Per the 'ARM MPS2 and MPS2+ FPGA Prototyping Boards Technical
Reference Manual' (100112_0200_07_en):
  2.1  Overview of the MPS2 and MPS2+ hardware
       The MPS2 and MPS2+ FPGA Prototyping Boards contain the
       following components and interfaces:
       * User switches and user LEDs:
         - Two green LEDs and two push buttons that connect to
           the FPGA.
         - Eight green LEDs and one 8-way dip switch that connect
           to the MCC.
Add the 2 LEDs connected to the FPGA.
This replaces the 'mps2_fpgaio_leds' trace events by the generic
'led_set_intensity' event.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc.michel@greensocs.com>
Message-Id: <20200912134041.946260-6-f4bug@amsat.org>
		
	
			
		
			
				
	
	
		
			333 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ARM MPS2 AN505 FPGAIO emulation
 | 
						|
 *
 | 
						|
 * Copyright (c) 2018 Linaro Limited
 | 
						|
 * Written by Peter Maydell
 | 
						|
 *
 | 
						|
 *  This program is free software; you can redistribute it and/or modify
 | 
						|
 *  it under the terms of the GNU General Public License version 2 or
 | 
						|
 *  (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
/* This is a model of the "FPGA system control and I/O" block found
 | 
						|
 * in the AN505 FPGA image for the MPS2 devboard.
 | 
						|
 * It is documented in AN505:
 | 
						|
 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu/log.h"
 | 
						|
#include "qemu/module.h"
 | 
						|
#include "qapi/error.h"
 | 
						|
#include "trace.h"
 | 
						|
#include "hw/sysbus.h"
 | 
						|
#include "migration/vmstate.h"
 | 
						|
#include "hw/registerfields.h"
 | 
						|
#include "hw/misc/mps2-fpgaio.h"
 | 
						|
#include "hw/misc/led.h"
 | 
						|
#include "hw/qdev-properties.h"
 | 
						|
#include "qemu/timer.h"
 | 
						|
 | 
						|
REG32(LED0, 0)
 | 
						|
REG32(BUTTON, 8)
 | 
						|
REG32(CLK1HZ, 0x10)
 | 
						|
REG32(CLK100HZ, 0x14)
 | 
						|
REG32(COUNTER, 0x18)
 | 
						|
REG32(PRESCALE, 0x1c)
 | 
						|
REG32(PSCNTR, 0x20)
 | 
						|
REG32(MISC, 0x4c)
 | 
						|
 | 
						|
static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
 | 
						|
{
 | 
						|
    return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
 | 
						|
}
 | 
						|
 | 
						|
static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
 | 
						|
{
 | 
						|
    return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
 | 
						|
}
 | 
						|
 | 
						|
static void resync_counter(MPS2FPGAIO *s)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * Update s->counter and s->pscntr to their true current values
 | 
						|
     * by calculating how many times PSCNTR has ticked since the
 | 
						|
     * last time we did a resync.
 | 
						|
     */
 | 
						|
    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
    int64_t elapsed = now - s->pscntr_sync_ticks;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Round elapsed down to a whole number of PSCNTR ticks, so we don't
 | 
						|
     * lose time if we do multiple resyncs in a single tick.
 | 
						|
     */
 | 
						|
    uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Work out what PSCNTR and COUNTER have moved to. We assume that
 | 
						|
     * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
 | 
						|
     * and that COUNTER increments at the same moment.
 | 
						|
     */
 | 
						|
    if (ticks == 0) {
 | 
						|
        /* We haven't ticked since the last time we were asked */
 | 
						|
        return;
 | 
						|
    } else if (ticks < s->pscntr) {
 | 
						|
        /* We haven't yet reached zero, just reduce the PSCNTR */
 | 
						|
        s->pscntr -= ticks;
 | 
						|
    } else {
 | 
						|
        if (s->prescale == 0) {
 | 
						|
            /*
 | 
						|
             * If the reload value is zero then the PSCNTR will stick
 | 
						|
             * at zero once it reaches it, and so we will increment
 | 
						|
             * COUNTER every tick after that.
 | 
						|
             */
 | 
						|
            s->counter += ticks - s->pscntr;
 | 
						|
            s->pscntr = 0;
 | 
						|
        } else {
 | 
						|
            /*
 | 
						|
             * This is the complicated bit. This ASCII art diagram gives an
 | 
						|
             * example with PRESCALE==5 PSCNTR==7:
 | 
						|
             *
 | 
						|
             * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
 | 
						|
             * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
