 0aff81618b
			
		
	
	
		0aff81618b
		
	
	
	
	
		
			
			Avoid directly referencing nd_table[] by first instantiating any spapr-vlan devices using a qemu_get_nic_info() loop, then calling pci_init_nic_devices() to do the rest. No functional change intended. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Thomas Huth <thuth@redhat.com>
		
			
				
	
	
		
			5319 lines
		
	
	
		
			170 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5319 lines
		
	
	
		
			170 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 | |
|  *
 | |
|  * Copyright (c) 2004-2007 Fabrice Bellard
 | |
|  * Copyright (c) 2007 Jocelyn Mayer
 | |
|  * Copyright (c) 2010 David Gibson, IBM Corporation.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/datadir.h"
 | |
| #include "qemu/memalign.h"
 | |
| #include "qemu/guest-random.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/qapi-events-machine.h"
 | |
| #include "qapi/qapi-events-qdev.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/hostmem.h"
 | |
| #include "sysemu/numa.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "sysemu/reset.h"
 | |
| #include "sysemu/runstate.h"
 | |
| #include "qemu/log.h"
 | |
| #include "hw/fw-path-provider.h"
 | |
| #include "elf.h"
 | |
| #include "net/net.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "sysemu/hw_accel.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "migration/misc.h"
 | |
| #include "migration/qemu-file-types.h"
 | |
| #include "migration/global_state.h"
 | |
| #include "migration/register.h"
 | |
| #include "migration/blocker.h"
 | |
| #include "mmu-hash64.h"
 | |
| #include "mmu-book3s-v3.h"
 | |
| #include "cpu-models.h"
 | |
| #include "hw/core/cpu.h"
 | |
| 
 | |
| #include "hw/ppc/ppc.h"
 | |
| #include "hw/loader.h"
 | |
| 
 | |
| #include "hw/ppc/fdt.h"
 | |
| #include "hw/ppc/spapr.h"
 | |
| #include "hw/ppc/spapr_nested.h"
 | |
| #include "hw/ppc/spapr_vio.h"
 | |
| #include "hw/ppc/vof.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "hw/pci-host/spapr.h"
 | |
| #include "hw/pci/msi.h"
 | |
| 
 | |
| #include "hw/pci/pci.h"
 | |
| #include "hw/scsi/scsi.h"
 | |
| #include "hw/virtio/virtio-scsi.h"
 | |
| #include "hw/virtio/vhost-scsi-common.h"
 | |
| 
 | |
| #include "exec/ram_addr.h"
 | |
| #include "hw/usb.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "trace.h"
 | |
| #include "hw/nmi.h"
 | |
| #include "hw/intc/intc.h"
 | |
| 
 | |
| #include "hw/ppc/spapr_cpu_core.h"
 | |
| #include "hw/mem/memory-device.h"
 | |
| #include "hw/ppc/spapr_tpm_proxy.h"
 | |
| #include "hw/ppc/spapr_nvdimm.h"
 | |
| #include "hw/ppc/spapr_numa.h"
 | |
| #include "hw/ppc/pef.h"
 | |
| 
 | |
| #include "monitor/monitor.h"
 | |
| 
 | |
| #include <libfdt.h>
 | |
| 
 | |
| /* SLOF memory layout:
 | |
|  *
 | |
|  * SLOF raw image loaded at 0, copies its romfs right below the flat
 | |
|  * device-tree, then position SLOF itself 31M below that
 | |
|  *
 | |
|  * So we set FW_OVERHEAD to 40MB which should account for all of that
 | |
|  * and more
 | |
|  *
 | |
|  * We load our kernel at 4M, leaving space for SLOF initial image
 | |
|  */
 | |
| #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
 | |
| #define FW_MAX_SIZE             0x400000
 | |
| #define FW_FILE_NAME            "slof.bin"
 | |
| #define FW_FILE_NAME_VOF        "vof.bin"
 | |
| #define FW_OVERHEAD             0x2800000
 | |
| #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 | |
| 
 | |
| #define MIN_RMA_SLOF            (128 * MiB)
 | |
| 
 | |
| #define PHANDLE_INTC            0x00001111
 | |
| 
 | |
| /* These two functions implement the VCPU id numbering: one to compute them
 | |
|  * all and one to identify thread 0 of a VCORE. Any change to the first one
 | |
|  * is likely to have an impact on the second one, so let's keep them close.
 | |
|  */
 | |
| static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     unsigned int smp_threads = ms->smp.threads;
 | |
| 
 | |
|     assert(spapr->vsmt);
 | |
|     return
 | |
|         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 | |
| }
 | |
| static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 | |
|                                       PowerPCCPU *cpu)
 | |
| {
 | |
|     assert(spapr->vsmt);
 | |
|     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 | |
| }
 | |
| 
 | |
| static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 | |
| {
 | |
|     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 | |
|      * and newer QEMUs don't even have them. In both cases, we don't want
 | |
|      * to send anything on the wire.
 | |
|      */
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 | |
|     /*
 | |
|      * Hack ahead.  We can't have two devices with the same name and
 | |
|      * instance id.  So I rename this to pass make check.
 | |
|      * Real help from people who knows the hardware is needed.
 | |
|      */
 | |
|     .name = "icp/server",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = pre_2_10_vmstate_dummy_icp_needed,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_UNUSED(4), /* uint32_t xirr */
 | |
|         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 | |
|         VMSTATE_UNUSED(1), /* uint8_t mfrr */
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * See comment in hw/intc/xics.c:icp_realize()
 | |
|  *
 | |
|  * You have to remove vmstate_replace_hack_for_ppc() when you remove
 | |
|  * the machine types that need the following function.
 | |
|  */
 | |
| static void pre_2_10_vmstate_register_dummy_icp(int i)
 | |
| {
 | |
|     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 | |
|                      (void *)(uintptr_t) i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See comment in hw/intc/xics.c:icp_realize()
 | |
|  *
 | |
|  * You have to remove vmstate_replace_hack_for_ppc() when you remove
 | |
|  * the machine types that need the following function.
 | |
|  */
 | |
| static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 | |
| {
 | |
|     /*
 | |
|      * This used to be:
 | |
|      *
 | |
|      *    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 | |
|      *                      (void *)(uintptr_t) i);
 | |
|      */
 | |
| }
 | |
| 
 | |
| int spapr_max_server_number(SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
| 
 | |
|     assert(spapr->vsmt);
 | |
|     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
 | |
| }
 | |
| 
 | |
| static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 | |
|                                   int smt_threads)
 | |
| {
 | |
|     int i, ret = 0;
 | |
|     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
 | |
|     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
 | |
|     int index = spapr_get_vcpu_id(cpu);
 | |
| 
 | |
|     if (cpu->compat_pvr) {
 | |
|         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Build interrupt servers and gservers properties */
 | |
|     for (i = 0; i < smt_threads; i++) {
 | |
|         servers_prop[i] = cpu_to_be32(index + i);
 | |
|         /* Hack, direct the group queues back to cpu 0 */
 | |
|         gservers_prop[i*2] = cpu_to_be32(index + i);
 | |
|         gservers_prop[i*2 + 1] = 0;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 | |
|                       servers_prop, sizeof(*servers_prop) * smt_threads);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 | |
|                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void spapr_dt_pa_features(SpaprMachineState *spapr,
 | |
|                                  PowerPCCPU *cpu,
 | |
|                                  void *fdt, int offset)
 | |
| {
 | |
|     uint8_t pa_features_206[] = { 6, 0,
 | |
|         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 | |
|     uint8_t pa_features_207[] = { 24, 0,
 | |
|         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 | |
|         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
|         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 | |
|         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 | |
|     uint8_t pa_features_300[] = { 66, 0,
 | |
|         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 | |
|         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 | |
|         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 | |
|         /* 6: DS207 */
 | |
|         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 | |
|         /* 16: Vector */
 | |
|         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 | |
|         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 | |
|         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 | |
|         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 | |
|         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 | |
|         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 | |
|         /* 42: PM, 44: PC RA, 46: SC vec'd */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 | |
|         /* 48: SIMD, 50: QP BFP, 52: String */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 | |
|         /* 54: DecFP, 56: DecI, 58: SHA */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 | |
|         /* 60: NM atomic, 62: RNG */
 | |
|         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 | |
|     };
 | |
|     uint8_t *pa_features = NULL;
 | |
|     size_t pa_size;
 | |
| 
 | |
|     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 | |
|         pa_features = pa_features_206;
 | |
|         pa_size = sizeof(pa_features_206);
 | |
|     }
 | |
|     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 | |
|         pa_features = pa_features_207;
 | |
|         pa_size = sizeof(pa_features_207);
 | |
|     }
 | |
|     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 | |
|         pa_features = pa_features_300;
 | |
|         pa_size = sizeof(pa_features_300);
 | |
|     }
 | |
|     if (!pa_features) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 | |
|         /*
 | |
|          * Note: we keep CI large pages off by default because a 64K capable
 | |
|          * guest provisioned with large pages might otherwise try to map a qemu
 | |
|          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 | |
|          * even if that qemu runs on a 4k host.
 | |
|          * We dd this bit back here if we are confident this is not an issue
 | |
|          */
 | |
|         pa_features[3] |= 0x20;
 | |
|     }
 | |
|     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 | |
|         pa_features[24] |= 0x80;    /* Transactional memory support */
 | |
|     }
 | |
|     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
 | |
|         /* Workaround for broken kernels that attempt (guest) radix
 | |
|          * mode when they can't handle it, if they see the radix bit set
 | |
|          * in pa-features. So hide it from them. */
 | |
|         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 | |
|     }
 | |
| 
 | |
|     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 | |
| }
 | |
| 
 | |
| static hwaddr spapr_node0_size(MachineState *machine)
 | |
| {
 | |
|     if (machine->numa_state->num_nodes) {
 | |
|         int i;
 | |
|         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 | |
|             if (machine->numa_state->nodes[i].node_mem) {
 | |
|                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
 | |
|                            machine->ram_size);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return machine->ram_size;
 | |
| }
 | |
| 
 | |
| static void add_str(GString *s, const gchar *s1)
 | |
| {
 | |
|     g_string_append_len(s, s1, strlen(s1) + 1);
 | |
| }
 | |
| 
 | |
| static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
 | |
|                                 hwaddr start, hwaddr size)
 | |
| {
 | |
|     char mem_name[32];
 | |
|     uint64_t mem_reg_property[2];
 | |
|     int off;
 | |
| 
 | |
|     mem_reg_property[0] = cpu_to_be64(start);
 | |
|     mem_reg_property[1] = cpu_to_be64(size);
 | |
| 
 | |
|     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
 | |
|     off = fdt_add_subnode(fdt, 0, mem_name);
 | |
|     _FDT(off);
 | |
|     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 | |
|     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 | |
|                       sizeof(mem_reg_property))));
 | |
|     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
 | |
|     return off;
 | |
| }
 | |
| 
 | |
| static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 | |
| {
 | |
|     MemoryDeviceInfoList *info;
 | |
| 
 | |
|     for (info = list; info; info = info->next) {
 | |
|         MemoryDeviceInfo *value = info->value;
 | |
| 
 | |
|         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 | |
|             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 | |
| 
 | |
|             if (addr >= pcdimm_info->addr &&
 | |
|                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
 | |
|                 return pcdimm_info->node;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| struct sPAPRDrconfCellV2 {
 | |
|      uint32_t seq_lmbs;
 | |
|      uint64_t base_addr;
 | |
|      uint32_t drc_index;
 | |
|      uint32_t aa_index;
 | |
|      uint32_t flags;
 | |
| } QEMU_PACKED;
 | |
| 
 | |
| typedef struct DrconfCellQueue {
 | |
|     struct sPAPRDrconfCellV2 cell;
 | |
|     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 | |
| } DrconfCellQueue;
 | |
| 
 | |
| static DrconfCellQueue *
 | |
| spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 | |
|                       uint32_t drc_index, uint32_t aa_index,
 | |
|                       uint32_t flags)
 | |
| {
 | |
|     DrconfCellQueue *elem;
 | |
| 
 | |
|     elem = g_malloc0(sizeof(*elem));
 | |
|     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 | |
|     elem->cell.base_addr = cpu_to_be64(base_addr);
 | |
|     elem->cell.drc_index = cpu_to_be32(drc_index);
 | |
|     elem->cell.aa_index = cpu_to_be32(aa_index);
 | |
|     elem->cell.flags = cpu_to_be32(flags);
 | |
| 
 | |
|     return elem;
 | |
| }
 | |
| 
 | |
| static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
 | |
|                                       int offset, MemoryDeviceInfoList *dimms)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     uint8_t *int_buf, *cur_index;
 | |
|     int ret;
 | |
|     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint64_t addr, cur_addr, size;
 | |
|     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 | |
|     uint64_t mem_end = machine->device_memory->base +
 | |
|                        memory_region_size(&machine->device_memory->mr);
 | |
|     uint32_t node, buf_len, nr_entries = 0;
 | |
|     SpaprDrc *drc;
 | |
|     DrconfCellQueue *elem, *next;
 | |
|     MemoryDeviceInfoList *info;
 | |
|     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 | |
|         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 | |
| 
 | |
|     /* Entry to cover RAM and the gap area */
 | |
|     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 | |
|                                  SPAPR_LMB_FLAGS_RESERVED |
 | |
|                                  SPAPR_LMB_FLAGS_DRC_INVALID);
 | |
|     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 | |
|     nr_entries++;
 | |
| 
 | |
|     cur_addr = machine->device_memory->base;
 | |
|     for (info = dimms; info; info = info->next) {
 | |
|         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 | |
| 
 | |
|         addr = di->addr;
 | |
|         size = di->size;
 | |
|         node = di->node;
 | |
| 
 | |
|         /*
 | |
|          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
 | |
|          * area is marked hotpluggable in the next iteration for the bigger
 | |
|          * chunk including the NVDIMM occupied area.
 | |
|          */
 | |
|         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
 | |
|             continue;
 | |
| 
 | |
|         /* Entry for hot-pluggable area */
 | |
|         if (cur_addr < addr) {
 | |
|             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 | |
|             g_assert(drc);
 | |
|             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 | |
|                                          cur_addr, spapr_drc_index(drc), -1, 0);
 | |
|             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 | |
|             nr_entries++;
 | |
|         }
 | |
| 
 | |
|         /* Entry for DIMM */
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 | |
|         g_assert(drc);
 | |
|         elem = spapr_get_drconf_cell(size / lmb_size, addr,
 | |
|                                      spapr_drc_index(drc), node,
 | |
|                                      (SPAPR_LMB_FLAGS_ASSIGNED |
 | |
|                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
 | |
|         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 | |
|         nr_entries++;
 | |
|         cur_addr = addr + size;
 | |
|     }
 | |
| 
 | |
|     /* Entry for remaining hotpluggable area */
 | |
|     if (cur_addr < mem_end) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 | |
|         g_assert(drc);
 | |
|         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 | |
|                                      cur_addr, spapr_drc_index(drc), -1, 0);
 | |
|         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 | |
|         nr_entries++;
 | |
|     }
 | |
| 
 | |
|     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 | |
|     int_buf = cur_index = g_malloc0(buf_len);
 | |
|     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 | |
|     cur_index += sizeof(nr_entries);
 | |
| 
 | |
|     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 | |
|         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 | |
|         cur_index += sizeof(elem->cell);
 | |
|         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 | |
|         g_free(elem);
 | |
|     }
 | |
| 
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 | |
|     g_free(int_buf);
 | |
|     if (ret < 0) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
 | |
|                                    int offset, MemoryDeviceInfoList *dimms)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     int i, ret;
 | |
|     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 | |
|     uint32_t nr_lmbs = (machine->device_memory->base +
 | |
|                        memory_region_size(&machine->device_memory->mr)) /
 | |
|                        lmb_size;
 | |
|     uint32_t *int_buf, *cur_index, buf_len;
 | |
| 
 | |
|     /*
 | |
|      * Allocate enough buffer size to fit in ibm,dynamic-memory
 | |
|      */
 | |
|     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 | |
|     cur_index = int_buf = g_malloc0(buf_len);
 | |
|     int_buf[0] = cpu_to_be32(nr_lmbs);
 | |
|     cur_index++;
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         uint64_t addr = i * lmb_size;
 | |
|         uint32_t *dynamic_memory = cur_index;
 | |
| 
 | |
|         if (i >= device_lmb_start) {
 | |
|             SpaprDrc *drc;
 | |
| 
 | |
|             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 | |
|             g_assert(drc);
 | |
| 
 | |
|             dynamic_memory[0] = cpu_to_be32(addr >> 32);
 | |
|             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 | |
|             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 | |
|             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 | |
|             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 | |
|             if (memory_region_present(get_system_memory(), addr)) {
 | |
|                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 | |
|             } else {
 | |
|                 dynamic_memory[5] = cpu_to_be32(0);
 | |
|             }
 | |
|         } else {
 | |
|             /*
 | |
|              * LMB information for RMA, boot time RAM and gap b/n RAM and
 | |
|              * device memory region -- all these are marked as reserved
 | |
|              * and as having no valid DRC.
 | |
|              */
 | |
|             dynamic_memory[0] = cpu_to_be32(addr >> 32);
 | |
|             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 | |
|             dynamic_memory[2] = cpu_to_be32(0);
 | |
|             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 | |
|             dynamic_memory[4] = cpu_to_be32(-1);
 | |
|             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 | |
|                                             SPAPR_LMB_FLAGS_DRC_INVALID);
 | |
|         }
 | |
| 
 | |
|         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 | |
|     g_free(int_buf);
 | |
|     if (ret < 0) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adds ibm,dynamic-reconfiguration-memory node.
 | |
|  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 | |
|  * of this device tree node.
