 eb1b7c4bd4
			
		
	
	
		eb1b7c4bd4
		
	
	
	
	
		
			
			There is no strong requirement that the size has to be multiples of the requested alignment, let's drop it. This is a preparation for hv-baloon. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
		
			
				
	
	
		
			552 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			552 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Memory Device Interface
 | |
|  *
 | |
|  * Copyright ProfitBricks GmbH 2012
 | |
|  * Copyright (C) 2014 Red Hat Inc
 | |
|  * Copyright (c) 2018 Red Hat Inc
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "hw/mem/memory-device.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/boards.h"
 | |
| #include "qemu/range.h"
 | |
| #include "hw/virtio/vhost.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| static bool memory_device_is_empty(const MemoryDeviceState *md)
 | |
| {
 | |
|     const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 | |
|     Error *local_err = NULL;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     /* dropping const here is fine as we don't touch the memory region */
 | |
|     mr = mdc->get_memory_region((MemoryDeviceState *)md, &local_err);
 | |
|     if (local_err) {
 | |
|         /* Not empty, we'll report errors later when ontaining the MR again. */
 | |
|         error_free(local_err);
 | |
|         return false;
 | |
|     }
 | |
|     return !mr;
 | |
| }
 | |
| 
 | |
| static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
 | |
| {
 | |
|     const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
 | |
|     const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
 | |
|     const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
 | |
|     const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
 | |
|     const uint64_t addr_a = mdc_a->get_addr(md_a);
 | |
|     const uint64_t addr_b = mdc_b->get_addr(md_b);
 | |
| 
 | |
|     if (addr_a > addr_b) {
 | |
|         return 1;
 | |
|     } else if (addr_a < addr_b) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int memory_device_build_list(Object *obj, void *opaque)
 | |
| {
 | |
|     GSList **list = opaque;
 | |
| 
 | |
|     if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
 | |
|         DeviceState *dev = DEVICE(obj);
 | |
|         if (dev->realized) { /* only realized memory devices matter */
 | |
|             *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     object_child_foreach(obj, memory_device_build_list, opaque);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int memory_device_get_memslots(MemoryDeviceState *md)
 | |
| {
 | |
|     const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 | |
| 
 | |
|     if (mdc->get_memslots) {
 | |
|         return mdc->get_memslots(md);
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memslots that are reserved by memory devices (required but still reported
 | |
|  * as free from KVM / vhost).
 | |
|  */
 | |
| static unsigned int get_reserved_memslots(MachineState *ms)
 | |
| {
 | |
|     if (ms->device_memory->used_memslots >
 | |
|         ms->device_memory->required_memslots) {
 | |
|         /* This is unexpected, and we warned already in the memory notifier. */
 | |
|         return 0;
 | |
|     }
 | |
|     return ms->device_memory->required_memslots -
 | |
|            ms->device_memory->used_memslots;
 | |
| }
 | |
| 
 | |
| unsigned int memory_devices_get_reserved_memslots(void)
 | |
| {
 | |
|     if (!current_machine->device_memory) {
 | |
|         return 0;
 | |
|     }
 | |
|     return get_reserved_memslots(current_machine);
 | |
| }
 | |
| 
 | |
| bool memory_devices_memslot_auto_decision_active(void)
 | |
| {
 | |
|     if (!current_machine->device_memory) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return current_machine->device_memory->memslot_auto_decision_active;
 | |
| }
 | |
| 
 | |
| static unsigned int memory_device_memslot_decision_limit(MachineState *ms,
 | |
|                                                          MemoryRegion *mr)
 | |
| {
 | |
|     const unsigned int reserved = get_reserved_memslots(ms);
 | |
|     const uint64_t size = memory_region_size(mr);
 | |
|     unsigned int max = vhost_get_max_memslots();
 | |
|     unsigned int free = vhost_get_free_memslots();
 | |
|     uint64_t available_space;
 | |
|     unsigned int memslots;
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         max = MIN(max, kvm_get_max_memslots());
 | |
|         free = MIN(free, kvm_get_free_memslots());
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If we only have less overall memslots than what we consider reasonable,
 | |