 | 
						|
             * cinc                           1                 2
 | 
						|
             * y            0  1  2  3  4  5  6  7  8  9 10 11 12
 | 
						|
             * x            0  1  2  3  4  5  0  1  2  3  4  5  0
 | 
						|
             *
 | 
						|
             * where x = y % (s->prescale + 1)
 | 
						|
             * and so PSCNTR = s->prescale - x
 | 
						|
             * and COUNTER is incremented by y / (s->prescale + 1)
 | 
						|
             *
 | 
						|
             * The case where PSCNTR < PRESCALE works out the same,
 | 
						|
             * though we must be careful to calculate y as 64-bit unsigned
 | 
						|
             * for all parts of the expression.
 | 
						|
             * y < 0 is not possible because that implies ticks < s->pscntr.
 | 
						|
             */
 | 
						|
            uint64_t y = ticks - s->pscntr + s->prescale;
 | 
						|
            s->pscntr = s->prescale - (y % (s->prescale + 1));
 | 
						|
            s->counter += y / (s->prescale + 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Only advance the sync time to the timestamp of the last PSCNTR tick,
 | 
						|
     * not all the way to 'now', so we don't lose time if we do multiple
 | 
						|
     * resyncs in a single tick.
 | 
						|
     */
 | 
						|
    s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
 | 
						|
                                     s->prescale_clk);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
 | 
						|
{
 | 
						|
    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 | 
						|
    uint64_t r;
 | 
						|
    int64_t now;
 | 
						|
 | 
						|
    switch (offset) {
 | 
						|
    case A_LED0:
 | 
						|
        r = s->led0;
 | 
						|
        break;
 | 
						|
    case A_BUTTON:
 | 
						|
        /* User-pressable board buttons. We don't model that, so just return
 | 
						|
         * zeroes.
 | 
						|
         */
 | 
						|
        r = 0;
 | 
						|
        break;
 | 
						|
    case A_PRESCALE:
 | 
						|
        r = s->prescale;
 | 
						|
        break;
 | 
						|
    case A_MISC:
 | 
						|
        r = s->misc;
 | 
						|
        break;
 | 
						|
    case A_CLK1HZ:
 | 
						|
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
 | 
						|
        break;
 | 
						|
    case A_CLK100HZ:
 | 
						|
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
 | 
						|
        break;
 | 
						|
    case A_COUNTER:
 | 
						|
        resync_counter(s);
 | 
						|
        r = s->counter;
 | 
						|
        break;
 | 
						|
    case A_PSCNTR:
 | 
						|
        resync_counter(s);
 | 
						|
        r = s->pscntr;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
 | 
						|
        r = 0;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    trace_mps2_fpgaio_read(offset, r, size);
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
 | 
						|
                              unsigned size)
 | 
						|
{
 | 
						|
    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 | 
						|
    int64_t now;
 | 
						|
 | 
						|
    trace_mps2_fpgaio_write(offset, value, size);
 | 
						|
 | 
						|
    switch (offset) {
 | 
						|
    case A_LED0:
 | 
						|
        s->led0 = value & 0x3;
 | 
						|
        led_set_state(s->led[0], value & 0x01);
 | 
						|
        led_set_state(s->led[1], value & 0x02);
 | 
						|
        break;
 | 
						|
    case A_PRESCALE:
 | 
						|
        resync_counter(s);
 | 
						|
        s->prescale = value;
 | 
						|
        break;
 | 
						|
    case A_MISC:
 | 
						|
        /* These are control bits for some of the other devices on the
 | 
						|
         * board (SPI, CLCD, etc). We don't implement that yet, so just
 | 
						|
         * make the bits read as written.
 | 
						|
         */
 | 
						|
        qemu_log_mask(LOG_UNIMP,
 | 
						|
                      "MPS2 FPGAIO: MISC control bits unimplemented\n");
 | 
						|
        s->misc = value;
 | 
						|
        break;
 | 
						|
    case A_CLK1HZ:
 | 
						|
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
 | 
						|
        break;
 | 
						|
    case A_CLK100HZ:
 | 
						|
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
 | 
						|
        break;
 | 
						|
    case A_COUNTER:
 | 
						|
        resync_counter(s);
 | 
						|
        s->counter = value;
 | 
						|
        break;
 | 
						|
    case A_PSCNTR:
 | 
						|
        resync_counter(s);
 | 
						|
        s->pscntr = value;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps mps2_fpgaio_ops = {