 | |
|  */
 | |
| static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
 | |
|                                                    void *fdt)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     int ret, offset;
 | |
|     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
 | |
|                                 cpu_to_be32(lmb_size & 0xffffffff)};
 | |
|     MemoryDeviceInfoList *dimms = NULL;
 | |
| 
 | |
|     /* Don't create the node if there is no device memory. */
 | |
|     if (!machine->device_memory) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 | |
| 
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 | |
|                     sizeof(prop_lmb_size));
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 | |
|     dimms = qmp_memory_device_list();
 | |
|     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 | |
|         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
 | |
|     } else {
 | |
|         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
 | |
|     }
 | |
|     qapi_free_MemoryDeviceInfoList(dimms);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     hwaddr mem_start, node_size;
 | |
|     int i, nb_nodes = machine->numa_state->num_nodes;
 | |
|     NodeInfo *nodes = machine->numa_state->nodes;
 | |
| 
 | |
|     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 | |
|         if (!nodes[i].node_mem) {
 | |
|             continue;
 | |
|         }
 | |
|         if (mem_start >= machine->ram_size) {
 | |
|             node_size = 0;
 | |
|         } else {
 | |
|             node_size = nodes[i].node_mem;
 | |
|             if (node_size > machine->ram_size - mem_start) {
 | |
|                 node_size = machine->ram_size - mem_start;
 | |
|             }
 | |
|         }
 | |
|         if (!mem_start) {
 | |
|             /* spapr_machine_init() checks for rma_size <= node0_size
 | |
|              * already */
 | |
|             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
 | |
|             mem_start += spapr->rma_size;
 | |
|             node_size -= spapr->rma_size;
 | |
|         }
 | |
|         for ( ; node_size; ) {
 | |
|             hwaddr sizetmp = pow2floor(node_size);
 | |
| 
 | |
|             /* mem_start != 0 here */
 | |
|             if (ctzl(mem_start) < ctzl(sizetmp)) {
 | |
|                 sizetmp = 1ULL << ctzl(mem_start);
 | |
|             }
 | |
| 
 | |
|             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
 | |
|             node_size -= sizetmp;
 | |
|             mem_start += sizetmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Generate ibm,dynamic-reconfiguration-memory node if required */
 | |
|     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
 | |
|         int ret;
 | |
| 
 | |
|         g_assert(smc->dr_lmb_enabled);
 | |
|         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
 | |
|                          SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 | |
|     int index = spapr_get_vcpu_id(cpu);
 | |
|     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 | |
|                        0xffffffff, 0xffffffff};
 | |
|     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 | |
|         : SPAPR_TIMEBASE_FREQ;
 | |
|     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 | |
|     uint32_t page_sizes_prop[64];
 | |
|     size_t page_sizes_prop_size;
 | |
|     unsigned int smp_threads = ms->smp.threads;
 | |
|     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
 | |
|     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 | |
|     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 | |
|     SpaprDrc *drc;
 | |
|     int drc_index;
 | |
|     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 | |
|     int i;
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 | |
|     if (drc) {
 | |
|         drc_index = spapr_drc_index(drc);
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 | |
|     }
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 | |
|     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 | |
|                            env->dcache_line_size)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 | |
|                            env->dcache_line_size)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 | |
|                            env->icache_line_size)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 | |
|                            env->icache_line_size)));
 | |
| 
 | |
|     if (pcc->l1_dcache_size) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 | |
|                                pcc->l1_dcache_size)));
 | |
|     } else {
 | |
|         warn_report("Unknown L1 dcache size for cpu");
 | |
|     }
 | |
|     if (pcc->l1_icache_size) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 | |
|                                pcc->l1_icache_size)));
 | |
|     } else {
 | |
|         warn_report("Unknown L1 icache size for cpu");
 | |
|     }
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 | |
|     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 | |
|     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 | |
| 
 | |
|     if (ppc_has_spr(cpu, SPR_PURR)) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
 | |
|     }
 | |
|     if (ppc_has_spr(cpu, SPR_PURR)) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
 | |
|     }
 | |
| 
 | |
|     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 | |
|         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 | |
|                           segs, sizeof(segs))));
 | |
|     }
 | |
| 
 | |
|     /* Advertise VSX (vector extensions) if available
 | |
|      *   1               == VMX / Altivec available
 | |
|      *   2               == VSX available
 | |
|      *
 | |
|      * Only CPUs for which we create core types in spapr_cpu_core.c
 | |
|      * are possible, and all of those have VMX */
 | |
|     if (env->insns_flags & PPC_ALTIVEC) {
 | |
|         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 | |
|             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 | |
|         } else {
 | |
|             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Advertise DFP (Decimal Floating Point) if available
 | |
|      *   0 / no property == no DFP
 | |
|      *   1               == DFP available */
 | |
|     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 | |
|         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 | |
|     }
 | |
| 
 | |
|     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 | |
|                                                       sizeof(page_sizes_prop));
 | |
|     if (page_sizes_prop_size) {
 | |
|         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 | |
|                           page_sizes_prop, page_sizes_prop_size)));
 | |
|     }
 | |
| 
 | |
|     spapr_dt_pa_features(spapr, cpu, fdt, offset);
 | |
| 
 | |
|     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 | |
|                            cs->cpu_index / vcpus_per_socket)));
 | |
| 
 | |
|     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 | |
|                       pft_size_prop, sizeof(pft_size_prop))));
 | |
| 
 | |
|     if (ms->numa_state->num_nodes > 1) {
 | |
|         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
 | |
|     }
 | |
| 
 | |
|     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 | |
| 
 | |
|     if (pcc->radix_page_info) {
 | |
|         for (i = 0; i < pcc->radix_page_info->count; i++) {
 | |
|             radix_AP_encodings[i] =
 | |
|                 cpu_to_be32(pcc->radix_page_info->entries[i]);
 | |
|         }
 | |
|         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 | |
|                           radix_AP_encodings,
 | |
|                           pcc->radix_page_info->count *
 | |
|                           sizeof(radix_AP_encodings[0]))));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We set this property to let the guest know that it can use the large
 | |
|      * decrementer and its width in bits.
 | |
|      */
 | |
|     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 | |
|         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 | |
|                               pcc->lrg_decr_bits)));
 | |
| }
 | |
| 
 | |
| static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
 | |
|                              int cpus_offset)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     int index = spapr_get_vcpu_id(cpu);
 | |
|     DeviceClass *dc = DEVICE_GET_CLASS(cs);
 | |
|     g_autofree char *nodename = NULL;
 | |
|     int offset;
 | |
| 
 | |
|     if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 | |
|     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 | |
|     _FDT(offset);
 | |
|     spapr_dt_cpu(cs, fdt, offset, spapr);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
 | |
| {
 | |
|     CPUState **rev;
 | |
|     CPUState *cs;
 | |
|     int n_cpus;
 | |
|     int cpus_offset;
 | |
|     int i;
 | |
| 
 | |
|     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 | |
|     _FDT(cpus_offset);
 | |
|     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 | |
|     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 | |
| 
 | |
|     /*
 | |
|      * We walk the CPUs in reverse order to ensure that CPU DT nodes
 | |
|      * created by fdt_add_subnode() end up in the right order in FDT
 | |
|      * for the guest kernel the enumerate the CPUs correctly.
 | |
|      *
 | |
|      * The CPU list cannot be traversed in reverse order, so we need
 | |
|      * to do extra work.
 | |
|      */
 | |
|     n_cpus = 0;
 | |
|     rev = NULL;
 | |
|     CPU_FOREACH(cs) {
 | |
|         rev = g_renew(CPUState *, rev, n_cpus + 1);
 | |
|         rev[n_cpus++] = cs;
 | |
|     }
 | |
| 
 | |
|     for (i = n_cpus - 1; i >= 0; i--) {
 | |
|         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
 | |
|     }
 | |
| 
 | |
|     g_free(rev);
 | |
| }
 | |
| 
 | |
| static int spapr_dt_rng(void *fdt)
 | |
| {
 | |
|     int node;
 | |
|     int ret;
 | |
| 
 | |
|     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 | |
|     if (node <= 0) {
 | |
|         return -1;
 | |
|     }
 | |
|     ret = fdt_setprop_string(fdt, node, "device_type",
 | |
|                              "ibm,platform-facilities");
 | |
|     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 | |
|     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 | |
| 
 | |
|     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 | |
|     if (node <= 0) {
 | |
|         return -1;
 | |
|     }
 | |
|     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 | |
| 
 | |
|     return ret ? -1 : 0;
 | |
| }
 | |
| 
 | |
| static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     int rtas;
 | |
|     GString *hypertas = g_string_sized_new(256);
 | |
|     GString *qemu_hypertas = g_string_sized_new(256);
 | |
|     uint32_t lrdr_capacity[] = {
 | |
|         0,
 | |
|         0,
 | |
|         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
 | |
|         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
 | |
|         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
 | |
|     };
 | |
| 
 | |
|     /* Do we have device memory? */
 | |
|     if (MACHINE(spapr)->device_memory) {
 | |
|         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
 | |
|             memory_region_size(&MACHINE(spapr)->device_memory->mr);
 | |
| 
 | |
|         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
 | |
|         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
 | |
|     }
 | |
| 
 | |
|     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 | |
| 
 | |
|     /* hypertas */
 | |
|     add_str(hypertas, "hcall-pft");
 | |
|     add_str(hypertas, "hcall-term");
 | |
|     add_str(hypertas, "hcall-dabr");
 | |
|     add_str(hypertas, "hcall-interrupt");
 | |
|     add_str(hypertas, "hcall-tce");
 | |
|     add_str(hypertas, "hcall-vio");
 | |
|     add_str(hypertas, "hcall-splpar");
 | |
|     add_str(hypertas, "hcall-join");
 | |
|     add_str(hypertas, "hcall-bulk");
 | |
|     add_str(hypertas, "hcall-set-mode");
 | |
|     add_str(hypertas, "hcall-sprg0");
 | |
|     add_str(hypertas, "hcall-copy");
 | |
|     add_str(hypertas, "hcall-debug");
 | |
|     add_str(hypertas, "hcall-vphn");
 | |
|     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
 | |
|         add_str(hypertas, "hcall-rpt-invalidate");
 | |
|     }
 | |
| 
 | |
|     add_str(qemu_hypertas, "hcall-memop1");
 | |
| 
 | |
|     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 | |
|         add_str(hypertas, "hcall-multi-tce");
 | |
|     }
 | |
| 
 | |
|     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 | |
|         add_str(hypertas, "hcall-hpt-resize");
 | |
|     }
 | |
| 
 | |
|     add_str(hypertas, "hcall-watchdog");
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 | |
|                      hypertas->str, hypertas->len));
 | |
|     g_string_free(hypertas, TRUE);
 | |
|     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 | |
|                      qemu_hypertas->str, qemu_hypertas->len));
 | |
|     g_string_free(qemu_hypertas, TRUE);
 | |
| 
 | |
|     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
 | |
| 
 | |
|     /*
 | |
|      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
 | |
|      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
 | |
|      *
 | |
|      * The system reset requirements are driven by existing Linux and PowerVM
 | |
|      * implementation which (contrary to PAPR) saves r3 in the error log
 | |
|      * structure like machine check, so Linux expects to find the saved r3
 | |
|      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
 | |
|      * does not look at the error value).
 | |
|      *
 | |
|      * System reset interrupts are not subject to interlock like machine
 | |
|      * check, so this memory area could be corrupted if the sreset is
 | |
|      * interrupted by a machine check (or vice versa) if it was shared. To
 | |
|      * prevent this, system reset uses per-CPU areas for the sreset save
 | |
|      * area. A system reset that interrupts a system reset handler could
 | |
|      * still overwrite this area, but Linux doesn't try to recover in that
 | |
|      * case anyway.
 | |
|      *
 | |
|      * The extra 8 bytes is required because Linux's FWNMI error log check
 | |
|      * is off-by-one.
 | |
|      *
 | |
|      * RTAS_MIN_SIZE is required for the RTAS blob itself.
 | |
|      */
 | |
|     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
 | |
|                           RTAS_ERROR_LOG_MAX +
 | |
|                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
 | |
|                           sizeof(uint64_t)));
 | |
|     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 | |
|                           RTAS_ERROR_LOG_MAX));
 | |
|     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 | |
|                           RTAS_EVENT_SCAN_RATE));
 | |
| 
 | |
|     g_assert(msi_nonbroken);
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 | |
| 
 | |
|     /*
 | |
|      * According to PAPR, rtas ibm,os-term does not guarantee a return
 | |
|      * back to the guest cpu.
 | |
|      *
 | |
|      * While an additional ibm,extended-os-term property indicates
 | |
|      * that rtas call return will always occur. Set this property.
 | |
|      */
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 | |
|                      lrdr_capacity, sizeof(lrdr_capacity)));
 | |
| 
 | |
|     spapr_dt_rtas_tokens(fdt, rtas);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
 | |
|  * and the XIVE features that the guest may request and thus the valid
 | |
|  * values for bytes 23..26 of option vector 5:
 | |
|  */
 | |
| static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
 | |
|                                           int chosen)
 | |
| {
 | |
|     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 | |
| 
 | |
|     char val[2 * 4] = {
 | |
|         23, 0x00, /* XICS / XIVE mode */
 | |
|         24, 0x00, /* Hash/Radix, filled in below. */
 | |
|         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 | |
|         26, 0x40, /* Radix options: GTSE == yes. */
 | |
|     };
 | |
| 
 | |
|     if (spapr->irq->xics && spapr->irq->xive) {
 | |
|         val[1] = SPAPR_OV5_XIVE_BOTH;
 | |
|     } else if (spapr->irq->xive) {
 | |
|         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
 | |
|     } else {
 | |
|         assert(spapr->irq->xics);
 | |
|         val[1] = SPAPR_OV5_XIVE_LEGACY;
 | |
|     }
 | |
| 
 | |
|     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
 | |
|                           first_ppc_cpu->compat_pvr)) {
 | |
|         /*
 | |
|          * If we're in a pre POWER9 compat mode then the guest should
 | |
|          * do hash and use the legacy interrupt mode
 | |
|          */
 | |
|         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
 | |
|         val[3] = 0x00; /* Hash */
 | |
|         spapr_check_mmu_mode(false);
 | |
|     } else if (kvm_enabled()) {
 | |
|         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
 | |
|             val[3] = 0x80; /* OV5_MMU_BOTH */
 | |
|         } else if (kvmppc_has_cap_mmu_radix()) {
 | |
|             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
 | |
|         } else {
 | |
|             val[3] = 0x00; /* Hash */
 | |
|         }
 | |
|     } else {
 | |
|         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
 | |
|         val[3] = 0xC0;
 | |
|     }
 | |
|     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
 | |
|                      val, sizeof(val)));
 | |
| }
 | |
| 
 | |
| static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
|     int chosen;
 | |
| 
 | |
|     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
 | |
| 
 | |
|     if (reset) {
 | |
|         const char *boot_device = spapr->boot_device;
 | |
|         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
 | |
|         size_t cb = 0;
 | |
|         g_autofree char *bootlist = get_boot_devices_list(&cb);
 | |
| 
 | |
|         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
 | |
|             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
 | |
|                                     machine->kernel_cmdline));
 | |
|         }
 | |
| 
 | |
|         if (spapr->initrd_size) {
 | |
|             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
 | |
|                                   spapr->initrd_base));
 | |
|             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
 | |
|                                   spapr->initrd_base + spapr->initrd_size));
 | |
|         }
 | |
| 
 | |
|         if (spapr->kernel_size) {
 | |
|             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
 | |
|                                   cpu_to_be64(spapr->kernel_size) };
 | |
| 
 | |
|             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
 | |
|                          &kprop, sizeof(kprop)));
 | |
|             if (spapr->kernel_le) {
 | |
|                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
 | |
|             }
 | |
|         }
 | |
|         if (machine->boot_config.has_menu && machine->boot_config.menu) {
 | |
|             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
 | |
|         }
 | |
|         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
 | |
|         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
 | |
|         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
 | |
| 
 | |
|         if (cb && bootlist) {
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < cb; i++) {
 | |
|                 if (bootlist[i] == '\n') {
 | |
|                     bootlist[i] = ' ';
 | |
|                 }
 | |
|             }
 | |
|             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
 | |
|         }
 | |
| 
 | |
|         if (boot_device && strlen(boot_device)) {
 | |
|             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
 | |
|         }
 | |
| 
 | |
|         if (spapr->want_stdout_path && stdout_path) {
 | |
|             /*
 | |
|              * "linux,stdout-path" and "stdout" properties are
 | |
|              * deprecated by linux kernel. New platforms should only
 | |
|              * use the "stdout-path" property. Set the new property
 | |
|              * and continue using older property to remain compatible
 | |
|              * with the existing firmware.
 | |
|              */
 | |
|             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
 | |
|             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * We can deal with BAR reallocation just fine, advertise it
 | |
|          * to the guest
 | |
|          */
 | |
|         if (smc->linux_pci_probe) {
 | |
|             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
 | |
|         }
 | |
| 
 | |
|         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
 | |
| 
 | |
|     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
 | |
| }
 | |
| 
 | |
| static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
 | |
| {
 | |
|     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
 | |
|      * KVM to work under pHyp with some guest co-operation */
 | |
|     int hypervisor;
 | |
|     uint8_t hypercall[16];
 | |
| 
 | |
|     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
 | |
|     /* indicate KVM hypercall interface */
 | |
|     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
 | |
|     if (kvmppc_has_cap_fixup_hcalls()) {
 | |
|         /*
 | |
|          * Older KVM versions with older guest kernels were broken
 | |
|          * with the magic page, don't allow the guest to map it.