|      * just keep it to a minimum.
 | |
|      */
 | |
|     if (max < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Consider our soft-limit across all memory devices. We don't really
 | |
|      * expect to exceed this limit in reasonable configurations.
 | |
|      */
 | |
|     if (MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT <=
 | |
|         ms->device_memory->required_memslots) {
 | |
|         return 1;
 | |
|     }
 | |
|     memslots = MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT -
 | |
|                ms->device_memory->required_memslots;
 | |
| 
 | |
|     /*
 | |
|      * Consider the actually still free memslots. This is only relevant if
 | |
|      * other memslot consumers would consume *significantly* more memslots than
 | |
|      * what we prepared for (> 253). Unlikely, but let's just handle it
 | |
|      * cleanly.
 | |
|      */
 | |
|     memslots = MIN(memslots, free - reserved);
 | |
|     if (memslots < 1 || unlikely(free < reserved)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* We cannot have any other memory devices? So give all to this device. */
 | |
|     if (size == ms->maxram_size - ms->ram_size) {
 | |
|         return memslots;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Simple heuristic: equally distribute the memslots over the space
 | |
|      * still available for memory devices.
 | |
|      */
 | |
|     available_space = ms->maxram_size - ms->ram_size -
 | |
|                       ms->device_memory->used_region_size;
 | |
|     memslots = (double)memslots * size / available_space;
 | |
|     return memslots < 1 ? 1 : memslots;
 | |
| }
 | |
| 
 | |
| static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md,
 | |
|                                         MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 | |
|     const uint64_t used_region_size = ms->device_memory->used_region_size;
 | |
|     const uint64_t size = memory_region_size(mr);
 | |
|     const unsigned int reserved_memslots = get_reserved_memslots(ms);
 | |
|     unsigned int required_memslots, memslot_limit;
 | |
| 
 | |
|     /*
 | |
|      * Instruct the device to decide how many memslots to use, if applicable,
 | |
|      * before we query the number of required memslots the first time.
 | |
|      */
 | |
|     if (mdc->decide_memslots) {
 | |
|         memslot_limit = memory_device_memslot_decision_limit(ms, mr);
 | |
|         mdc->decide_memslots(md, memslot_limit);
 | |
|     }
 | |
|     required_memslots = memory_device_get_memslots(md);
 | |
| 
 | |
|     /* we will need memory slots for kvm and vhost */
 | |
|     if (kvm_enabled() &&
 | |
|         kvm_get_free_memslots() < required_memslots + reserved_memslots) {
 | |
|         error_setg(errp, "hypervisor has not enough free memory slots left");
 | |
|         return;
 | |
|     }
 | |
|     if (vhost_get_free_memslots() < required_memslots + reserved_memslots) {
 | |
|         error_setg(errp, "a used vhost backend has not enough free memory slots left");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* will we exceed the total amount of memory specified */
 | |
|     if (used_region_size + size < used_region_size ||
 | |
|         used_region_size + size > ms->maxram_size - ms->ram_size) {
 | |
|         error_setg(errp, "not enough space, currently 0x%" PRIx64
 | |
|                    " in use of total space for memory devices 0x" RAM_ADDR_FMT,
 | |
|                    used_region_size, ms->maxram_size - ms->ram_size);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static uint64_t memory_device_get_free_addr(MachineState *ms,
 | |
|                                             const uint64_t *hint,
 | |
|                                             uint64_t align, uint64_t size,
 | |
|                                             Error **errp)
 | |
| {
 | |
|     GSList *list = NULL, *item;
 | |
|     Range as, new = range_empty;
 | |
| 
 | |
|     range_init_nofail(&as, ms->device_memory->base,
 | |
|                       memory_region_size(&ms->device_memory->mr));
 | |
| 
 | |
|     /* start of address space indicates the maximum alignment we expect */
 | |
|     if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
 | |
|         warn_report("the alignment (0x%" PRIx64 ") exceeds the expected"
 | |
|                     " maximum alignment, memory will get fragmented and not"
 | |
|                     " all 'maxmem' might be usable for memory devices.",
 | |
|                     align);
 | |
|     }
 | |
| 
 | |
|     if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
 | |
|         error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