 | 
						|
    .read = mps2_fpgaio_read,
 | 
						|
    .write = mps2_fpgaio_write,
 | 
						|
    .endianness = DEVICE_LITTLE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static void mps2_fpgaio_reset(DeviceState *dev)
 | 
						|
{
 | 
						|
    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
 | 
						|
    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
 | 
						|
    trace_mps2_fpgaio_reset();
 | 
						|
    s->led0 = 0;
 | 
						|
    s->prescale = 0;
 | 
						|
    s->misc = 0;
 | 
						|
    s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
 | 
						|
    s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
 | 
						|
    s->counter = 0;
 | 
						|
    s->pscntr = 0;
 | 
						|
    s->pscntr_sync_ticks = now;
 | 
						|
 | 
						|
    for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
 | 
						|
        device_cold_reset(DEVICE(s->led[i]));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void mps2_fpgaio_init(Object *obj)
 | 
						|
{
 | 
						|
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 | 
						|
    MPS2FPGAIO *s = MPS2_FPGAIO(obj);
 | 
						|
 | 
						|
    memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
 | 
						|
                          "mps2-fpgaio", 0x1000);
 | 
						|
    sysbus_init_mmio(sbd, &s->iomem);
 | 
						|
}
 | 
						|
 | 
						|
static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
 | 
						|
{
 | 
						|
    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
 | 
						|
 | 
						|
    s->led[0] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
 | 
						|
                                  LED_COLOR_GREEN, "USERLED0");
 | 
						|
    s->led[1] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
 | 
						|
                                  LED_COLOR_GREEN, "USERLED1");
 | 
						|
}
 | 
						|
 | 
						|
static bool mps2_fpgaio_counters_needed(void *opaque)
 | 
						|
{
 | 
						|
    /* Currently vmstate.c insists all subsections have a 'needed' function */
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static const VMStateDescription mps2_fpgaio_counters_vmstate = {
 | 
						|
    .name = "mps2-fpgaio/counters",
 | 
						|
    .version_id = 2,
 | 
						|
    .minimum_version_id = 2,
 | 
						|
    .needed = mps2_fpgaio_counters_needed,
 | 
						|
    .fields = (VMStateField[]) {
 | 
						|
        VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
 | 
						|
        VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
 | 
						|
        VMSTATE_UINT32(counter, MPS2FPGAIO),
 | 
						|
        VMSTATE_UINT32(pscntr, MPS2FPGAIO),
 | 
						|
        VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
static const VMStateDescription mps2_fpgaio_vmstate = {
 | 
						|
    .name = "mps2-fpgaio",
 | 
						|
    .version_id = 1,
 | 
						|
    .minimum_version_id = 1,
 | 
						|
    .fields = (VMStateField[]) {
 | 
						|
        VMSTATE_UINT32(led0, MPS2FPGAIO),
 | 
						|
        VMSTATE_UINT32(prescale, MPS2FPGAIO),
 | 
						|
        VMSTATE_UINT32(misc, MPS2FPGAIO),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    },
 | 
						|
    .subsections = (const VMStateDescription*[]) {
 | 
						|
        &mps2_fpgaio_counters_vmstate,
 | 
						|
        NULL
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
static Property mps2_fpgaio_properties[] = {
 | 
						|
    /* Frequency of the prescale counter */
 | 
						|
    DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
 | 
						|
    DEFINE_PROP_END_OF_LIST(),
 | 
						|
};
 | 
						|
 | 
						|
static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
 | 
						|
{
 | 
						|
    DeviceClass *dc = DEVICE_CLASS(klass);
 | 
						|
 | 
						|
    dc->vmsd = &mps2_fpgaio_vmstate;
 | 
						|
    dc->realize = mps2_fpgaio_realize;
 | 
						|
    dc->reset = mps2_fpgaio_reset;
 | 
						|
    device_class_set_props(dc, mps2_fpgaio_properties);
 | 
						|
}
 | 
						|
 | 
						|
static const TypeInfo mps2_fpgaio_info = {
 | 
						|
    .name = TYPE_MPS2_FPGAIO,
 | 
						|
    .parent = TYPE_SYS_BUS_DEVICE,
 | 
						|
    .instance_size = sizeof(MPS2FPGAIO),
 | 
						|
    .instance_init = mps2_fpgaio_init,
 | 
						|
    .class_init = mps2_fpgaio_class_init,
 | 
						|
};
 | 
						|
 | 
						|
static void mps2_fpgaio_register_types(void)
 | 
						|
{
 | 
						|
    type_register_static(&mps2_fpgaio_info);
 | 
						|
}
 | 
						|
 | 
						|
type_init(mps2_fpgaio_register_types);
 |