 | |
|          */
 | |
|         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
 | |
|                                   sizeof(hypercall))) {
 | |
|             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
 | |
|                              hypercall, sizeof(hypercall)));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
|     uint32_t root_drc_type_mask = 0;
 | |
|     int ret;
 | |
|     void *fdt;
 | |
|     SpaprPhbState *phb;
 | |
|     char *buf;
 | |
| 
 | |
|     fdt = g_malloc0(space);
 | |
|     _FDT((fdt_create_empty_tree(fdt, space)));
 | |
| 
 | |
|     /* Root node */
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
 | |
| 
 | |
|     /* Guest UUID & Name*/
 | |
|     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
 | |
|     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
 | |
|     if (qemu_uuid_set) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
 | |
|     }
 | |
|     g_free(buf);
 | |
| 
 | |
|     if (qemu_get_vm_name()) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
 | |
|                                 qemu_get_vm_name()));
 | |
|     }
 | |
| 
 | |
|     /* Host Model & Serial Number */
 | |
|     if (spapr->host_model) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
 | |
|     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
 | |
|         g_free(buf);
 | |
|     }
 | |
| 
 | |
|     if (spapr->host_serial) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
 | |
|     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
 | |
|         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
 | |
|         g_free(buf);
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
 | |
|     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
 | |
| 
 | |
|     /* /interrupt controller */
 | |
|     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
 | |
| 
 | |
|     ret = spapr_dt_memory(spapr, fdt);
 | |
|     if (ret < 0) {
 | |
|         error_report("couldn't setup memory nodes in fdt");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* /vdevice */
 | |
|     spapr_dt_vdevice(spapr->vio_bus, fdt);
 | |
| 
 | |
|     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
 | |
|         ret = spapr_dt_rng(fdt);
 | |
|         if (ret < 0) {
 | |
|             error_report("could not set up rng device in the fdt");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     QLIST_FOREACH(phb, &spapr->phbs, list) {
 | |
|         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
 | |
|         if (ret < 0) {
 | |
|             error_report("couldn't setup PCI devices in fdt");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     spapr_dt_cpus(fdt, spapr);
 | |
| 
 | |
|     /* ibm,drc-indexes and friends */
 | |
|     if (smc->dr_lmb_enabled) {
 | |
|         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
 | |
|     }
 | |
|     if (smc->dr_phb_enabled) {
 | |
|         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
 | |
|     }
 | |
|     if (mc->nvdimm_supported) {
 | |
|         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
 | |
|     }
 | |
|     if (root_drc_type_mask) {
 | |
|         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
 | |
|     }
 | |
| 
 | |
|     if (mc->has_hotpluggable_cpus) {
 | |
|         int offset = fdt_path_offset(fdt, "/cpus");
 | |
|         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
 | |
|         if (ret < 0) {
 | |
|             error_report("Couldn't set up CPU DR device tree properties");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* /event-sources */
 | |
|     spapr_dt_events(spapr, fdt);
 | |
| 
 | |
|     /* /rtas */
 | |
|     spapr_dt_rtas(spapr, fdt);
 | |
| 
 | |
|     /* /chosen */
 | |
|     spapr_dt_chosen(spapr, fdt, reset);
 | |
| 
 | |
|     /* /hypervisor */
 | |
|     if (kvm_enabled()) {
 | |
|         spapr_dt_hypervisor(spapr, fdt);
 | |
|     }
 | |
| 
 | |
|     /* Build memory reserve map */
 | |
|     if (reset) {
 | |
|         if (spapr->kernel_size) {
 | |
|             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
 | |
|                                   spapr->kernel_size)));
 | |
|         }
 | |
|         if (spapr->initrd_size) {
 | |
|             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
 | |
|                                   spapr->initrd_size)));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* NVDIMM devices */
 | |
|     if (mc->nvdimm_supported) {
 | |
|         spapr_dt_persistent_memory(spapr, fdt);
 | |
|     }
 | |
| 
 | |
|     return fdt;
 | |
| }
 | |
| 
 | |
| static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
| 
 | |
|     return (addr & 0x0fffffff) + spapr->kernel_addr;
 | |
| }
 | |
| 
 | |
| static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
 | |
|                                     PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     /* The TCG path should also be holding the BQL at this point */
 | |
|     g_assert(bql_locked());
 | |
| 
 | |
|     g_assert(!vhyp_cpu_in_nested(cpu));
 | |
| 
 | |
|     if (FIELD_EX64(env->msr, MSR, PR)) {
 | |
|         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
 | |
|         env->gpr[3] = H_PRIVILEGE;
 | |
|     } else {
 | |
|         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct LPCRSyncState {
 | |
|     target_ulong value;
 | |
|     target_ulong mask;
 | |
| };
 | |
| 
 | |
| static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
 | |
| {
 | |
|     struct LPCRSyncState *s = arg.host_ptr;
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     target_ulong lpcr;
 | |
| 
 | |
|     cpu_synchronize_state(cs);
 | |
|     lpcr = env->spr[SPR_LPCR];
 | |
|     lpcr &= ~s->mask;
 | |
|     lpcr |= s->value;
 | |
|     ppc_store_lpcr(cpu, lpcr);
 | |
| }
 | |
| 
 | |
| void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
 | |
| {
 | |
|     CPUState *cs;
 | |
|     struct LPCRSyncState s = {
 | |
|         .value = value,
 | |
|         .mask = mask
 | |
|     };
 | |
|     CPU_FOREACH(cs) {
 | |
|         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* May be used when the machine is not running */
 | |
| void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
 | |
| {
 | |
|     CPUState *cs;
 | |
|     CPU_FOREACH(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|         CPUPPCState *env = &cpu->env;
 | |
|         target_ulong lpcr;
 | |
| 
 | |
|         lpcr = env->spr[SPR_LPCR];
 | |
|         lpcr &= ~(LPCR_HR | LPCR_UPRT);
 | |
|         ppc_store_lpcr(cpu, lpcr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
 | |
|                            target_ulong lpid, ppc_v3_pate_t *entry)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
|     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     if (!spapr_cpu->in_nested) {
 | |
|         assert(lpid == 0);
 | |
| 
 | |
|         /* Copy PATE1:GR into PATE0:HR */
 | |
|         entry->dw0 = spapr->patb_entry & PATE0_HR;
 | |
|         entry->dw1 = spapr->patb_entry;
 | |
| 
 | |
|     } else {
 | |
|         uint64_t patb, pats;
 | |
| 
 | |
|         assert(lpid != 0);
 | |
| 
 | |
|         patb = spapr->nested_ptcr & PTCR_PATB;
 | |
|         pats = spapr->nested_ptcr & PTCR_PATS;
 | |
| 
 | |
|         /* Check if partition table is properly aligned */
 | |
|         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         /* Calculate number of entries */
 | |
|         pats = 1ull << (pats + 12 - 4);
 | |
|         if (pats <= lpid) {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         /* Grab entry */
 | |
|         patb += 16 * lpid;
 | |
|         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
 | |
|         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
 | |
| #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
 | |
| #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
 | |
| #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
 | |
| #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
 | |
| 
 | |
| /*
 | |
|  * Get the fd to access the kernel htab, re-opening it if necessary
 | |
|  */
 | |
| static int get_htab_fd(SpaprMachineState *spapr)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (spapr->htab_fd >= 0) {
 | |
|         return spapr->htab_fd;
 | |
|     }
 | |
| 
 | |
|     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
 | |
|     if (spapr->htab_fd < 0) {
 | |
|         error_report_err(local_err);
 | |
|     }
 | |
| 
 | |
|     return spapr->htab_fd;
 | |
| }
 | |
| 
 | |
| void close_htab_fd(SpaprMachineState *spapr)
 | |
| {
 | |
|     if (spapr->htab_fd >= 0) {
 | |
|         close(spapr->htab_fd);
 | |
|     }
 | |
|     spapr->htab_fd = -1;
 | |
| }
 | |
| 
 | |
| static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
 | |
| }
 | |
| 
 | |
| static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     assert(kvm_enabled());
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
 | |
| }
 | |
| 
 | |
| static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
 | |
|                                                 hwaddr ptex, int n)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
|     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         /*
 | |
|          * HTAB is controlled by KVM. Fetch into temporary buffer
 | |
|          */
 | |
|         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
 | |
|         kvmppc_read_hptes(hptes, ptex, n);
 | |
|         return hptes;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * HTAB is controlled by QEMU. Just point to the internally
 | |
|      * accessible PTEG.
 | |
|      */
 | |
|     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
 | |
| }
 | |
| 
 | |
| static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
 | |
|                               const ppc_hash_pte64_t *hptes,
 | |
|                               hwaddr ptex, int n)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         g_free((void *)hptes);
 | |
|     }
 | |
| 
 | |
|     /* Nothing to do for qemu managed HPT */
 | |
| }
 | |
| 
 | |
| void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
 | |
|                       uint64_t pte0, uint64_t pte1)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
 | |
|     hwaddr offset = ptex * HASH_PTE_SIZE_64;
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         kvmppc_write_hpte(ptex, pte0, pte1);
 | |
|     } else {
 | |
|         if (pte0 & HPTE64_V_VALID) {
 | |
|             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
 | |
|             /*
 | |
|              * When setting valid, we write PTE1 first. This ensures
 | |
|              * proper synchronization with the reading code in
 | |
|              * ppc_hash64_pteg_search()
 | |
|              */
 | |
|             smp_wmb();
 | |
|             stq_p(spapr->htab + offset, pte0);
 | |
|         } else {
 | |
|             stq_p(spapr->htab + offset, pte0);
 | |
|             /*
 | |
|              * When clearing it we set PTE0 first. This ensures proper
 | |
|              * synchronization with the reading code in
 | |
|              * ppc_hash64_pteg_search()
 | |
|              */
 | |
|             smp_wmb();
 | |
|             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
 | |
|                              uint64_t pte1)
 | |
| {
 | |
|     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         /* There should always be a hash table when this is called */
 | |
|         error_report("spapr_hpte_set_c called with no hash table !");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* The HW performs a non-atomic byte update */
 | |
|     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
 | |
| }
 | |
| 
 | |
| static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
 | |
|                              uint64_t pte1)
 | |
| {
 | |
|     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         /* There should always be a hash table when this is called */
 | |
|         error_report("spapr_hpte_set_r called with no hash table !");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* The HW performs a non-atomic byte update */
 | |
|     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
 | |
| }
 | |
| 
 | |
| int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
 | |
| {
 | |
|     int shift;
 | |
| 
 | |
|     /* We aim for a hash table of size 1/128 the size of RAM (rounded
 | |
|      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
 | |
|      * that's much more than is needed for Linux guests */
 | |
|     shift = ctz64(pow2ceil(ramsize)) - 7;
 | |
|     shift = MAX(shift, 18); /* Minimum architected size */
 | |
|     shift = MIN(shift, 46); /* Maximum architected size */
 | |
|     return shift;
 | |
| }
 | |
| 
 | |
| void spapr_free_hpt(SpaprMachineState *spapr)
 | |
| {
 | |
|     qemu_vfree(spapr->htab);
 | |
|     spapr->htab = NULL;
 | |
|     spapr->htab_shift = 0;
 | |
|     close_htab_fd(spapr);
 | |
| }
 | |
| 
 | |
| int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
 | |
| {
 | |
|     ERRP_GUARD();
 | |
|     long rc;
 | |
| 
 | |
|     /* Clean up any HPT info from a previous boot */
 | |
|     spapr_free_hpt(spapr);
 | |
| 
 | |
|     rc = kvmppc_reset_htab(shift);
 | |
| 
 | |
|     if (rc == -EOPNOTSUPP) {
 | |
|         error_setg(errp, "HPT not supported in nested guests");
 | |
|         return -EOPNOTSUPP;
 | |
|     }
 | |
| 
 | |
|     if (rc < 0) {
 | |
|         /* kernel-side HPT needed, but couldn't allocate one */
 | |
|         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
 | |
|                          shift);
 | |
|         error_append_hint(errp, "Try smaller maxmem?\n");
 | |
|         return -errno;
 | |
|     } else if (rc > 0) {
 | |
|         /* kernel-side HPT allocated */
 | |
|         if (rc != shift) {
 | |
|             error_setg(errp,
 | |
|                        "Requested order %d HPT, but kernel allocated order %ld",
 | |
|                        shift, rc);
 | |
|             error_append_hint(errp, "Try smaller maxmem?\n");
 | |
|             return -ENOSPC;
 | |
|         }
 | |
| 
 | |
|         spapr->htab_shift = shift;
 | |
|         spapr->htab = NULL;
 | |
|     } else {
 | |
|         /* kernel-side HPT not needed, allocate in userspace instead */
 | |
|         size_t size = 1ULL << shift;
 | |
|         int i;
 | |
| 
 | |
|         spapr->htab = qemu_memalign(size, size);
 | |
|         memset(spapr->htab, 0, size);
 | |
|         spapr->htab_shift = shift;
 | |
| 
 | |
|         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
 | |
|             DIRTY_HPTE(HPTE(spapr->htab, i));
 | |
|         }
 | |
|     }
 | |
|     /* We're setting up a hash table, so that means we're not radix */
 | |
|     spapr->patb_entry = 0;
 | |
|     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void spapr_setup_hpt(SpaprMachineState *spapr)
 | |
| {
 | |
|     int hpt_shift;
 | |
| 
 | |
|     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 | |
|         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
 | |
|     } else {
 | |
|         uint64_t current_ram_size;
 | |
| 
 | |
|         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 | |
|         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
 | |
|     }
 | |
|     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
 | |
| 
 | |
|         /* Check our RMA fits in the possible VRMA */
 | |
|         if (vrma_limit < spapr->rma_size) {
 | |
|             error_report("Unable to create %" HWADDR_PRIu
 | |
|                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
 | |
|                          spapr->rma_size / MiB, vrma_limit / MiB);
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void spapr_check_mmu_mode(bool guest_radix)
 | |
| {
 | |
|     if (guest_radix) {
 | |
|         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
 | |
|             error_report("Guest requested unavailable MMU mode (radix).");
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|     } else {
 | |
|         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
 | |
|             && !kvmppc_has_cap_mmu_hash_v3()) {
 | |
|             error_report("Guest requested unavailable MMU mode (hash).");
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
 | |
|     PowerPCCPU *first_ppc_cpu;
 | |
|     hwaddr fdt_addr;
 | |
|     void *fdt;
 | |
|     int rc;
 | |
| 
 | |
|     if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
 | |
|         /*
 | |
|          * Record-replay snapshot load must not consume random, this was
 | |
|          * already replayed from initial machine reset.
 | |
|          */
 | |
|         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
 | |
|     }
 | |
| 
 | |
|     pef_kvm_reset(machine->cgs, &error_fatal);
 | |
|     spapr_caps_apply(spapr);
 | |
| 
 | |
|     first_ppc_cpu = POWERPC_CPU(first_cpu);
 | |
|     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
 | |
|         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
 | |
|                               spapr->max_compat_pvr)) {
 | |
|         /*
 | |
|          * If using KVM with radix mode available, VCPUs can be started
 | |
|          * without a HPT because KVM will start them in radix mode.
 | |
|          * Set the GR bit in PATE so that we know there is no HPT.
 | |
|          */
 | |
|         spapr->patb_entry = PATE1_GR;
 | |
|         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
 | |
|     } else {
 | |
|         spapr_setup_hpt(spapr);
 | |
|     }
 | |
| 
 | |
|     qemu_devices_reset(reason);
 | |
| 
 | |
|     spapr_ovec_cleanup(spapr->ov5_cas);
 | |
|     spapr->ov5_cas = spapr_ovec_new();
 | |
| 
 | |
|     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
 | |
| 
 | |
|     /*
 | |
|      * This is fixing some of the default configuration of the XIVE
 | |
|      * devices. To be called after the reset of the machine devices.
 | |
|      */
 | |
|     spapr_irq_reset(spapr, &error_fatal);
 | |
| 
 | |
|     /*
 | |
|      * There is no CAS under qtest. Simulate one to please the code that
 | |
|      * depends on spapr->ov5_cas. This is especially needed to test device
 | |
|      * unplug, so we do that before resetting the DRCs.
 | |
|      */
 | |
|     if (qtest_enabled()) {
 | |
|         spapr_ovec_cleanup(spapr->ov5_cas);
 | |
|         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
 | |
|     }
 | |
| 
 | |
|     spapr_nvdimm_finish_flushes();
 | |
| 
 | |
|     /* DRC reset may cause a device to be unplugged. This will cause troubles
 | |
|      * if this device is used by another device (eg, a running vhost backend
 | |
|      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
 | |
|      * situations, we reset DRCs after all devices have been reset.
 | |
|      */
 | |
|     spapr_drc_reset_all(spapr);
 | |
| 
 | |
|     spapr_clear_pending_events(spapr);
 | |
| 
 | |
|     /*
 | |
|      * We place the device tree just below either the top of the RMA,
 | |
|      * or just below 2GB, whichever is lower, so that it can be
 | |
|      * processed with 32-bit real mode code if necessary
 | |
|      */
 | |
|     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
 | |
| 
 | |
|     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
 | |
|     if (spapr->vof) {
 | |
|         spapr_vof_reset(spapr, fdt, &error_fatal);
 | |
|         /*
 | |
|          * Do not pack the FDT as the client may change properties.
 | |
|          * VOF client does not expect the FDT so we do not load it to the VM.
 | |
|          */
 | |
|     } else {
 | |
|         rc = fdt_pack(fdt);
 | |
|         /* Should only fail if we've built a corrupted tree */
 | |
|         assert(rc == 0);
 | |
| 
 | |
|         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
 | |
|                                   0, fdt_addr, 0);
 | |
|         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
 | |
|     }
 | |
|     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
 | |
| 
 | |
|     g_free(spapr->fdt_blob);
 | |
|     spapr->fdt_size = fdt_totalsize(fdt);
 | |
|     spapr->fdt_initial_size = spapr->fdt_size;
 | |
|     spapr->fdt_blob = fdt;
 | |
| 
 | |
|     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
 | |
|     machine->fdt = fdt;
 | |
| 
 | |
|     /* Set up the entry state */
 | |
|     first_ppc_cpu->env.gpr[5] = 0;
 | |
| 
 | |
|     spapr->fwnmi_system_reset_addr = -1;
 | |
|     spapr->fwnmi_machine_check_addr = -1;
 | |
|     spapr->fwnmi_machine_check_interlock = -1;
 | |
| 
 | |
|     /* Signal all vCPUs waiting on this condition */
 | |
|     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
 | |
| 
 | |
|     migrate_del_blocker(&spapr->fwnmi_migration_blocker);
 | |
| }
 | |
| 
 | |
| static void spapr_create_nvram(SpaprMachineState *spapr)
 | |
| {
 | |
|     DeviceState *dev = qdev_new("spapr-nvram");
 | |
|     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
 | |
| 
 | |
|     if (dinfo) {
 | |
|         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
 | |
|                                 &error_fatal);
 | |
|     }
 | |
| 
 | |
|     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
 | |
| 
 | |
|     spapr->nvram = (struct SpaprNvram *)dev;
 | |
| }
 | |
| 
 | |
| static void spapr_rtc_create(SpaprMachineState *spapr)
 | |
| {
 | |
|     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
 | |
|                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
 | |
|                                        &error_fatal, NULL);
 | |
|     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
 | |
|     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
 | |
|                               "date");
 | |
| }
 | |
| 
 | |
| /* Returns whether we want to use VGA or not */
 | |
| static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
 | |
| {
 | |
|     vga_interface_created = true;
 | |
|     switch (vga_interface_type) {
 | |
|     case VGA_NONE:
 | |
|         return false;
 | |
|     case VGA_DEVICE:
 | |
|         return true;
 | |
|     case VGA_STD:
 | |
|     case VGA_VIRTIO:
 | |
|     case VGA_CIRRUS:
 | |
|         return pci_vga_init(pci_bus) != NULL;
 | |
|     default:
 | |
|         error_setg(errp,
 | |
|                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int spapr_pre_load(void *opaque)
 | |
| {
 | |
|     int rc;
 | |
| 
 | |
|     rc = spapr_caps_pre_load(opaque);
 | |
|     if (rc) {
 | |
|         return rc;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int spapr_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
 | |
|     int err = 0;
 | |
| 
 | |
|     err = spapr_caps_post_migration(spapr);
 | |
|     if (err) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In earlier versions, there was no separate qdev for the PAPR
 | |
|      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
 | |
|      * So when migrating from those versions, poke the incoming offset
 | |
|      * value into the RTC device
 | |
|      */
 | |
|     if (version_id < 3) {
 | |
|         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled() && spapr->patb_entry) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
 | |
|         bool radix = !!(spapr->patb_entry & PATE1_GR);
 | |
|         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
 | |
| 
 | |
|         /*
 | |
|          * Update LPCR:HR and UPRT as they may not be set properly in
 | |
|          * the stream
 | |
|          */
 | |
|         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
 | |
|                             LPCR_HR | LPCR_UPRT);
 | |
| 
 | |
|         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
 | |
|         if (err) {
 | |
|             error_report("Process table config unsupported by the host");
 | |
|             return -EINVAL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     err = spapr_irq_post_load(spapr, version_id);
 | |
|     if (err) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| static int spapr_pre_save(void *opaque)
 | |
| {
 | |
|     int rc;
 | |
| 
 | |
|     rc = spapr_caps_pre_save(opaque);
 | |
|     if (rc) {
 | |
|         return rc;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool version_before_3(void *opaque, int version_id)
 | |
| {
 | |
|     return version_id < 3;
 | |
| }
 | |
| 
 | |
| static bool spapr_pending_events_needed(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
 | |
|     return !QTAILQ_EMPTY(&spapr->pending_events);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_event_entry = {
 | |
|     .name = "spapr_event_log_entry",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_UINT32(summary, SpaprEventLogEntry),
 | |
|         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
 | |
|         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
 | |
|                                      NULL, extended_length),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_pending_events = {
 | |
|     .name = "spapr_pending_events",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_pending_events_needed,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
 | |
|                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static bool spapr_ov5_cas_needed(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
|     SpaprOptionVector *ov5_mask = spapr_ovec_new();
 | |
|     bool cas_needed;
 | |
| 
 | |
|     /* Prior to the introduction of SpaprOptionVector, we had two option
 | |
|      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
 | |
|      * Both of these options encode machine topology into the device-tree
 | |
|      * in such a way that the now-booted OS should still be able to interact
 | |
|      * appropriately with QEMU regardless of what options were actually
 | |
|      * negotiatied on the source side.