 | |
|                    align);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (hint) {
 | |
|         if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
 | |
|             error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
 | |
|                        "], usable range for memory devices [0x%" PRIx64 ":0x%"
 | |
|                        PRIx64 "]", *hint, size, range_lob(&as),
 | |
|                        range_size(&as));
 | |
|             return 0;
 | |
|         }
 | |
|     } else {
 | |
|         if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) {
 | |
|             error_setg(errp, "can't add memory device, device too big");
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* find address range that will fit new memory device */
 | |
|     object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
 | |
|     for (item = list; item; item = g_slist_next(item)) {
 | |
|         const MemoryDeviceState *md = item->data;
 | |
|         const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
 | |
|         uint64_t next_addr;
 | |
|         Range tmp;
 | |
| 
 | |
|         if (memory_device_is_empty(md)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         range_init_nofail(&tmp, mdc->get_addr(md),
 | |
|                           memory_device_get_region_size(md, &error_abort));
 | |
| 
 | |
|         if (range_overlaps_range(&tmp, &new)) {
 | |
|             if (hint) {
 | |
|                 const DeviceState *d = DEVICE(md);
 | |
|                 error_setg(errp, "address range conflicts with memory device"
 | |
|                            " id='%s'", d->id ? d->id : "(unnamed)");
 | |
|                 goto out;
 | |
|             }
 | |
| 
 | |
|             next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
 | |
|             if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
 | |
|                 range_make_empty(&new);
 | |
|                 break;
 | |
|             }
 | |
|         } else if (range_lob(&tmp) > range_upb(&new)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!range_contains_range(&as, &new)) {
 | |
|         error_setg(errp, "could not find position in guest address space for "
 | |
|                    "memory device - memory fragmented due to alignments");
 | |
|     }
 | |
| out:
 | |
|     g_slist_free(list);
 | |
|     return range_lob(&new);
 | |
| }
 | |
| 
 | |
| MemoryDeviceInfoList *qmp_memory_device_list(void)
 | |
| {
 | |
|     GSList *devices = NULL, *item;
 | |
|     MemoryDeviceInfoList *list = NULL, **tail = &list;
 | |
| 
 | |
|     object_child_foreach(qdev_get_machine(), memory_device_build_list,
 | |
|                          &devices);
 | |
| 
 | |
|     for (item = devices; item; item = g_slist_next(item)) {
 | |
|         const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
 | |
|         const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
 | |
|         MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
 | |
| 
 | |
|         /* Let's query infotmation even for empty memory devices. */
 | |
|         mdc->fill_device_info(md, info);
 | |
| 
 | |
|         QAPI_LIST_APPEND(tail, info);
 | |
|     }
 | |
| 
 | |
|     g_slist_free(devices);
 | |
| 
 | |
|     return list;
 | |
| }
 | |
| 
 | |
| static int memory_device_plugged_size(Object *obj, void *opaque)
 | |
| {
 | |
|     uint64_t *size = opaque;
 | |
| 
 | |
|     if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
 | |
|         const DeviceState *dev = DEVICE(obj);
 | |
|         const MemoryDeviceState *md = MEMORY_DEVICE(obj);
 | |
|         const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
 | |
| 
 | |
|         if (dev->realized && !memory_device_is_empty(md)) {
 | |
|             *size += mdc->get_plugged_size(md, &error_abort);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     object_child_foreach(obj, memory_device_plugged_size, opaque);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| uint64_t get_plugged_memory_size(void)
 | |
| {
 | |
|     uint64_t size = 0;
 | |
| 
 | |
|     memory_device_plugged_size(qdev_get_machine(), &size);
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
 | |
|                             const uint64_t *legacy_align, Error **errp)
 | |
| {
 | |
|     const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 | |
|     Error *local_err = NULL;
 | |
|     uint64_t addr, align = 0;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     /* We support empty memory devices even without device memory. */
 | |
|     if (memory_device_is_empty(md)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!ms->device_memory) {
