CNTID:
 | |
|     case A_PID4 ... A_CID3:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Counter control frame: write to RO offset 0x%x\n",
 | |
|                       (unsigned)offset);
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Counter control frame: write to bad offset 0x%x\n",
 | |
|                       (unsigned)offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
 | |
|                                         unsigned size)
 | |
| {
 | |
|     SSECounter *s = SSE_COUNTER(opaque);
 | |
|     uint64_t r;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case A_STATUS_CNTCV_LO:
 | |
|         r = extract64(sse_cntcv(s), 0, 32);
 | |
|         break;
 | |
|     case A_STATUS_CNTCV_HI:
 | |
|         r = extract64(sse_cntcv(s), 32, 32);
 | |
|         break;
 | |
|     case A_PID4 ... A_CID3:
 | |
|         r = status_id[(offset - A_PID4) / 4];
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Counter status frame read: bad offset 0x%x",
 | |
|                       (unsigned)offset);
 | |
|         r = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     trace_sse_counter_status_read(offset, r, size);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static void sse_counter_status_write(void *opaque, hwaddr offset,
 | |
|                                      uint64_t value, unsigned size)
 | |
| {
 | |
|     trace_sse_counter_status_write(offset, value, size);
 | |
| 
 | |
|     switch (offset) {
 | |
|     case A_STATUS_CNTCV_LO:
 | |
|     case A_STATUS_CNTCV_HI:
 | |
|     case A_PID4 ... A_CID3:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Counter status frame: write to RO offset 0x%x\n",
 | |
|                       (unsigned)offset);
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Counter status frame: write to bad offset 0x%x\n",
 | |
|                       (unsigned)offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps sse_counter_control_ops = {
 | |
|     .read = sse_counter_control_read,
 | |
|     .write = sse_counter_control_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
|     .valid.min_access_size = 4,
 | |
|     .valid.max_access_size = 4,
 | |
| };
 | |
| 
 | |
| static const MemoryRegionOps sse_counter_status_ops = {
 | |
|     .read = sse_counter_status_read,
 | |
|     .write = sse_counter_status_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
|     .valid.min_access_size = 4,
 | |
|     .valid.max_access_size = 4,
 | |
| };
 | |
| 
 | |
| static void sse_counter_reset(DeviceState *dev)
 | |
| {
 | |
|     SSECounter *s = SSE_COUNTER(dev);
 | |
| 
 | |
|     trace_sse_counter_reset();
 | |
| 
 | |
|     s->cntcr = 0;
 | |
|     s->cntscr0 = 0x01000000;
 | |
|     s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|     s->ticks_then = 0;
 | |
| }
 | |
| 
 | |
| static void sse_clk_callback(void *opaque, ClockEvent event)
 | |
| {
 | |
|     SSECounter *s = SSE_COUNTER(opaque);
 | |
|     uint64_t now;
 | |
| 
 | |
|     switch (event) {
 | |
|     case ClockPreUpdate:
 | |
|         /*
 | |
|          * Before the clock period updates, set (ticks_then, ns_then)
 | |
|          * to the current time and tick count (as calculated with
 | |
|          * the old clock period).
 | |
|          */
 | |
|         if (sse_counter_enabled(s)) {
 | |
|             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|             s->ticks_then = sse_counter_for_timestamp(s, now);
 | |
|             s->ns_then = now;
 | |
|         }
 | |
|         break;
 | |
|     case ClockUpdate:
 | |
|         sse_counter_notify_users(s);
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void sse_counter_init(Object *obj)
 | |
| {
 | |
|     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 | |
|     SSECounter *s = SSE_COUNTER(obj);
 | |
| 
 | |
|     notifier_list_init(&s->notifier_list);
 | |
| 
 | |
|     s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
 | |
|                                 ClockPreUpdate | ClockUpdate);
 | |
|     memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
 | |
|                           s, "sse-counter-control", 0x1000);
 | |
|     memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
 | |
|                           s, "sse-counter-status", 0x1000);
 | |
|     sysbus_init_mmio(sbd, &s->control_mr);
 | |
|     sysbus_init_mmio(sbd, &s->status_mr);
 | |
| }
 | |
| 
 | |
| static void sse_counter_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     SSECounter *s = SSE_COUNTER(dev);
 | |
| 
 | |
|     if (!clock_has_source(s->clk)) {
 | |
|         error_setg(errp, "SSE system counter: CLK must be connected");
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const VMStateDescription sse_counter_vmstate = {
 | |
|     .name = "sse-counter",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_CLOCK(clk, SSECounter),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void sse_counter_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
| 
 | |
|     dc->realize = sse_counter_realize;
 | |
|     dc->vmsd = &sse_counter_vmstate;
 | |
|     dc->reset = sse_counter_reset;
 | |
| }
 | |
| 
 | |
| static const TypeInfo sse_counter_info = {
 | |
|     .name = TYPE_SSE_COUNTER,
 | |
|     .parent = TYPE_SYS_BUS_DEVICE,
 | |
|     .instance_size = sizeof(SSECounter),
 | |
|     .instance_init = sse_counter_init,
 | |
|     .class_init = sse_counter_class_init,
 | |
| };
 | |
| 
 | |
| static void sse_counter_register_types(void)
 | |
| {
 | |
|     type_register_static(&sse_counter_info);
 | |
| }
 | |
| 
 | |
| type_init(sse_counter_register_types);
 |