 | |
|      *
 | |
|      * As such, we can avoid migrating the CAS-negotiated options if these
 | |
|      * are the only options available on the current machine/platform.
 | |
|      * Since these are the only options available for pseries-2.7 and
 | |
|      * earlier, this allows us to maintain old->new/new->old migration
 | |
|      * compatibility.
 | |
|      *
 | |
|      * For QEMU 2.8+, there are additional CAS-negotiatable options available
 | |
|      * via default pseries-2.8 machines and explicit command-line parameters.
 | |
|      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
 | |
|      * of the actual CAS-negotiated values to continue working properly. For
 | |
|      * example, availability of memory unplug depends on knowing whether
 | |
|      * OV5_HP_EVT was negotiated via CAS.
 | |
|      *
 | |
|      * Thus, for any cases where the set of available CAS-negotiatable
 | |
|      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
 | |
|      * include the CAS-negotiated options in the migration stream, unless
 | |
|      * if they affect boot time behaviour only.
 | |
|      */
 | |
|     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
 | |
|     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
 | |
|     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
 | |
| 
 | |
|     /* We need extra information if we have any bits outside the mask
 | |
|      * defined above */
 | |
|     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
 | |
| 
 | |
|     spapr_ovec_cleanup(ov5_mask);
 | |
| 
 | |
|     return cas_needed;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_ov5_cas = {
 | |
|     .name = "spapr_option_vector_ov5_cas",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_ov5_cas_needed,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
 | |
|                                  vmstate_spapr_ovec, SpaprOptionVector),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static bool spapr_patb_entry_needed(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
| 
 | |
|     return !!spapr->patb_entry;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_patb_entry = {
 | |
|     .name = "spapr_patb_entry",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_patb_entry_needed,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_UINT64(patb_entry, SpaprMachineState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static bool spapr_irq_map_needed(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
| 
 | |
|     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_irq_map = {
 | |
|     .name = "spapr_irq_map",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_irq_map_needed,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static bool spapr_dtb_needed(void *opaque)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
 | |
| 
 | |
|     return smc->update_dt_enabled;
 | |
| }
 | |
| 
 | |
| static int spapr_dtb_pre_load(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
 | |
| 
 | |
|     g_free(spapr->fdt_blob);
 | |
|     spapr->fdt_blob = NULL;
 | |
|     spapr->fdt_size = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_dtb = {
 | |
|     .name = "spapr_dtb",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_dtb_needed,
 | |
|     .pre_load = spapr_dtb_pre_load,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
 | |
|         VMSTATE_UINT32(fdt_size, SpaprMachineState),
 | |
|         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
 | |
|                                      fdt_size),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static bool spapr_fwnmi_needed(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
 | |
| 
 | |
|     return spapr->fwnmi_machine_check_addr != -1;
 | |
| }
 | |
| 
 | |
| static int spapr_fwnmi_pre_save(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
 | |
| 
 | |
|     /*
 | |
|      * Check if machine check handling is in progress and print a
 | |
|      * warning message.
 | |
|      */
 | |
|     if (spapr->fwnmi_machine_check_interlock != -1) {
 | |
|         warn_report("A machine check is being handled during migration. The"
 | |
|                 "handler may run and log hardware error on the destination");
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_fwnmi = {
 | |
|     .name = "spapr_fwnmi",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = spapr_fwnmi_needed,
 | |
|     .pre_save = spapr_fwnmi_pre_save,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
 | |
|         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
 | |
|         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr = {
 | |
|     .name = "spapr",
 | |
|     .version_id = 3,
 | |
|     .minimum_version_id = 1,
 | |
|     .pre_load = spapr_pre_load,
 | |
|     .post_load = spapr_post_load,
 | |
|     .pre_save = spapr_pre_save,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         /* used to be @next_irq */
 | |
|         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
 | |
| 
 | |
|         /* RTC offset */
 | |
|         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
 | |
| 
 | |
|         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
|     .subsections = (const VMStateDescription * const []) {
 | |
|         &vmstate_spapr_ov5_cas,
 | |
|         &vmstate_spapr_patb_entry,
 | |
|         &vmstate_spapr_pending_events,
 | |
|         &vmstate_spapr_cap_htm,
 | |
|         &vmstate_spapr_cap_vsx,
 | |
|         &vmstate_spapr_cap_dfp,
 | |
|         &vmstate_spapr_cap_cfpc,
 | |
|         &vmstate_spapr_cap_sbbc,
 | |
|         &vmstate_spapr_cap_ibs,
 | |
|         &vmstate_spapr_cap_hpt_maxpagesize,
 | |
|         &vmstate_spapr_irq_map,
 | |
|         &vmstate_spapr_cap_nested_kvm_hv,
 | |
|         &vmstate_spapr_dtb,
 | |
|         &vmstate_spapr_cap_large_decr,
 | |
|         &vmstate_spapr_cap_ccf_assist,
 | |
|         &vmstate_spapr_cap_fwnmi,
 | |
|         &vmstate_spapr_fwnmi,
 | |
|         &vmstate_spapr_cap_rpt_invalidate,
 | |
|         NULL
 | |
|     }
 | |
| };
 | |
| 
 | |
| static int htab_save_setup(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
| 
 | |
|     /* "Iteration" header */
 | |
|     if (!spapr->htab_shift) {
 | |
|         qemu_put_be32(f, -1);
 | |
|     } else {
 | |
|         qemu_put_be32(f, spapr->htab_shift);
 | |
|     }
 | |
| 
 | |
|     if (spapr->htab) {
 | |
|         spapr->htab_save_index = 0;
 | |
|         spapr->htab_first_pass = true;
 | |
|     } else {
 | |
|         if (spapr->htab_shift) {
 | |
|             assert(kvm_enabled());
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
 | |
|                             int chunkstart, int n_valid, int n_invalid)
 | |
| {
 | |
|     qemu_put_be32(f, chunkstart);
 | |
|     qemu_put_be16(f, n_valid);
 | |
|     qemu_put_be16(f, n_invalid);
 | |
|     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
 | |
|                     HASH_PTE_SIZE_64 * n_valid);
 | |
| }
 | |
| 
 | |
| static void htab_save_end_marker(QEMUFile *f)
 | |
| {
 | |
|     qemu_put_be32(f, 0);
 | |
|     qemu_put_be16(f, 0);
 | |
|     qemu_put_be16(f, 0);
 | |
| }
 | |
| 
 | |
| static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
 | |
|                                  int64_t max_ns)
 | |
| {
 | |
|     bool has_timeout = max_ns != -1;
 | |
|     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
 | |
|     int index = spapr->htab_save_index;
 | |
|     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | |
| 
 | |
|     assert(spapr->htab_first_pass);
 | |
| 
 | |
|     do {
 | |
|         int chunkstart;
 | |
| 
 | |
|         /* Consume invalid HPTEs */
 | |
|         while ((index < htabslots)
 | |
|                && !HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|         }
 | |
| 
 | |
|         /* Consume valid HPTEs */
 | |
|         chunkstart = index;
 | |
|         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
 | |
|                && HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|         }
 | |
| 
 | |
|         if (index > chunkstart) {
 | |
|             int n_valid = index - chunkstart;
 | |
| 
 | |
|             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
 | |
| 
 | |
|             if (has_timeout &&
 | |
|                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     } while ((index < htabslots) && !migration_rate_exceeded(f));
 | |
| 
 | |
|     if (index >= htabslots) {
 | |
|         assert(index == htabslots);
 | |
|         index = 0;
 | |
|         spapr->htab_first_pass = false;
 | |
|     }
 | |
|     spapr->htab_save_index = index;
 | |
| }
 | |
| 
 | |
| static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
 | |
|                                 int64_t max_ns)
 | |
| {
 | |
|     bool final = max_ns < 0;
 | |
|     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
 | |
|     int examined = 0, sent = 0;
 | |
|     int index = spapr->htab_save_index;
 | |
|     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | |
| 
 | |
|     assert(!spapr->htab_first_pass);
 | |
| 
 | |
|     do {
 | |
|         int chunkstart, invalidstart;
 | |
| 
 | |
|         /* Consume non-dirty HPTEs */
 | |
|         while ((index < htabslots)
 | |
|                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
 | |
|             index++;
 | |
|             examined++;
 | |
|         }
 | |
| 
 | |
|         chunkstart = index;
 | |
|         /* Consume valid dirty HPTEs */
 | |
|         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
 | |
|                && HPTE_DIRTY(HPTE(spapr->htab, index))
 | |
|                && HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|             examined++;
 | |
|         }
 | |
| 
 | |
|         invalidstart = index;
 | |
|         /* Consume invalid dirty HPTEs */
 | |
|         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
 | |
|                && HPTE_DIRTY(HPTE(spapr->htab, index))
 | |
|                && !HPTE_VALID(HPTE(spapr->htab, index))) {
 | |
|             CLEAN_HPTE(HPTE(spapr->htab, index));
 | |
|             index++;
 | |
|             examined++;
 | |
|         }
 | |
| 
 | |
|         if (index > chunkstart) {
 | |
|             int n_valid = invalidstart - chunkstart;
 | |
|             int n_invalid = index - invalidstart;
 | |
| 
 | |
|             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
 | |
|             sent += index - chunkstart;
 | |
| 
 | |
|             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (examined >= htabslots) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (index >= htabslots) {
 | |
|             assert(index == htabslots);
 | |
|             index = 0;
 | |
|         }
 | |
|     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
 | |
| 
 | |
|     if (index >= htabslots) {
 | |
|         assert(index == htabslots);
 | |
|         index = 0;
 | |
|     }
 | |
| 
 | |
|     spapr->htab_save_index = index;
 | |
| 
 | |
|     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| #define MAX_ITERATION_NS    5000000 /* 5 ms */
 | |
| #define MAX_KVM_BUF_SIZE    2048
 | |
| 
 | |
| static int htab_save_iterate(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
|     int fd;
 | |
|     int rc = 0;
 | |
| 
 | |
|     /* Iteration header */
 | |
|     if (!spapr->htab_shift) {
 | |
|         qemu_put_be32(f, -1);
 | |
|         return 1;
 | |
|     } else {
 | |
|         qemu_put_be32(f, 0);
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         assert(kvm_enabled());
 | |
| 
 | |
|         fd = get_htab_fd(spapr);
 | |
|         if (fd < 0) {
 | |
|             return fd;
 | |
|         }
 | |
| 
 | |
|         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
 | |
|         if (rc < 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     } else  if (spapr->htab_first_pass) {
 | |
|         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
 | |
|     } else {
 | |
|         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
 | |
|     }
 | |
| 
 | |
|     htab_save_end_marker(f);
 | |
| 
 | |
|     return rc;
 | |
| }
 | |
| 
 | |
| static int htab_save_complete(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
|     int fd;
 | |
| 
 | |
|     /* Iteration header */
 | |
|     if (!spapr->htab_shift) {
 | |
|         qemu_put_be32(f, -1);
 | |
|         return 0;
 | |
|     } else {
 | |
|         qemu_put_be32(f, 0);
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         int rc;
 | |
| 
 | |
|         assert(kvm_enabled());
 | |
| 
 | |
|         fd = get_htab_fd(spapr);
 | |
|         if (fd < 0) {
 | |
|             return fd;
 | |
|         }
 | |
| 
 | |
|         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
 | |
|         if (rc < 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     } else {
 | |
|         if (spapr->htab_first_pass) {
 | |
|             htab_save_first_pass(f, spapr, -1);
 | |
|         }
 | |
|         htab_save_later_pass(f, spapr, -1);
 | |
|     }
 | |
| 
 | |
|     /* End marker */
 | |
|     htab_save_end_marker(f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int htab_load(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
|     uint32_t section_hdr;
 | |
|     int fd = -1;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (version_id < 1 || version_id > 1) {
 | |
|         error_report("htab_load() bad version");
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     section_hdr = qemu_get_be32(f);
 | |
| 
 | |
|     if (section_hdr == -1) {
 | |
|         spapr_free_hpt(spapr);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (section_hdr) {
 | |
|         int ret;
 | |
| 
 | |
|         /* First section gives the htab size */
 | |
|         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
 | |
|         if (ret < 0) {
 | |
|             error_report_err(local_err);
 | |
|             return ret;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         assert(kvm_enabled());
 | |
| 
 | |
|         fd = kvmppc_get_htab_fd(true, 0, &local_err);
 | |
|         if (fd < 0) {
 | |
|             error_report_err(local_err);
 | |
|             return fd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (true) {
 | |
|         uint32_t index;
 | |
|         uint16_t n_valid, n_invalid;
 | |
| 
 | |
|         index = qemu_get_be32(f);
 | |
|         n_valid = qemu_get_be16(f);
 | |
|         n_invalid = qemu_get_be16(f);
 | |
| 
 | |
|         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
 | |
|             /* End of Stream */
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((index + n_valid + n_invalid) >
 | |
|             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
 | |
|             /* Bad index in stream */
 | |
|             error_report(
 | |
|                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
 | |
|                 index, n_valid, n_invalid, spapr->htab_shift);
 | |
|             return -EINVAL;
 | |
|         }
 | |
| 
 | |
|         if (spapr->htab) {
 | |
|             if (n_valid) {
 | |
|                 qemu_get_buffer(f, HPTE(spapr->htab, index),
 | |
|                                 HASH_PTE_SIZE_64 * n_valid);
 | |
|             }
 | |
|             if (n_invalid) {
 | |
|                 memset(HPTE(spapr->htab, index + n_valid), 0,
 | |
|                        HASH_PTE_SIZE_64 * n_invalid);
 | |
|             }
 | |
|         } else {
 | |
|             int rc;
 | |
| 
 | |
|             assert(fd >= 0);
 | |
| 
 | |
|             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
 | |
|                                         &local_err);
 | |
|             if (rc < 0) {
 | |
|                 error_report_err(local_err);
 | |
|                 return rc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab) {
 | |
|         assert(fd >= 0);
 | |
|         close(fd);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void htab_save_cleanup(void *opaque)
 | |
| {
 | |
|     SpaprMachineState *spapr = opaque;
 | |
| 
 | |
|     close_htab_fd(spapr);
 | |
| }
 | |
| 
 | |
| static SaveVMHandlers savevm_htab_handlers = {
 | |
|     .save_setup = htab_save_setup,
 | |
|     .save_live_iterate = htab_save_iterate,
 | |
|     .save_live_complete_precopy = htab_save_complete,
 | |
|     .save_cleanup = htab_save_cleanup,
 | |
|     .load_state = htab_load,
 | |
| };
 | |
| 
 | |
| static void spapr_boot_set(void *opaque, const char *boot_device,
 | |
|                            Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
 | |
| 
 | |
|     g_free(spapr->boot_device);
 | |
|     spapr->boot_device = g_strdup(boot_device);
 | |
| }
 | |
| 
 | |
| static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
 | |
|     int i;
 | |
| 
 | |
|     g_assert(!nr_lmbs || machine->device_memory);
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         uint64_t addr;
 | |
| 
 | |
|         addr = i * lmb_size + machine->device_memory->base;
 | |
|         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
 | |
|                                addr / lmb_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If RAM size, maxmem size and individual node mem sizes aren't aligned
 | |
|  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 | |
|  * since we can't support such unaligned sizes with DRCONF_MEMORY.
 | |
|  */
 | |
| static void spapr_validate_node_memory(MachineState *machine, Error **errp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
 | |
|                    " is not aligned to %" PRIu64 " MiB",
 | |
|                    machine->ram_size,
 | |
|                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
 | |
|                    " is not aligned to %" PRIu64 " MiB",
 | |
|                    machine->ram_size,
 | |
|                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < machine->numa_state->num_nodes; i++) {
 | |
|         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|             error_setg(errp,
 | |
|                        "Node %d memory size 0x%" PRIx64
 | |
|                        " is not aligned to %" PRIu64 " MiB",
 | |
|                        i, machine->numa_state->nodes[i].node_mem,
 | |
|                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* find cpu slot in machine->possible_cpus by core_id */
 | |
| static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
 | |
| {
 | |
|     int index = id / ms->smp.threads;
 | |
| 
 | |
|     if (index >= ms->possible_cpus->len) {
 | |
|         return NULL;
 | |
|     }
 | |
|     if (idx) {
 | |
|         *idx = index;
 | |
|     }
 | |
|     return &ms->possible_cpus->cpus[index];
 | |
| }
 | |
| 
 | |
| static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     Error *local_err = NULL;
 | |
|     bool vsmt_user = !!spapr->vsmt;
 | |
|     int kvm_smt = kvmppc_smt_threads();
 | |
|     int ret;
 | |
|     unsigned int smp_threads = ms->smp.threads;
 | |
| 
 | |
|     if (tcg_enabled()) {
 | |
|         if (smp_threads > 1 &&
 | |
|             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
 | |
|                                    spapr->max_compat_pvr)) {
 | |
|             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (smp_threads > 8) {
 | |
|             error_setg(errp, "TCG cannot support more than 8 threads/core "
 | |
|                        "on a pseries machine");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     if (!is_power_of_2(smp_threads)) {
 | |
|         error_setg(errp, "Cannot support %d threads/core on a pseries "
 | |
|                    "machine because it must be a power of 2", smp_threads);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Determine the VSMT mode to use: */
 | |
|     if (vsmt_user) {
 | |
|         if (spapr->vsmt < smp_threads) {
 | |
|             error_setg(errp, "Cannot support VSMT mode %d"
 | |
|                        " because it must be >= threads/core (%d)",
 | |
|                        spapr->vsmt, smp_threads);
 | |
|             return;
 | |
|         }
 | |
|         /* In this case, spapr->vsmt has been set by the command line */
 | |
|     } else if (!smc->smp_threads_vsmt) {
 | |
|         /*
 | |
|          * Default VSMT value is tricky, because we need it to be as
 | |
|          * consistent as possible (for migration), but this requires
 | |
|          * changing it for at least some existing cases.  We pick 8 as
 | |
|          * the value that we'd get with KVM on POWER8, the
 | |
|          * overwhelmingly common case in production systems.
 | |
|          */
 | |
|         spapr->vsmt = MAX(8, smp_threads);
 | |
|     } else {
 | |
|         spapr->vsmt = smp_threads;
 | |
|     }
 | |
| 
 | |
|     /* KVM: If necessary, set the SMT mode: */
 | |
|     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
 | |
|         ret = kvmppc_set_smt_threads(spapr->vsmt);
 | |
|         if (ret) {
 | |
|             /* Looks like KVM isn't able to change VSMT mode */
 | |
|             error_setg(&local_err,
 | |
|                        "Failed to set KVM's VSMT mode to %d (errno %d)",
 | |
|                        spapr->vsmt, ret);
 | |
|             /* We can live with that if the default one is big enough
 | |
|              * for the number of threads, and a submultiple of the one
 | |
|              * we want.  In this case we'll waste some vcpu ids, but
 | |
|              * behaviour will be correct */
 | |
|             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
 | |
|                 warn_report_err(local_err);
 | |
|             } else {
 | |
|                 if (!vsmt_user) {
 | |
|                     error_append_hint(&local_err,
 | |
|                                       "On PPC, a VM with %d threads/core"
 | |
|                                       " on a host with %d threads/core"
 | |
|                                       " requires the use of VSMT mode %d.\n",
 | |
|                                       smp_threads, kvm_smt, spapr->vsmt);
 | |
|                 }
 | |
|                 kvmppc_error_append_smt_possible_hint(&local_err);
 | |
|                 error_propagate(errp, local_err);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* else TCG: nothing to do currently */
 | |
| }
 | |
| 
 | |
| static void spapr_init_cpus(SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
|     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
 | |
|     const CPUArchIdList *possible_cpus;
 | |
|     unsigned int smp_cpus = machine->smp.cpus;
 | |
|     unsigned int smp_threads = machine->smp.threads;
 | |
|     unsigned int max_cpus = machine->smp.max_cpus;
 | |
|     int boot_cores_nr = smp_cpus / smp_threads;
 | |
|     int i;
 | |
| 
 | |
|     possible_cpus = mc->possible_cpu_arch_ids(machine);
 | |
|     if (mc->has_hotpluggable_cpus) {
 | |
|         if (smp_cpus % smp_threads) {
 | |
|             error_report("smp_cpus (%u) must be multiple of threads (%u)",
 | |
|                          smp_cpus, smp_threads);
 | |
|             exit(1);
 | |
|         }
 | |
|         if (max_cpus % smp_threads) {
 | |
|             error_report("max_cpus (%u) must be multiple of threads (%u)",
 | |
|                          max_cpus, smp_threads);
 | |
|             exit(1);
 | |
|         }
 | |
|     } else {
 | |
|         if (max_cpus != smp_cpus) {
 | |
|             error_report("This machine version does not support CPU hotplug");
 | |
|             exit(1);
 | |
|         }
 | |
|         boot_cores_nr = possible_cpus->len;
 | |
|     }
 | |
| 
 | |
|     if (smc->pre_2_10_has_unused_icps) {
 | |
|         for (i = 0; i < spapr_max_server_number(spapr); i++) {
 | |
|             /* Dummy entries get deregistered when real ICPState objects
 | |
|              * are registered during CPU core hotplug.
 | |
|              */
 | |
|             pre_2_10_vmstate_register_dummy_icp(i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < possible_cpus->len; i++) {
 | |
|         int core_id = i * smp_threads;
 | |
| 
 | |
|         if (mc->has_hotpluggable_cpus) {
 | |
|             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
 | |
|                                    spapr_vcpu_id(spapr, core_id));
 | |
|         }
 | |
| 
 | |
|         if (i < boot_cores_nr) {
 | |
|             Object *core  = object_new(type);
 | |
|             int nr_threads = smp_threads;
 | |
| 
 | |
|             /* Handle the partially filled core for older machine types */
 | |
|             if ((i + 1) * smp_threads >= smp_cpus) {
 | |
|                 nr_threads = smp_cpus - i * smp_threads;
 | |
|             }
 | |
| 
 | |
|             object_property_set_int(core, "nr-threads", nr_threads,
 | |
|                                     &error_fatal);
 | |
|             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
 | |
|                                     &error_fatal);
 | |
|             qdev_realize(DEVICE(core), NULL, &error_fatal);
 | |
| 
 | |
|             object_unref(core);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static PCIHostState *spapr_create_default_phb(void)
 | |
| {
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
 | |
|     qdev_prop_set_uint32(dev, "index", 0);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
| 
 | |
|     return PCI_HOST_BRIDGE(dev);
 | |
| }
 | |
| 
 | |
| static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     hwaddr rma_size = machine->ram_size;
 | |
|     hwaddr node0_size = spapr_node0_size(machine);
 | |
| 
 | |
|     /* RMA has to fit in the first NUMA node */
 | |
|     rma_size = MIN(rma_size, node0_size);
 | |
| 
 | |
|     /*
 | |
|      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
 | |
|      * never exceed that
 | |
|      */
 | |
|     rma_size = MIN(rma_size, 1 * TiB);
 | |
| 
 | |
|     /*
 | |
|      * Clamp the RMA size based on machine type.  This is for
 | |
|      * migration compatibility with older qemu versions, which limited
 | |
|      * the RMA size for complicated and mostly bad reasons.
 | |
|      */
 | |
|     if (smc->rma_limit) {
 | |
|         rma_size = MIN(rma_size, smc->rma_limit);
 | |
|     }
 | |
| 
 | |
|     if (rma_size < MIN_RMA_SLOF) {
 | |
|         error_setg(errp,
 | |
|                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
 | |
|                    "ldMiB guest RMA (Real Mode Area memory)",
 | |
|                    MIN_RMA_SLOF / MiB);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return rma_size;
 | |
| }
 | |
| 
 | |
| static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < machine->ram_slots; i++) {
 | |
|         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* pSeries LPAR / sPAPR hardware init */
 | |
| static void spapr_machine_init(MachineState *machine)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
|     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
 | |
|     const char *bios_name = machine->firmware ?: bios_default;
 | |
|     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 | |
|     const char *kernel_filename = machine->kernel_filename;
 | |
|     const char *initrd_filename = machine->initrd_filename;
 | |
|     PCIHostState *phb;
 | |
|     bool has_vga;
 | |
|     int i;
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
|     long load_limit, fw_size;
 | |
|     Error *resize_hpt_err = NULL;
 | |
|     NICInfo *nd;
 | |
| 
 | |
|     if (!filename) {
 | |
|         error_report("Could not find LPAR firmware '%s'", bios_name);
 | |
|         exit(1);
 | |
|     }
 | |
|     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
 | |
|     if (fw_size <= 0) {
 | |
|         error_report("Could not load LPAR firmware '%s'", filename);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * if Secure VM (PEF) support is configured, then initialize it
 | |
|      */
 | |
|     pef_kvm_init(machine->cgs, &error_fatal);
 | |
| 
 | |
|     msi_nonbroken = true;
 | |
| 
 | |
|     QLIST_INIT(&spapr->phbs);
 | |
|     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
 | |
| 
 | |
|     /* Determine capabilities to run with */
 | |
|     spapr_caps_init(spapr);
 | |
| 
 | |
|     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
 | |
|     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
 | |
|         /*
 | |
|          * If the user explicitly requested a mode we should either
 | |
|          * supply it, or fail completely (which we do below).  But if
 | |
|          * it's not set explicitly, we reset our mode to something
 | |
|          * that works
 | |
|          */
 | |
|         if (resize_hpt_err) {
 | |
|             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
 | |
|             error_free(resize_hpt_err);
 | |
|             resize_hpt_err = NULL;
 | |
|         } else {
 | |
|             spapr->resize_hpt = smc->resize_hpt_default;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
 | |
| 
 | |
|     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
 | |
|         /*
 | |
|          * User requested HPT resize, but this host can't supply it.  Bail out
 | |
|          */
 | |
|         error_report_err(resize_hpt_err);
 | |
|         exit(1);
 | |
|     }
 | |
|     error_free(resize_hpt_err);
 | |
| 
 | |
|     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
 | |
| 
 | |
|     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
 | |
|     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
 | |
| 
 | |
|     /*
 | |
|      * VSMT must be set in order to be able to compute VCPU ids, ie to
 | |
|      * call spapr_max_server_number() or spapr_vcpu_id().
 | |
|      */
 | |
|     spapr_set_vsmt_mode(spapr, &error_fatal);
 | |
| 
 | |
|     /* Set up Interrupt Controller before we create the VCPUs */
 | |
|     spapr_irq_init(spapr, &error_fatal);
 | |
| 
 | |
|     /* Set up containers for ibm,client-architecture-support negotiated options
 | |
|      */
 | |
|     spapr->ov5 = spapr_ovec_new();
 | |
|     spapr->ov5_cas = spapr_ovec_new();
 | |
| 
 | |
|     if (smc->dr_lmb_enabled) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
 | |
|         spapr_validate_node_memory(machine, &error_fatal);
 | |
|     }
 | |
| 
 | |
|     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
 | |
| 
 | |
|     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
 | |
|     if (!smc->pre_6_2_numa_affinity) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
 | |
|     }
 | |
| 
 | |
|     /* advertise support for dedicated HP event source to guests */
 | |
|     if (spapr->use_hotplug_event_source) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
 | |
|     }
 | |
| 
 | |
|     /* advertise support for HPT resizing */
 | |
|     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
 | |
|     }
 | |
| 
 | |
|     /* advertise support for ibm,dyamic-memory-v2 */
 | |
|     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
 | |
| 
 | |
|     /* advertise XIVE on POWER9 machines */
 | |
|     if (spapr->irq->xive) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
 | |
|     }
 | |
| 
 | |
|     /* init CPUs */
 | |
|     spapr_init_cpus(spapr);
 | |
| 
 | |
|     /* Init numa_assoc_array */
 | |
|     spapr_numa_associativity_init(spapr, machine);
 | |
| 
 | |
|     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
 | |
|         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
 | |
|                               spapr->max_compat_pvr)) {
 | |
|         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
 | |
|         /* KVM and TCG always allow GTSE with radix... */
 | |
|         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
 | |
|     }
 | |
|     /* ... but not with hash (currently). */
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
 | |
|         kvmppc_enable_logical_ci_hcalls();
 | |
|         kvmppc_enable_set_mode_hcall();
 | |
| 
 | |
|         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
 | |
|         kvmppc_enable_clear_ref_mod_hcalls();
 | |
| 
 | |
|         /* Enable H_PAGE_INIT */
 | |
|         kvmppc_enable_h_page_init();
 | |
|     }
 | |
| 
 | |
|     /* map RAM */
 | |
|     memory_region_add_subregion(sysmem, 0, machine->ram);
 | |
| 
 | |
|     /* initialize hotplug memory address space */
 | |
|     if (machine->ram_size < machine->maxram_size) {
 | |
|         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
 | |
|         hwaddr device_mem_base;
 | |
| 
 | |
|         /*
 | |
|          * Limit the number of hotpluggable memory slots to half the number
 | |
|          * slots that KVM supports, leaving the other half for PCI and other
 | |
|          * devices. However ensure that number of slots doesn't drop below 32.
 | |
|          */
 | |
|         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
 | |
|                            SPAPR_MAX_RAM_SLOTS;
 | |
| 
 | |
|         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
 | |
|             max_memslots = SPAPR_MAX_RAM_SLOTS;
 | |
|         }
 | |
|         if (machine->ram_slots > max_memslots) {
 | |
|             error_report("Specified number of memory slots %"
 | |
|                          PRIu64" exceeds max supported %d",
 | |
|                          machine->ram_slots, max_memslots);
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
 | |
|         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
 | |
|     }
 | |
| 
 | |
|     if (smc->dr_lmb_enabled) {
 | |
|         spapr_create_lmb_dr_connectors(spapr);
 | |
|     }
 | |
| 
 | |
|     if (mc->nvdimm_supported) {
 | |
|         spapr_create_nvdimm_dr_connectors(spapr);
 | |
|     }
 | |
| 
 | |
|     /* Set up RTAS event infrastructure */
 | |
|     spapr_events_init(spapr);
 | |
| 
 | |
|     /* Set up the RTC RTAS interfaces */
 | |
|     spapr_rtc_create(spapr);
 | |
| 
 | |
|     /* Set up VIO bus */
 | |
|     spapr->vio_bus = spapr_vio_bus_init();
 | |
| 
 | |
|     for (i = 0; serial_hd(i); i++) {
 | |
|         spapr_vty_create(spapr->vio_bus, serial_hd(i));
 | |
|     }
 | |
| 
 | |
|     /* We always have at least the nvram device on VIO */
 | |
|     spapr_create_nvram(spapr);
 | |
| 
 | |
|     /*
 | |
|      * Setup hotplug / dynamic-reconfiguration connectors. top-level
 | |
|      * connectors (described in root DT node's "ibm,drc-types" property)
 | |
|      * are pre-initialized here. additional child connectors (such as
 | |
|      * connectors for a PHBs PCI slots) are added as needed during their
 | |
|      * parent's realization.
 | |
|      */
 | |
|     if (smc->dr_phb_enabled) {
 | |
|         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
 | |
|             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Set up PCI */
 | |
|     spapr_pci_rtas_init();
 | |
| 
 | |
|     phb = spapr_create_default_phb();
 | |
| 
 | |
|     while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
 | |
|         spapr_vlan_create(spapr->vio_bus, nd);
 | |
|     }
 | |
| 
 | |
|     pci_init_nic_devices(phb->bus, NULL);
 | |
| 
 | |
|     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
 | |
|         spapr_vscsi_create(spapr->vio_bus);
 | |
|     }
 | |
| 
 | |
|     /* Graphics */
 | |
|     has_vga = spapr_vga_init(phb->bus, &error_fatal);
 | |
|     if (has_vga) {
 | |
|         spapr->want_stdout_path = !machine->enable_graphics;
 | |
|         machine->usb |= defaults_enabled() && !machine->usb_disabled;
 | |
|     } else {
 | |
|         spapr->want_stdout_path = true;
 | |
|     }
 | |
| 
 | |
|     if (machine->usb) {
 | |
|         if (smc->use_ohci_by_default) {
 | |
|             pci_create_simple(phb->bus, -1, "pci-ohci");
 | |
|         } else {
 | |
|             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
 | |
|         }
 | |
| 
 | |
|         if (has_vga) {
 | |
|             USBBus *usb_bus = usb_bus_find(-1);
 | |
| 
 | |
|             usb_create_simple(usb_bus, "usb-kbd");
 | |
|             usb_create_simple(usb_bus, "usb-mouse");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (kernel_filename) {
 | |
|         uint64_t loaded_addr = 0;
 | |
| 
 | |
|         spapr->kernel_size = load_elf(kernel_filename, NULL,
 | |
|                                       translate_kernel_address, spapr,
 | |
|                                       NULL, &loaded_addr, NULL, NULL, 1,
 | |
|                                       PPC_ELF_MACHINE, 0, 0);
 | |
|         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
 | |
|             spapr->kernel_size = load_elf(kernel_filename, NULL,
 | |
|                                           translate_kernel_address, spapr,
 | |
|                                           NULL, &loaded_addr, NULL, NULL, 0,
 | |
|                                           PPC_ELF_MACHINE, 0, 0);
 | |
|             spapr->kernel_le = spapr->kernel_size > 0;
 | |
|         }
 | |
|         if (spapr->kernel_size < 0) {
 | |
|             error_report("error loading %s: %s", kernel_filename,
 | |
|                          load_elf_strerror(spapr->kernel_size));
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         if (spapr->kernel_addr != loaded_addr) {
 | |
|             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
 | |
|                         " to 0x%"PRIx64,
 | |
|                         spapr->kernel_addr, loaded_addr);
 | |
|             spapr->kernel_addr = loaded_addr;
 | |
|         }
 | |
| 
 | |
|         /* load initrd */
 | |
|         if (initrd_filename) {
 | |
|             /* Try to locate the initrd in the gap between the kernel
 | |
|              * and the firmware. Add a bit of space just in case
 | |
|              */
 | |
|             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
 | |
|                                   + 0x1ffff) & ~0xffff;
 | |
|             spapr->initrd_size = load_image_targphys(initrd_filename,
 | |
|                                                      spapr->initrd_base,
 | |
|                                                      load_limit
 | |
|                                                      - spapr->initrd_base);
 | |
|             if (spapr->initrd_size < 0) {
 | |
|                 error_report("could not load initial ram disk '%s'",
 | |
|                              initrd_filename);
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* FIXME: Should register things through the MachineState's qdev
 | |
|      * interface, this is a legacy from the sPAPREnvironment structure
 | |
|      * which predated MachineState but had a similar function */
 | |
|     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
 | |
|     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
 | |
|                          &savevm_htab_handlers, spapr);
 | |
| 
 | |
|     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
 | |
| 
 | |
|     qemu_register_boot_set(spapr_boot_set, spapr);
 | |
| 
 | |
|     /*
 | |
|      * Nothing needs to be done to resume a suspended guest because
 | |
|      * suspending does not change the machine state, so no need for
 | |
|      * a ->wakeup method.
 | |
|      */
 | |
|     qemu_register_wakeup_support();
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         /* to stop and start vmclock */
 | |
|         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
 | |
|                                          &spapr->tb);
 | |
| 
 | |
|         kvmppc_spapr_enable_inkernel_multitce();
 | |
|     }
 | |
| 
 | |
|     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
 | |
|     if (spapr->vof) {
 | |
|         spapr->vof->fw_size = fw_size; /* for claim() on itself */
 | |
|         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
 | |
|     }
 | |
| 
 | |
|     spapr_watchdog_init(spapr);
 | |
| }
 | |
| 
 | |
| #define DEFAULT_KVM_TYPE "auto"
 | |
| static int spapr_kvm_type(MachineState *machine, const char *vm_type)
 | |
| {
 | |
|     /*
 | |
|      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
 | |
|      * accommodate the 'HV' and 'PV' formats that exists in the
 | |
|      * wild. The 'auto' mode is being introduced already as
 | |
|      * lower-case, thus we don't need to bother checking for
 | |
|      * "AUTO".
 | |
|      */
 | |
|     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!g_ascii_strcasecmp(vm_type, "hv")) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!g_ascii_strcasecmp(vm_type, "pr")) {
 | |
|         return 2;
 | |
|     }
 | |
| 
 | |
|     error_report("Unknown kvm-type specified '%s'", vm_type);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implementation of an interface to adjust firmware path
 | |
|  * for the bootindex property handling.
 | |
|  */
 | |
| static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
 | |
|                                    DeviceState *dev)
 | |
| {
 | |
| #define CAST(type, obj, name) \
 | |
|     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
 | |
|     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
 | |
|     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
 | |
|     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
 | |
|     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
 | |
| 
 | |
|     if (d && bus) {
 | |
|         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
 | |
|         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
 | |
|         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
 | |
| 
 | |
|         if (spapr) {
 | |
|             /*
 | |
|              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
 | |
|              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
 | |
|              * 0x8000 | (target << 8) | (bus << 5) | lun
 | |
|              * (see the "Logical unit addressing format" table in SAM5)
 | |
|              */
 | |
|             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
 | |
|             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | |
|                                    (uint64_t)id << 48);
 | |
|         } else if (virtio) {
 | |
|             /*
 | |
|              * We use SRP luns of the form 01000000 | (target << 8) | lun
 | |
|              * in the top 32 bits of the 64-bit LUN
 | |
|              * Note: the quote above is from SLOF and it is wrong,
 | |
|              * the actual binding is:
 | |
|              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
 | |
|              */
 | |
|             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
 | |
|             if (d->lun >= 256) {
 | |
|                 /* Use the LUN "flat space addressing method" */
 | |
|                 id |= 0x4000;
 | |
|             }
 | |
|             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | |
|                                    (uint64_t)id << 32);
 | |
|         } else if (usb) {
 | |
|             /*
 | |
|              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
 | |
|              * in the top 32 bits of the 64-bit LUN
 | |
|              */
 | |
|             unsigned usb_port = atoi(usb->port->path);
 | |
|             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
 | |
|             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
 | |
|                                    (uint64_t)id << 32);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * SLOF probes the USB devices, and if it recognizes that the device is a
 | |
|      * storage device, it changes its name to "storage" instead of "usb-host",
 | |
|      * and additionally adds a child node for the SCSI LUN, so the correct
 | |
|      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
 | |
|      */
 | |
|     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
 | |
|         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
 | |
|         if (usb_device_is_scsi_storage(usbdev)) {
 | |
|             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (phb) {
 | |
|         /* Replace "pci" with "pci@800000020000000" */
 | |
|         return g_strdup_printf("pci@%"PRIX64, phb->buid);
 | |
|     }
 | |
| 
 | |
|     if (vsc) {
 | |
|         /* Same logic as virtio above */
 | |
|         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
 | |
|         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
 | |
|     }
 | |
| 
 | |
|     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
 | |
|         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
 | |
|         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
 | |
|         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
 | |
|     }
 | |
| 
 | |
|     if (pcidev) {
 | |
|         return spapr_pci_fw_dev_name(pcidev);
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static char *spapr_get_kvm_type(Object *obj, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     return g_strdup(spapr->kvm_type);
 | |
| }
 | |
| 
 | |
| static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     g_free(spapr->kvm_type);
 | |
|     spapr->kvm_type = g_strdup(value);
 | |
| }
 | |
| 
 | |
| static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     return spapr->use_hotplug_event_source;
 | |
| }
 | |
| 
 | |
| static void spapr_set_modern_hotplug_events(Object *obj, bool value,
 | |
|                                             Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     spapr->use_hotplug_event_source = value;
 | |
| }
 | |
| 
 | |
| static bool spapr_get_msix_emulation(Object *obj, Error **errp)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static char *spapr_get_resize_hpt(Object *obj, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     switch (spapr->resize_hpt) {
 | |
|     case SPAPR_RESIZE_HPT_DEFAULT:
 | |
|         return g_strdup("default");
 | |
|     case SPAPR_RESIZE_HPT_DISABLED:
 | |
|         return g_strdup("disabled");
 | |
|     case SPAPR_RESIZE_HPT_ENABLED:
 | |
|         return g_strdup("enabled");
 | |
|     case SPAPR_RESIZE_HPT_REQUIRED:
 | |
|         return g_strdup("required");
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     if (strcmp(value, "default") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
 | |
|     } else if (strcmp(value, "disabled") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
 | |
|     } else if (strcmp(value, "enabled") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
 | |
|     } else if (strcmp(value, "required") == 0) {
 | |
|         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
 | |
|     } else {
 | |
|         error_setg(errp, "Bad value for \"resize-hpt\" property");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool spapr_get_vof(Object *obj, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     return spapr->vof != NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_set_vof(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     if (spapr->vof) {
 | |
|         vof_cleanup(spapr->vof);
 | |
|         g_free(spapr->vof);
 | |
|         spapr->vof = NULL;
 | |
|     }
 | |
|     if (!value) {
 | |
|         return;
 | |
|     }
 | |
|     spapr->vof = g_malloc0(sizeof(*spapr->vof));
 | |
| }
 | |
| 
 | |
| static char *spapr_get_ic_mode(Object *obj, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     if (spapr->irq == &spapr_irq_xics_legacy) {
 | |
|         return g_strdup("legacy");
 | |
|     } else if (spapr->irq == &spapr_irq_xics) {
 | |
|         return g_strdup("xics");
 | |
|     } else if (spapr->irq == &spapr_irq_xive) {
 | |
|         return g_strdup("xive");
 | |
|     } else if (spapr->irq == &spapr_irq_dual) {
 | |
|         return g_strdup("dual");
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
 | |
|         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* The legacy IRQ backend can not be set */
 | |
|     if (strcmp(value, "xics") == 0) {
 | |
|         spapr->irq = &spapr_irq_xics;
 | |
|     } else if (strcmp(value, "xive") == 0) {
 | |
|         spapr->irq = &spapr_irq_xive;
 | |
|     } else if (strcmp(value, "dual") == 0) {
 | |
|         spapr->irq = &spapr_irq_dual;
 | |
|     } else {
 | |
|         error_setg(errp, "Bad value for \"ic-mode\" property");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static char *spapr_get_host_model(Object *obj, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     return g_strdup(spapr->host_model);
 | |
| }
 | |
| 
 | |
| static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     g_free(spapr->host_model);
 | |
|     spapr->host_model = g_strdup(value);
 | |
| }
 | |
| 
 | |
| static char *spapr_get_host_serial(Object *obj, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     return g_strdup(spapr->host_serial);
 | |
| }
 | |
| 
 | |
| static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     g_free(spapr->host_serial);
 | |
|     spapr->host_serial = g_strdup(value);
 | |
| }
 | |
| 
 | |
| static void spapr_instance_init(Object *obj)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(ms);
 | |
| 
 | |
|     /*
 | |
|      * NVDIMM support went live in 5.1 without considering that, in
 | |
|      * other archs, the user needs to enable NVDIMM support with the
 | |
|      * 'nvdimm' machine option and the default behavior is NVDIMM
 | |
|      * support disabled. It is too late to roll back to the standard
 | |
|      * behavior without breaking 5.1 guests.
 | |
|      */
 | |
|     if (mc->nvdimm_supported) {
 | |
|         ms->nvdimms_state->is_enabled = true;
 | |
|     }
 | |
| 
 | |
|     spapr->htab_fd = -1;
 | |
|     spapr->use_hotplug_event_source = true;
 | |
|     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
 | |
|     object_property_add_str(obj, "kvm-type",
 | |
|                             spapr_get_kvm_type, spapr_set_kvm_type);
 | |
|     object_property_set_description(obj, "kvm-type",
 | |
|                                     "Specifies the KVM virtualization mode (auto,"
 | |
|                                     " hv, pr). Defaults to 'auto'. This mode will use"
 | |
|                                     " any available KVM module loaded in the host,"
 | |
|                                     " where kvm_hv takes precedence if both kvm_hv and"
 | |
|                                     " kvm_pr are loaded.");
 | |
|     object_property_add_bool(obj, "modern-hotplug-events",
 | |
|                             spapr_get_modern_hotplug_events,
 | |
|                             spapr_set_modern_hotplug_events);
 | |
|     object_property_set_description(obj, "modern-hotplug-events",
 | |
|                                     "Use dedicated hotplug event mechanism in"
 | |
|                                     " place of standard EPOW events when possible"
 | |
|                                     " (required for memory hot-unplug support)");
 | |
|     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
 | |
|                             "Maximum permitted CPU compatibility mode");
 | |
| 
 | |
|     object_property_add_str(obj, "resize-hpt",
 | |
|                             spapr_get_resize_hpt, spapr_set_resize_hpt);
 | |
|     object_property_set_description(obj, "resize-hpt",
 | |
|                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
 | |
|     object_property_add_uint32_ptr(obj, "vsmt",
 | |
|                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
 | |
|     object_property_set_description(obj, "vsmt",
 | |
|                                     "Virtual SMT: KVM behaves as if this were"
 | |
|                                     " the host's SMT mode");
 | |
| 
 | |
|     object_property_add_bool(obj, "vfio-no-msix-emulation",
 | |
|                              spapr_get_msix_emulation, NULL);
 | |
| 
 | |
|     object_property_add_uint64_ptr(obj, "kernel-addr",
 | |
|                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
 | |
|     object_property_set_description(obj, "kernel-addr",
 | |
|                                     stringify(KERNEL_LOAD_ADDR)
 | |
|                                     " for -kernel is the default");
 | |
|     spapr->kernel_addr = KERNEL_LOAD_ADDR;
 | |
| 
 | |
|     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
 | |
|     object_property_set_description(obj, "x-vof",
 | |
|                                     "Enable Virtual Open Firmware (experimental)");
 | |
| 
 | |
|     /* The machine class defines the default interrupt controller mode */
 | |
|     spapr->irq = smc->irq;
 | |
|     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
 | |
|                             spapr_set_ic_mode);
 | |
|     object_property_set_description(obj, "ic-mode",
 | |
|                  "Specifies the interrupt controller mode (xics, xive, dual)");
 | |
| 
 | |
|     object_property_add_str(obj, "host-model",
 | |
|         spapr_get_host_model, spapr_set_host_model);
 | |
|     object_property_set_description(obj, "host-model",
 | |
|         "Host model to advertise in guest device tree");
 | |
|     object_property_add_str(obj, "host-serial",
 | |
|         spapr_get_host_serial, spapr_set_host_serial);
 | |
|     object_property_set_description(obj, "host-serial",
 | |
|         "Host serial number to advertise in guest device tree");
 | |
| }
 | |
| 
 | |
| static void spapr_machine_finalizefn(Object *obj)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     g_free(spapr->kvm_type);
 | |
| }
 | |
| 
 | |
| void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     cpu_synchronize_state(cs);
 | |
|     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
 | |
|     if (spapr->fwnmi_system_reset_addr != -1) {
 | |
|         uint64_t rtas_addr, addr;
 | |
| 
 | |
|         /* get rtas addr from fdt */
 | |
|         rtas_addr = spapr_get_rtas_addr();
 | |
|         if (!rtas_addr) {
 | |
|             qemu_system_guest_panicked(NULL);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
 | |
|         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
 | |
|         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
 | |
|         env->gpr[3] = addr;
 | |
|     }
 | |
|     ppc_cpu_do_system_reset(cs);
 | |
|     if (spapr->fwnmi_system_reset_addr != -1) {
 | |
|         env->nip = spapr->fwnmi_system_reset_addr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
 | |
| {
 | |
|     CPUState *cs;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
 | |
|                           void *fdt, int *fdt_start_offset, Error **errp)
 | |
| {
 | |
|     uint64_t addr;
 | |
|     uint32_t node;
 | |
| 
 | |
|     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
 | |
|                                     &error_abort);
 | |
|     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
 | |
|                                              SPAPR_MEMORY_BLOCK_SIZE);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
 | |
|                            bool dedicated_hp_event_source)
 | |
| {
 | |
|     SpaprDrc *drc;
 | |
|     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     int i;
 | |
|     uint64_t addr = addr_start;
 | |
|     bool hotplugged = spapr_drc_hotplugged(dev);
 | |
| 
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                               addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|         g_assert(drc);
 | |
| 
 | |
|         /*
 | |
|          * memory_device_get_free_addr() provided a range of free addresses
 | |
|          * that doesn't overlap with any existing mapping at pre-plug. The
 | |
|          * corresponding LMB DRCs are thus assumed to be all attachable.
 | |
|          */
 | |
|         spapr_drc_attach(drc, dev);
 | |
|         if (!hotplugged) {
 | |
|             spapr_drc_reset(drc);
 | |
|         }
 | |
|         addr += SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     }
 | |
|     /* send hotplug notification to the
 | |
|      * guest only in case of hotplugged memory
 | |
|      */
 | |
|     if (hotplugged) {
 | |
|         if (dedicated_hp_event_source) {
 | |
|             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|             g_assert(drc);
 | |
|             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
 | |
|                                                    nr_lmbs,
 | |
|                                                    spapr_drc_index(drc));
 | |
|         } else {
 | |
|             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
 | |
|                                            nr_lmbs);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
 | |
|     PCDIMMDevice *dimm = PC_DIMM(dev);
 | |
|     uint64_t size, addr;
 | |
|     int64_t slot;
 | |
|     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
 | |
| 
 | |
|     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
 | |
| 
 | |
|     pc_dimm_plug(dimm, MACHINE(ms));
 | |
| 
 | |
|     if (!is_nvdimm) {
 | |
|         addr = object_property_get_uint(OBJECT(dimm),
 | |
|                                         PC_DIMM_ADDR_PROP, &error_abort);
 | |
|         spapr_add_lmbs(dev, addr, size,
 | |
|                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
 | |
|     } else {
 | |
|         slot = object_property_get_int(OBJECT(dimm),
 | |
|                                        PC_DIMM_SLOT_PROP, &error_abort);
 | |
|         /* We should have valid slot number at this point */
 | |
|         g_assert(slot >= 0);
 | |
|         spapr_add_nvdimm(dev, slot);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                   Error **errp)
 | |
| {
 | |
|     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
 | |
|     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
 | |
|     PCDIMMDevice *dimm = PC_DIMM(dev);
 | |
|     Error *local_err = NULL;
 | |
|     uint64_t size;
 | |
|     Object *memdev;
 | |
|     hwaddr pagesize;
 | |
| 
 | |
|     if (!smc->dr_lmb_enabled) {
 | |
|         error_setg(errp, "Memory hotplug not supported for this machine");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (is_nvdimm) {
 | |
|         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
 | |
|             return;
 | |
|         }
 | |
|     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
 | |
|         error_setg(errp, "Hotplugged memory size must be a multiple of "
 | |
|                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
 | |
|                                       &error_abort);
 | |
|     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
 | |
|     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
 | |
| }
 | |
| 
 | |
| struct SpaprDimmState {
 | |
|     PCDIMMDevice *dimm;
 | |
|     uint32_t nr_lmbs;
 | |
|     QTAILQ_ENTRY(SpaprDimmState) next;
 | |
| };
 | |
| 
 | |
| static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
 | |
|                                                        PCDIMMDevice *dimm)
 | |
| {
 | |
|     SpaprDimmState *dimm_state = NULL;
 | |
| 
 | |
|     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
 | |
|         if (dimm_state->dimm == dimm) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return dimm_state;
 | |
| }
 | |
| 
 | |
| static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
 | |
|                                                       uint32_t nr_lmbs,
 | |
|                                                       PCDIMMDevice *dimm)
 | |
| {
 | |
|     SpaprDimmState *ds = NULL;
 | |
| 
 | |
|     /*
 | |
|      * If this request is for a DIMM whose removal had failed earlier
 | |
|      * (due to guest's refusal to remove the LMBs), we would have this
 | |
|      * dimm already in the pending_dimm_unplugs list. In that
 | |
|      * case don't add again.
 | |
|      */
 | |
|     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
 | |
|     if (!ds) {
 | |
|         ds = g_new0(SpaprDimmState, 1);
 | |
|         ds->nr_lmbs = nr_lmbs;
 | |
|         ds->dimm = dimm;
 | |
|         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
 | |
|     }
 | |
|     return ds;
 | |
| }
 | |
| 
 | |
| static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
 | |
|                                               SpaprDimmState *dimm_state)
 | |
| {
 | |
|     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
 | |
|     g_free(dimm_state);
 | |
| }
 | |
| 
 | |
| static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
 | |
|                                                         PCDIMMDevice *dimm)
 | |
| {
 | |
|     SpaprDrc *drc;
 | |
|     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
 | |
|                                                   &error_abort);
 | |
|     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     uint32_t avail_lmbs = 0;
 | |
|     uint64_t addr_start, addr;
 | |
|     int i;
 | |
| 
 | |
|     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
 | |
|                                           &error_abort);
 | |
| 
 | |
|     addr = addr_start;
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                               addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|         g_assert(drc);
 | |
|         if (drc->dev) {
 | |
|             avail_lmbs++;
 | |
|         }
 | |
|         addr += SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     }
 | |
| 
 | |
|     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
 | |
| }
 | |
| 
 | |
| void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
 | |
| {
 | |
|     SpaprDimmState *ds;
 | |
|     PCDIMMDevice *dimm;
 | |
|     SpaprDrc *drc;
 | |
|     uint32_t nr_lmbs;
 | |
|     uint64_t size, addr_start, addr;
 | |
|     g_autofree char *qapi_error = NULL;
 | |
|     int i;
 | |
| 
 | |
|     if (!dev) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dimm = PC_DIMM(dev);
 | |
|     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
 | |
| 
 | |
|     /*
 | |
|      * 'ds == NULL' would mean that the DIMM doesn't have a pending
 | |
|      * unplug state, but one of its DRC is marked as unplug_requested.
 | |
|      * This is bad and weird enough to g_assert() out.
 | |
|      */
 | |
|     g_assert(ds);
 | |
| 
 | |
|     spapr_pending_dimm_unplugs_remove(spapr, ds);
 | |
| 
 | |
|     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
 | |
|     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
 | |
| 
 | |
|     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
 | |
|                                           &error_abort);
 | |
| 
 | |
|     addr = addr_start;
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                               addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|         g_assert(drc);
 | |
| 
 | |
|         drc->unplug_requested = false;
 | |
|         addr += SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Tell QAPI that something happened and the memory
 | |
|      * hotunplug wasn't successful. Keep sending
 | |
|      * MEM_UNPLUG_ERROR even while sending
 | |
|      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
 | |
|      * MEM_UNPLUG_ERROR is due.
 | |
|      */
 | |
|     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
 | |
|                                  "for device %s", dev->id);
 | |
| 
 | |
|     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
 | |
| 
 | |
|     qapi_event_send_device_unplug_guest_error(dev->id,
 | |
|                                               dev->canonical_path);
 | |
| }
 | |
| 
 | |
| /* Callback to be called during DRC release. */
 | |
| void spapr_lmb_release(DeviceState *dev)
 | |
| {
 | |
|     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
 | |
|     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
 | |
| 
 | |
|     /* This information will get lost if a migration occurs
 | |
|      * during the unplug process. In this case recover it. */
 | |
|     if (ds == NULL) {
 | |
|         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
 | |
|         g_assert(ds);
 | |
|         /* The DRC being examined by the caller at least must be counted */
 | |
|         g_assert(ds->nr_lmbs);
 | |
|     }
 | |
| 
 | |
|     if (--ds->nr_lmbs) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Now that all the LMBs have been removed by the guest, call the
 | |
|      * unplug handler chain. This can never fail.
 | |
|      */
 | |
|     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
 | |
|     object_unparent(OBJECT(dev));
 | |
| }
 | |
| 
 | |
| static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
 | |
|     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
 | |
| 
 | |
|     /* We really shouldn't get this far without anything to unplug */
 | |
|     g_assert(ds);
 | |
| 
 | |
|     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
 | |
|     qdev_unrealize(dev);
 | |
|     spapr_pending_dimm_unplugs_remove(spapr, ds);
 | |
| }
 | |
| 
 | |
| static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
 | |
|                                         DeviceState *dev, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
 | |
|     PCDIMMDevice *dimm = PC_DIMM(dev);
 | |
|     uint32_t nr_lmbs;
 | |
|     uint64_t size, addr_start, addr;
 | |
|     int i;
 | |
|     SpaprDrc *drc;
 | |
| 
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
 | |
|         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
 | |
|     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
 | |
| 
 | |
|     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
 | |
|                                           &error_abort);
 | |
| 
 | |
|     /*
 | |
|      * An existing pending dimm state for this DIMM means that there is an
 | |
|      * unplug operation in progress, waiting for the spapr_lmb_release
 | |
|      * callback to complete the job (BQL can't cover that far). In this case,
 | |
|      * bail out to avoid detaching DRCs that were already released.
 | |
|      */
 | |
|     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
 | |
|         error_setg(errp, "Memory unplug already in progress for device %s",
 | |
|                    dev->id);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
 | |
| 
 | |
|     addr = addr_start;
 | |
|     for (i = 0; i < nr_lmbs; i++) {
 | |
|         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                               addr / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|         g_assert(drc);
 | |
| 
 | |
|         spapr_drc_unplug_request(drc);
 | |
|         addr += SPAPR_MEMORY_BLOCK_SIZE;
 | |
|     }
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
 | |
|                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
 | |
|     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
 | |
|                                               nr_lmbs, spapr_drc_index(drc));
 | |
| }
 | |
| 
 | |
| /* Callback to be called during DRC release. */
 | |
| void spapr_core_release(DeviceState *dev)
 | |
| {
 | |
|     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
 | |
| 
 | |
|     /* Call the unplug handler chain. This can never fail. */
 | |
|     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
 | |
|     object_unparent(OBJECT(dev));
 | |
| }
 | |
| 
 | |
| static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     MachineState *ms = MACHINE(hotplug_dev);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
|     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
 | |
| 
 | |
|     if (smc->pre_2_10_has_unused_icps) {
 | |
|         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < cc->nr_threads; i++) {
 | |
|             CPUState *cs = CPU(sc->threads[i]);
 | |
| 
 | |
|             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(core_slot);
 | |
|     core_slot->cpu = NULL;
 | |
|     qdev_unrealize(dev);
 | |
| }
 | |
| 
 | |
| static
 | |
| void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     int index;
 | |
|     SpaprDrc *drc;
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
| 
 | |
|     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
 | |
|         error_setg(errp, "Unable to find CPU core with core-id: %d",
 | |
|                    cc->core_id);
 | |
|         return;
 | |
|     }
 | |
|     if (index == 0) {
 | |
|         error_setg(errp, "Boot CPU core may not be unplugged");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
 | |
|                           spapr_vcpu_id(spapr, cc->core_id));
 | |
|     g_assert(drc);
 | |
| 
 | |
|     if (!spapr_drc_unplug_requested(drc)) {
 | |
|         spapr_drc_unplug_request(drc);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
 | |
|      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
 | |
|      * pulses removing the same CPU. Otherwise, in an failed hotunplug
 | |
|      * attempt (e.g. the kernel will refuse to remove the last online
 | |
|      * CPU), we will never attempt it again because unplug_requested
 | |
|      * will still be 'true' in that case.
 | |
|      */
 | |
|     spapr_hotplug_req_remove_by_index(drc);
 | |
| }
 | |
| 
 | |
| int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
 | |
|                            void *fdt, int *fdt_start_offset, Error **errp)
 | |
| {
 | |
|     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
 | |
|     CPUState *cs = CPU(core->threads[0]);
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|     DeviceClass *dc = DEVICE_GET_CLASS(cs);
 | |
|     int id = spapr_get_vcpu_id(cpu);
 | |
|     g_autofree char *nodename = NULL;
 | |
|     int offset;
 | |
| 
 | |
|     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
 | |
|     offset = fdt_add_subnode(fdt, 0, nodename);
 | |
| 
 | |
|     spapr_dt_cpu(cs, fdt, offset, spapr);
 | |
| 
 | |
|     /*
 | |
|      * spapr_dt_cpu() does not fill the 'name' property in the
 | |
|      * CPU node. The function is called during boot process, before
 | |
|      * and after CAS, and overwriting the 'name' property written
 | |
|      * by SLOF is not allowed.
 | |
|      *
 | |
|      * Write it manually after spapr_dt_cpu(). This makes the hotplug
 | |
|      * CPUs more compatible with the coldplugged ones, which have
 | |
|      * the 'name' property. Linux Kernel also relies on this
 | |
|      * property to identify CPU nodes.
 | |
|      */
 | |
|     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
 | |
| 
 | |
|     *fdt_start_offset = offset;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
|     CPUState *cs;
 | |
|     SpaprDrc *drc;
 | |
|     CPUArchId *core_slot;
 | |
|     int index;
 | |
|     bool hotplugged = spapr_drc_hotplugged(dev);
 | |
|     int i;
 | |
| 
 | |
|     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
 | |
|     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
 | |
|                           spapr_vcpu_id(spapr, cc->core_id));
 | |
| 
 | |
|     g_assert(drc || !mc->has_hotpluggable_cpus);
 | |
| 
 | |
|     if (drc) {
 | |
|         /*
 | |
|          * spapr_core_pre_plug() already buys us this is a brand new
 | |
|          * core being plugged into a free slot. Nothing should already
 | |
|          * be attached to the corresponding DRC.
 | |
|          */
 | |
|         spapr_drc_attach(drc, dev);
 | |
| 
 | |
|         if (hotplugged) {
 | |
|             /*
 | |
|              * Send hotplug notification interrupt to the guest only
 | |
|              * in case of hotplugged CPUs.
 | |
|              */
 | |
|             spapr_hotplug_req_add_by_index(drc);
 | |
|         } else {
 | |
|             spapr_drc_reset(drc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     core_slot->cpu = OBJECT(dev);
 | |
| 
 | |
|     /*
 | |
|      * Set compatibility mode to match the boot CPU, which was either set
 | |
|      * by the machine reset code or by CAS. This really shouldn't fail at
 | |
|      * this point.
 | |
|      */
 | |
|     if (hotplugged) {
 | |
|         for (i = 0; i < cc->nr_threads; i++) {
 | |
|             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
 | |
|                            &error_abort);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (smc->pre_2_10_has_unused_icps) {
 | |
|         for (i = 0; i < cc->nr_threads; i++) {
 | |
|             cs = CPU(core->threads[i]);
 | |
|             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                 Error **errp)
 | |
| {
 | |
|     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
 | |
|     CPUCore *cc = CPU_CORE(dev);
 | |
|     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
 | |
|     const char *type = object_get_typename(OBJECT(dev));
 | |
|     CPUArchId *core_slot;
 | |
|     int index;
 | |
|     unsigned int smp_threads = machine->smp.threads;
 | |
| 
 | |
|     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
 | |
|         error_setg(errp, "CPU hotplug not supported for this machine");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(base_core_type, type)) {
 | |
|         error_setg(errp, "CPU core type should be %s", base_core_type);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (cc->core_id % smp_threads) {
 | |
|         error_setg(errp, "invalid core id %d", cc->core_id);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In general we should have homogeneous threads-per-core, but old
 | |
|      * (pre hotplug support) machine types allow the last core to have
 | |
|      * reduced threads as a compatibility hack for when we allowed
 | |
|      * total vcpus not a multiple of threads-per-core.
 | |
|      */
 | |
|     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
 | |
|         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
 | |
|                    smp_threads);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
 | |
|     if (!core_slot) {
 | |
|         error_setg(errp, "core id %d out of range", cc->core_id);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (core_slot->cpu) {
 | |
|         error_setg(errp, "core %d already populated", cc->core_id);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     numa_cpu_pre_plug(core_slot, dev, errp);
 | |
| }
 | |
| 
 | |
| int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
 | |
|                           void *fdt, int *fdt_start_offset, Error **errp)
 | |
| {
 | |
|     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
 | |
|     int intc_phandle;
 | |
| 
 | |
|     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
 | |
|     if (intc_phandle <= 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
 | |
|         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* generally SLOF creates these, for hotplug it's up to QEMU */
 | |
|     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
 | |
|     SpaprDrc *drc;
 | |
| 
 | |
|     if (dev->hotplugged && !smc->dr_phb_enabled) {
 | |
|         error_setg(errp, "PHB hotplug not supported for this machine");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (sphb->index == (uint32_t)-1) {
 | |
|         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
 | |
|     if (drc && drc->dev) {
 | |
|         error_setg(errp, "PHB %d already attached", sphb->index);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * This will check that sphb->index doesn't exceed the maximum number of
 | |
|      * PHBs for the current machine type.
 | |
|      */
 | |
|     return
 | |
|         smc->phb_placement(spapr, sphb->index,
 | |
|                            &sphb->buid, &sphb->io_win_addr,
 | |
|                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
 | |
|                            windows_supported, sphb->dma_liobn,
 | |
|                            errp);
 | |
| }
 | |
| 
 | |
| static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
 | |
|     SpaprDrc *drc;
 | |
|     bool hotplugged = spapr_drc_hotplugged(dev);
 | |
| 
 | |
|     if (!smc->dr_phb_enabled) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
 | |
|     /* hotplug hooks should check it's enabled before getting this far */
 | |
|     assert(drc);
 | |
| 
 | |
|     /* spapr_phb_pre_plug() already checked the DRC is attachable */
 | |
|     spapr_drc_attach(drc, dev);
 | |
| 
 | |
|     if (hotplugged) {
 | |
|         spapr_hotplug_req_add_by_index(drc);
 | |
|     } else {
 | |
|         spapr_drc_reset(drc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void spapr_phb_release(DeviceState *dev)
 | |
| {
 | |
|     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
 | |
| 
 | |
|     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
 | |
|     object_unparent(OBJECT(dev));
 | |
| }
 | |
| 
 | |
| static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     qdev_unrealize(dev);
 | |
| }
 | |
| 
 | |
| static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
 | |
|                                      DeviceState *dev, Error **errp)
 | |
| {
 | |
|     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
 | |
|     SpaprDrc *drc;
 | |
| 
 | |
|     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
 | |
|     assert(drc);
 | |
| 
 | |
|     if (!spapr_drc_unplug_requested(drc)) {
 | |
|         spapr_drc_unplug_request(drc);
 | |
|         spapr_hotplug_req_remove_by_index(drc);
 | |
|     } else {
 | |
|         error_setg(errp,
 | |
|                    "PCI Host Bridge unplug already in progress for device %s",
 | |
|                    dev->id);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static
 | |
| bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                               Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
| 
 | |
|     if (spapr->tpm_proxy != NULL) {
 | |
|         error_setg(errp, "Only one TPM proxy can be specified for this machine");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
 | |
| 
 | |
|     /* Already checked in spapr_tpm_proxy_pre_plug() */
 | |
|     g_assert(spapr->tpm_proxy == NULL);
 | |
| 
 | |
|     spapr->tpm_proxy = tpm_proxy;
 | |
| }
 | |
| 
 | |
| static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
| 
 | |
|     qdev_unrealize(dev);
 | |
|     object_unparent(OBJECT(dev));
 | |
|     spapr->tpm_proxy = NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
 | |
|                                       DeviceState *dev, Error **errp)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         spapr_memory_plug(hotplug_dev, dev);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         spapr_core_plug(hotplug_dev, dev);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
 | |
|         spapr_phb_plug(hotplug_dev, dev);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
 | |
|         spapr_tpm_proxy_plug(hotplug_dev, dev);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
 | |
|                                         DeviceState *dev, Error **errp)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         spapr_memory_unplug(hotplug_dev, dev);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         spapr_core_unplug(hotplug_dev, dev);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
 | |
|         spapr_phb_unplug(hotplug_dev, dev);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
 | |
|         spapr_tpm_proxy_unplug(hotplug_dev, dev);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
 | |
| {
 | |
|     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
 | |
|         /*
 | |
|          * CAS will process all pending unplug requests.
 | |
|          *
 | |
|          * HACK: a guest could theoretically have cleared all bits in OV5,
 | |
|          * but none of the guests we care for do.
 | |
|          */
 | |
|         spapr_ovec_empty(spapr->ov5_cas);
 | |
| }
 | |
| 
 | |
| static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
 | |
|                                                 DeviceState *dev, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(sms);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         if (spapr_memory_hot_unplug_supported(sms)) {
 | |
|             spapr_memory_unplug_request(hotplug_dev, dev, errp);
 | |
|         } else {
 | |
|             error_setg(errp, "Memory hot unplug not supported for this guest");
 | |
|         }
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         if (!mc->has_hotpluggable_cpus) {
 | |
|             error_setg(errp, "CPU hot unplug not supported on this machine");
 | |
|             return;
 | |
|         }
 | |
|         spapr_core_unplug_request(hotplug_dev, dev, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
 | |
|         if (!smc->dr_phb_enabled) {
 | |
|             error_setg(errp, "PHB hot unplug not supported on this machine");
 | |
|             return;
 | |
|         }
 | |
|         spapr_phb_unplug_request(hotplug_dev, dev, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
 | |
|         spapr_tpm_proxy_unplug(hotplug_dev, dev);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
 | |
|                                           DeviceState *dev, Error **errp)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         spapr_memory_pre_plug(hotplug_dev, dev, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
 | |
|         spapr_core_pre_plug(hotplug_dev, dev, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
 | |
|         spapr_phb_pre_plug(hotplug_dev, dev, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
 | |
|         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
 | |
|                                                  DeviceState *dev)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
 | |
|         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
 | |
|         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
 | |
|         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
 | |
|         return HOTPLUG_HANDLER(machine);
 | |
|     }
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
 | |
|         PCIDevice *pcidev = PCI_DEVICE(dev);
 | |
|         PCIBus *root = pci_device_root_bus(pcidev);
 | |
|         SpaprPhbState *phb =
 | |
|             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
 | |
|                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
 | |
| 
 | |
|         if (phb) {
 | |
|             return HOTPLUG_HANDLER(phb);
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static CpuInstanceProperties
 | |
| spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
 | |
| {
 | |
|     CPUArchId *core_slot;
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
| 
 | |
|     /* make sure possible_cpu are initialized */
 | |
|     mc->possible_cpu_arch_ids(machine);
 | |
|     /* get CPU core slot containing thread that matches cpu_index */
 | |
|     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
 | |
|     assert(core_slot);
 | |
|     return core_slot->props;
 | |
| }
 | |
| 
 | |
| static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
 | |
| {
 | |
|     return idx / ms->smp.cores % ms->numa_state->num_nodes;
 | |
| }
 | |
| 
 | |
| static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
 | |
| {
 | |
|     int i;
 | |
|     unsigned int smp_threads = machine->smp.threads;
 | |
|     unsigned int smp_cpus = machine->smp.cpus;
 | |
|     const char *core_type;
 | |
|     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
| 
 | |
|     if (!mc->has_hotpluggable_cpus) {
 | |
|         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
 | |
|     }
 | |
|     if (machine->possible_cpus) {
 | |
|         assert(machine->possible_cpus->len == spapr_max_cores);
 | |
|         return machine->possible_cpus;
 | |
|     }
 | |
| 
 | |
|     core_type = spapr_get_cpu_core_type(machine->cpu_type);
 | |
|     if (!core_type) {
 | |
|         error_report("Unable to find sPAPR CPU Core definition");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 | |
|                              sizeof(CPUArchId) * spapr_max_cores);
 | |
|     machine->possible_cpus->len = spapr_max_cores;
 | |
|     for (i = 0; i < machine->possible_cpus->len; i++) {
 | |
|         int core_id = i * smp_threads;
 | |
| 
 | |
|         machine->possible_cpus->cpus[i].type = core_type;
 | |
|         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
 | |
|         machine->possible_cpus->cpus[i].arch_id = core_id;
 | |
|         machine->possible_cpus->cpus[i].props.has_core_id = true;
 | |
|         machine->possible_cpus->cpus[i].props.core_id = core_id;
 | |
|     }
 | |
|     return machine->possible_cpus;
 | |
| }
 | |
| 
 | |
| static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
 | |
|                                 uint64_t *buid, hwaddr *pio,
 | |
|                                 hwaddr *mmio32, hwaddr *mmio64,
 | |
|                                 unsigned n_dma, uint32_t *liobns, Error **errp)
 | |
| {
 | |
|     /*
 | |
|      * New-style PHB window placement.
 | |
|      *
 | |
|      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
 | |
|      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
 | |
|      * windows.
 | |
|      *
 | |
|      * Some guest kernels can't work with MMIO windows above 1<<46
 | |
|      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
 | |
|      *
 | |
|      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
 | |
|      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
 | |
|      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
 | |
|      * 1TiB 64-bit MMIO windows for each PHB.
 | |
|      */
 | |
|     const uint64_t base_buid = 0x800000020000000ULL;
 | |
|     int i;
 | |
| 
 | |
|     /* Sanity check natural alignments */
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
 | |
|     /* Sanity check bounds */
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
 | |
|                       SPAPR_PCI_MEM32_WIN_SIZE);
 | |
|     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
 | |
|                       SPAPR_PCI_MEM64_WIN_SIZE);
 | |
| 
 | |
|     if (index >= SPAPR_MAX_PHBS) {
 | |
|         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
 | |
|                    SPAPR_MAX_PHBS - 1);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     *buid = base_buid + index;
 | |
|     for (i = 0; i < n_dma; ++i) {
 | |
|         liobns[i] = SPAPR_PCI_LIOBN(index, i);
 | |
|     }
 | |
| 
 | |
|     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
 | |
|     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
 | |
|     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
 | |
| 
 | |
|     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_ics_resend(XICSFabric *dev)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
 | |
| 
 | |
|     ics_resend(spapr->ics);
 | |
| }
 | |
| 
 | |
| static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
 | |
| {
 | |
|     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
 | |
| 
 | |
|     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_pic_print_info(InterruptStatsProvider *obj,
 | |
|                                  Monitor *mon)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
 | |
| 
 | |
|     spapr_irq_print_info(spapr, mon);
 | |
|     monitor_printf(mon, "irqchip: %s\n",
 | |
|                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a XIVE only operation
 | |
|  */
 | |
| static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
 | |
|                            uint8_t nvt_blk, uint32_t nvt_idx,
 | |
|                            bool cam_ignore, uint8_t priority,
 | |
|                            uint32_t logic_serv, XiveTCTXMatch *match)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
 | |
|     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
 | |
|     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
 | |
|     int count;
 | |
| 
 | |
|     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
 | |
|                            priority, logic_serv, match);
 | |
|     if (count < 0) {
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When we implement the save and restore of the thread interrupt
 | |
|      * contexts in the enter/exit CPU handlers of the machine and the
 | |
|      * escalations in QEMU, we should be able to handle non dispatched
 | |
|      * vCPUs.
 | |
|      *
 | |
|      * Until this is done, the sPAPR machine should find at least one
 | |
|      * matching context always.
 | |
|      */
 | |
|     if (count == 0) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
 | |
|                       nvt_blk, nvt_idx);
 | |
|     }
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| int spapr_get_vcpu_id(PowerPCCPU *cpu)
 | |
| {
 | |
|     return cpu->vcpu_id;
 | |
| }
 | |
| 
 | |
| bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
 | |
| {
 | |
|     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     int vcpu_id;
 | |
| 
 | |
|     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
 | |
| 
 | |
|     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
 | |
|         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
 | |
|         error_append_hint(errp, "Adjust the number of cpus to %d "
 | |
|                           "or try to raise the number of threads per core\n",
 | |
|                           vcpu_id * ms->smp.threads / spapr->vsmt);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     cpu->vcpu_id = vcpu_id;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| PowerPCCPU *spapr_find_cpu(int vcpu_id)
 | |
| {
 | |
|     CPUState *cs;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
| 
 | |
|         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
 | |
|             return cpu;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
 | |
| {
 | |
|     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     return spapr_cpu->in_nested;
 | |
| }
 | |
| 
 | |
| static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
 | |
| {
 | |
|     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     /* These are only called by TCG, KVM maintains dispatch state */
 | |
| 
 | |
|     spapr_cpu->prod = false;
 | |
|     if (spapr_cpu->vpa_addr) {
 | |
|         CPUState *cs = CPU(cpu);
 | |
|         uint32_t dispatch;
 | |
| 
 | |
|         dispatch = ldl_be_phys(cs->as,
 | |
|                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
 | |
|         dispatch++;
 | |
|         if ((dispatch & 1) != 0) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "VPA: incorrect dispatch counter value for "
 | |
|                           "dispatched partition %u, correcting.\n", dispatch);
 | |
|             dispatch++;
 | |
|         }
 | |
|         stl_be_phys(cs->as,
 | |
|                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
 | |
| {
 | |
|     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     if (spapr_cpu->vpa_addr) {
 | |
|         CPUState *cs = CPU(cpu);
 | |
|         uint32_t dispatch;
 | |
| 
 | |
|         dispatch = ldl_be_phys(cs->as,
 | |
|                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
 | |
|         dispatch++;
 | |
|         if ((dispatch & 1) != 1) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "VPA: incorrect dispatch counter value for "
 | |
|                           "preempted partition %u, correcting.\n", dispatch);
 | |
|             dispatch++;
 | |
|         }
 | |
|         stl_be_phys(cs->as,
 | |
|                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_machine_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_CLASS(oc);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
 | |
|     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
 | |
|     NMIClass *nc = NMI_CLASS(oc);
 | |
|     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
 | |
|     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
 | |
|     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
 | |
|     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
 | |
|     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
 | |
|     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
 | |
| 
 | |
|     mc->desc = "pSeries Logical Partition (PAPR compliant)";
 | |
|     mc->ignore_boot_device_suffixes = true;
 | |
| 
 | |
|     /*
 | |
|      * We set up the default / latest behaviour here.  The class_init
 | |
|      * functions for the specific versioned machine types can override
 | |
|      * these details for backwards compatibility
 | |
|      */
 | |
|     mc->init = spapr_machine_init;
 | |
|     mc->reset = spapr_machine_reset;
 | |
|     mc->block_default_type = IF_SCSI;
 | |
| 
 | |
|     /*
 | |
|      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
 | |
|      * should be limited by the host capability instead of hardcoded.
 | |
|      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
 | |
|      * guests are welcome to have as many CPUs as the host are capable
 | |
|      * of emulate.
 | |
|      */
 | |
|     mc->max_cpus = INT32_MAX;
 | |
| 
 | |
|     mc->no_parallel = 1;
 | |
|     mc->default_boot_order = "";
 | |
|     mc->default_ram_size = 512 * MiB;
 | |
|     mc->default_ram_id = "ppc_spapr.ram";
 | |
|     mc->default_display = "std";
 | |
|     mc->kvm_type = spapr_kvm_type;
 | |
|     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
 | |
|     mc->pci_allow_0_address = true;
 | |
|     assert(!mc->get_hotplug_handler);
 | |
|     mc->get_hotplug_handler = spapr_get_hotplug_handler;
 | |
|     hc->pre_plug = spapr_machine_device_pre_plug;
 | |
|     hc->plug = spapr_machine_device_plug;
 | |
|     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
 | |
|     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
 | |
|     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
 | |
|     hc->unplug_request = spapr_machine_device_unplug_request;
 | |
|     hc->unplug = spapr_machine_device_unplug;
 | |
| 
 | |
|     smc->dr_lmb_enabled = true;
 | |
|     smc->update_dt_enabled = true;
 | |
|     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
 | |
|     mc->has_hotpluggable_cpus = true;
 | |
|     mc->nvdimm_supported = true;
 | |
|     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
 | |
|     fwc->get_dev_path = spapr_get_fw_dev_path;
 | |
|     nc->nmi_monitor_handler = spapr_nmi;
 | |
|     smc->phb_placement = spapr_phb_placement;
 | |
|     vhc->cpu_in_nested = spapr_cpu_in_nested;
 | |
|     vhc->deliver_hv_excp = spapr_exit_nested;
 | |
|     vhc->hypercall = emulate_spapr_hypercall;
 | |
|     vhc->hpt_mask = spapr_hpt_mask;
 | |
|     vhc->map_hptes = spapr_map_hptes;
 | |
|     vhc->unmap_hptes = spapr_unmap_hptes;
 | |
|     vhc->hpte_set_c = spapr_hpte_set_c;
 | |
|     vhc->hpte_set_r = spapr_hpte_set_r;
 | |
|     vhc->get_pate = spapr_get_pate;
 | |
|     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
 | |
|     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
 | |
|     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
 | |
|     xic->ics_get = spapr_ics_get;
 | |
|     xic->ics_resend = spapr_ics_resend;
 | |
|     xic->icp_get = spapr_icp_get;
 | |
|     ispc->print_info = spapr_pic_print_info;
 | |
|     /* Force NUMA node memory size to be a multiple of
 | |
|      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
 | |
|      * in which LMBs are represented and hot-added
 | |
|      */
 | |
|     mc->numa_mem_align_shift = 28;
 | |
|     mc->auto_enable_numa = true;
 | |
| 
 | |
|     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
 | |
|     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
 | |
|     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
 | |
|     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
 | |
|     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
 | |
|     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
 | |
|     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
 | |
|     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
 | |
|     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
 | |
|     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
 | |
|     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
 | |
|     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
 | |
| 
 | |
|     /*
 | |
|      * This cap specifies whether the AIL 3 mode for
 | |
|      * H_SET_RESOURCE is supported. The default is modified
 | |
|      * by default_caps_with_cpu().
 | |
|      */
 | |
|     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
 | |
|     spapr_caps_add_properties(smc);
 | |
|     smc->irq = &spapr_irq_dual;
 | |
|     smc->dr_phb_enabled = true;
 | |
|     smc->linux_pci_probe = true;
 | |
|     smc->smp_threads_vsmt = true;
 | |
|     smc->nr_xirqs = SPAPR_NR_XIRQS;
 | |
|     xfc->match_nvt = spapr_match_nvt;
 | |
|     vmc->client_architecture_support = spapr_vof_client_architecture_support;
 | |
|     vmc->quiesce = spapr_vof_quiesce;
 | |
|     vmc->setprop = spapr_vof_setprop;
 | |
| }
 | |
| 
 | |
| static const TypeInfo spapr_machine_info = {
 | |
|     .name          = TYPE_SPAPR_MACHINE,
 | |
|     .parent        = TYPE_MACHINE,
 | |
|     .abstract      = true,
 | |
|     .instance_size = sizeof(SpaprMachineState),
 | |
|     .instance_init = spapr_instance_init,
 | |
|     .instance_finalize = spapr_machine_finalizefn,
 | |
|     .class_size    = sizeof(SpaprMachineClass),
 | |
|     .class_init    = spapr_machine_class_init,
 | |
|     .interfaces = (InterfaceInfo[]) {
 | |
|         { TYPE_FW_PATH_PROVIDER },
 | |
|         { TYPE_NMI },
 | |
|         { TYPE_HOTPLUG_HANDLER },
 | |
|         { TYPE_PPC_VIRTUAL_HYPERVISOR },
 | |
|         { TYPE_XICS_FABRIC },
 | |
|         { TYPE_INTERRUPT_STATS_PROVIDER },
 | |
|         { TYPE_XIVE_FABRIC },
 | |
|         { TYPE_VOF_MACHINE_IF },
 | |
|         { }
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void spapr_machine_latest_class_options(MachineClass *mc)
 | |
| {
 | |
|     mc->alias = "pseries";
 | |
|     mc->is_default = true;
 | |
| }
 | |
| 
 | |
| #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
 | |
|     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
 | |
|                                                     void *data)      \
 | |
|     {                                                                \
 | |
|         MachineClass *mc = MACHINE_CLASS(oc);                        \
 | |
|         spapr_machine_##suffix##_class_options(mc);                  \
 | |
|         if (latest) {                                                \
 | |
|             spapr_machine_latest_class_options(mc);                  \
 | |
|         }                                                            \
 | |
|     }                                                                \
 | |
|     static const TypeInfo spapr_machine_##suffix##_info = {          \
 | |
|         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
 | |
|         .parent = TYPE_SPAPR_MACHINE,                                \
 | |
|         .class_init = spapr_machine_##suffix##_class_init,           \
 | |
|     };                                                               \
 | |
|     static void spapr_machine_register_##suffix(void)                \
 | |
|     {                                                                \
 | |
|         type_register(&spapr_machine_##suffix##_info);               \
 | |
|     }                                                                \
 | |
|     type_init(spapr_machine_register_##suffix)
 | |
| 
 | |
| /*
 | |
|  * pseries-9.0
 | |
|  */
 | |
| static void spapr_machine_9_0_class_options(MachineClass *mc)
 | |
| {
 | |
|     /* Defaults for the latest behaviour inherited from the base class */
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(9_0, "9.0", true);
 | |
| 
 | |
| /*
 | |
|  * pseries-8.2
 | |
|  */
 | |
| static void spapr_machine_8_2_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_9_0_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(8_2, "8.2", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-8.1
 | |
|  */
 | |
| static void spapr_machine_8_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_8_2_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-8.0
 | |
|  */
 | |
| static void spapr_machine_8_0_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_8_1_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-7.2
 | |
|  */
 | |
| static void spapr_machine_7_2_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_8_0_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-7.1
 | |
|  */
 | |
| static void spapr_machine_7_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_7_2_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-7.0
 | |
|  */
 | |
| static void spapr_machine_7_0_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_7_1_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-6.2
 | |
|  */
 | |
| static void spapr_machine_6_2_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_7_0_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-6.1
 | |
|  */
 | |
| static void spapr_machine_6_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_6_2_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
 | |
|     smc->pre_6_2_numa_affinity = true;
 | |
|     mc->smp_props.prefer_sockets = true;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-6.0
 | |
|  */
 | |
| static void spapr_machine_6_0_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_6_1_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-5.2
 | |
|  */
 | |
| static void spapr_machine_5_2_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_6_0_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-5.1
 | |
|  */
 | |
| static void spapr_machine_5_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_5_2_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
 | |
|     smc->pre_5_2_numa_associativity = true;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-5.0
 | |
|  */
 | |
| static void spapr_machine_5_0_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     static GlobalProperty compat[] = {
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_5_1_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
|     mc->numa_mem_supported = true;
 | |
|     smc->pre_5_1_assoc_refpoints = true;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-4.2
 | |
|  */
 | |
| static void spapr_machine_4_2_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_5_0_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
 | |
|     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
 | |
|     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
 | |
|     smc->rma_limit = 16 * GiB;
 | |
|     mc->nvdimm_supported = false;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-4.1
 | |
|  */
 | |
| static void spapr_machine_4_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     static GlobalProperty compat[] = {
 | |
|         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_4_2_class_options(mc);
 | |
|     smc->linux_pci_probe = false;
 | |
|     smc->smp_threads_vsmt = false;
 | |
|     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-4.0
 | |
|  */
 | |
| static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
 | |
|                               uint64_t *buid, hwaddr *pio,
 | |
|                               hwaddr *mmio32, hwaddr *mmio64,
 | |
|                               unsigned n_dma, uint32_t *liobns, Error **errp)
 | |
| {
 | |
|     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
 | |
|                              liobns, errp)) {
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| static void spapr_machine_4_0_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_4_1_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
 | |
|     smc->phb_placement = phb_placement_4_0;
 | |
|     smc->irq = &spapr_irq_xics;
 | |
|     smc->pre_4_1_migration = true;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-3.1
 | |
|  */
 | |
| static void spapr_machine_3_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_4_0_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
 | |
| 
 | |
|     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
 | |
|     smc->update_dt_enabled = false;
 | |
|     smc->dr_phb_enabled = false;
 | |
|     smc->broken_host_serial_model = true;
 | |
|     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
 | |
|     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
 | |
|     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
 | |
|     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-3.0
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_3_0_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_3_1_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
 | |
| 
 | |
|     smc->legacy_irq_allocation = true;
 | |
|     smc->nr_xirqs = 0x400;
 | |
|     smc->irq = &spapr_irq_xics_legacy;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.12
 | |
|  */
 | |
| static void spapr_machine_2_12_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     static GlobalProperty compat[] = {
 | |
|         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
 | |
|         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_3_0_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
| 
 | |
|     /* We depend on kvm_enabled() to choose a default value for the
 | |
|      * hpt-max-page-size capability. Of course we can't do it here
 | |
|      * because this is too early and the HW accelerator isn't initialized
 | |
|      * yet. Postpone this to machine init (see default_caps_with_cpu()).
 | |
|      */
 | |
|     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
 | |
| 
 | |
| static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_2_12_class_options(mc);
 | |
|     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
 | |
|     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
 | |
|     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.11
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_11_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_2_12_class_options(mc);
 | |
|     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.10
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_10_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_11_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.9
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_9_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     static GlobalProperty compat[] = {
 | |
|         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_2_10_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
|     smc->pre_2_10_has_unused_icps = true;
 | |
|     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.8
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_8_class_options(MachineClass *mc)
 | |
| {
 | |
|     static GlobalProperty compat[] = {
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_2_9_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
|     mc->numa_mem_align_shift = 23;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.7
 | |
|  */
 | |
| 
 | |
| static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
 | |
|                               uint64_t *buid, hwaddr *pio,
 | |
|                               hwaddr *mmio32, hwaddr *mmio64,
 | |
|                               unsigned n_dma, uint32_t *liobns, Error **errp)
 | |
| {
 | |
|     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
 | |
|     const uint64_t base_buid = 0x800000020000000ULL;
 | |
|     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
 | |
|     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
 | |
|     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
 | |
|     const uint32_t max_index = 255;
 | |
|     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
 | |
| 
 | |
|     uint64_t ram_top = MACHINE(spapr)->ram_size;
 | |
|     hwaddr phb0_base, phb_base;
 | |
|     int i;
 | |
| 
 | |
|     /* Do we have device memory? */
 | |
|     if (MACHINE(spapr)->device_memory) {
 | |
|         /* Can't just use maxram_size, because there may be an
 | |
|          * alignment gap between normal and device memory regions
 | |
|          */
 | |
|         ram_top = MACHINE(spapr)->device_memory->base +
 | |
|             memory_region_size(&MACHINE(spapr)->device_memory->mr);
 | |
|     }
 | |
| 
 | |
|     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
 | |
| 
 | |
|     if (index > max_index) {
 | |
|         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
 | |
|                    max_index);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     *buid = base_buid + index;
 | |
|     for (i = 0; i < n_dma; ++i) {
 | |
|         liobns[i] = SPAPR_PCI_LIOBN(index, i);
 | |
|     }
 | |
| 
 | |
|     phb_base = phb0_base + index * phb_spacing;
 | |
|     *pio = phb_base + pio_offset;
 | |
|     *mmio32 = phb_base + mmio_offset;
 | |
|     /*
 | |
|      * We don't set the 64-bit MMIO window, relying on the PHB's
 | |
|      * fallback behaviour of automatically splitting a large "32-bit"
 | |
|      * window into contiguous 32-bit and 64-bit windows
 | |
|      */
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void spapr_machine_2_7_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     static GlobalProperty compat[] = {
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
 | |
|         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_2_8_class_options(mc);
 | |
|     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
 | |
|     mc->default_machine_opts = "modern-hotplug-events=off";
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
|     smc->phb_placement = phb_placement_2_7;
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.6
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_6_class_options(MachineClass *mc)
 | |
| {
 | |
|     static GlobalProperty compat[] = {
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_2_7_class_options(mc);
 | |
|     mc->has_hotpluggable_cpus = false;
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.5
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_5_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
|     static GlobalProperty compat[] = {
 | |
|         { "spapr-vlan", "use-rx-buffer-pools", "off" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_2_6_class_options(mc);
 | |
|     smc->use_ohci_by_default = true;
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.4
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_4_class_options(MachineClass *mc)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
 | |
| 
 | |
|     spapr_machine_2_5_class_options(mc);
 | |
|     smc->dr_lmb_enabled = false;
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
 | |
| }
 | |
| 
 | |
| DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.3
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_3_class_options(MachineClass *mc)
 | |
| {
 | |
|     static GlobalProperty compat[] = {
 | |
|         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
 | |
|     };
 | |
|     spapr_machine_2_4_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
| }
 | |
| DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.2
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_2_class_options(MachineClass *mc)
 | |
| {
 | |
|     static GlobalProperty compat[] = {
 | |
|         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
 | |
|     };
 | |
| 
 | |
|     spapr_machine_2_3_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
 | |
|     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
 | |
|     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
 | |
| }
 | |
| DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
 | |
| 
 | |
| /*
 | |
|  * pseries-2.1
 | |
|  */
 | |
| 
 | |
| static void spapr_machine_2_1_class_options(MachineClass *mc)
 | |
| {
 | |
|     spapr_machine_2_2_class_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
 | |
| }
 | |
| DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
 | |
| 
 | |
| static void spapr_machine_register_types(void)
 | |
| {
 | |
|     type_register_static(&spapr_machine_info);
 | |
| }
 | |
| 
 | |
| type_init(spapr_machine_register_types)
 |