 | |
|         error_setg(errp, "the configuration is not prepared for memory devices"
 | |
|                          " (e.g., for memory hotplug), consider specifying the"
 | |
|                          " maxmem option");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     mr = mdc->get_memory_region(md, &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     memory_device_check_addable(ms, md, mr, &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (legacy_align) {
 | |
|         align = *legacy_align;
 | |
|     } else {
 | |
|         if (mdc->get_min_alignment) {
 | |
|             align = mdc->get_min_alignment(md);
 | |
|         }
 | |
|         align = MAX(align, memory_region_get_alignment(mr));
 | |
|     }
 | |
|     addr = mdc->get_addr(md);
 | |
|     addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
 | |
|                                        memory_region_size(mr), &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
|     mdc->set_addr(md, addr, &local_err);
 | |
|     if (!local_err) {
 | |
|         trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
 | |
|                                      addr);
 | |
|     }
 | |
| out:
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
 | |
| {
 | |
|     const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 | |
|     unsigned int memslots;
 | |
|     uint64_t addr;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     if (memory_device_is_empty(md)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     memslots = memory_device_get_memslots(md);
 | |
|     addr = mdc->get_addr(md);
 | |
| 
 | |
|     /*
 | |
|      * We expect that a previous call to memory_device_pre_plug() succeeded, so
 | |
|      * it can't fail at this point.
 | |
|      */
 | |
|     mr = mdc->get_memory_region(md, &error_abort);
 | |
|     g_assert(ms->device_memory);
 | |
| 
 | |
|     ms->device_memory->used_region_size += memory_region_size(mr);
 | |
|     ms->device_memory->required_memslots += memslots;
 | |
|     if (mdc->decide_memslots && memslots > 1) {
 | |
|         ms->device_memory->memslot_auto_decision_active++;
 | |
|     }
 | |
| 
 | |
|     memory_region_add_subregion(&ms->device_memory->mr,
 | |
|                                 addr - ms->device_memory->base, mr);
 | |
|     trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
 | |
| }
 | |
| 
 | |
| void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
 | |
| {
 | |
|     const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 | |
|     const unsigned int memslots = memory_device_get_memslots(md);
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     if (memory_device_is_empty(md)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We expect that a previous call to memory_device_pre_plug() succeeded, so
 | |
|      * it can't fail at this point.
 | |
|      */
 | |
|     mr = mdc->get_memory_region(md, &error_abort);
 | |
|     g_assert(ms->device_memory);
 | |
| 
 | |
|     memory_region_del_subregion(&ms->device_memory->mr, mr);
 | |
| 
 | |
|     if (mdc->decide_memslots && memslots > 1) {
 | |
|         ms->device_memory->memslot_auto_decision_active--;
 | |
|     }
 | |
|     ms->device_memory->used_region_size -= memory_region_size(mr);
 | |
|     ms->device_memory->required_memslots -= memslots;
 | |
|     trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
 | |
|                                mdc->get_addr(md));
 | |
| }
 | |
| 
 | |
| uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
 | |
|                                        Error **errp)
 | |
| {
 | |
|     const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     /* dropping const here is fine as we don't touch the memory region */
 | |
|     mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
 | |
|     if (!mr) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return memory_region_size(mr);
 | |
| }
 | |
| 
 | |
| static void memory_devices_region_mod(MemoryListener *listener,
 | |
|                                       MemoryRegionSection *mrs, bool add)
 | |
| {
 | |
|     DeviceMemoryState *dms = container_of(listener, DeviceMemoryState,
 | |
|                                           listener);
 | |
| 
 | |
|     if (!memory_region_is_ram(mrs->mr)) {
 | |
|         warn_report("Unexpected memory region mapped into device memory region.");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The expectation is that each distinct RAM memory region section in
 | |
|      * our region for memory devices consumes exactly one memslot in KVM
 | |
|      * and in vhost. For vhost, this is true, except:
 | |
|      * * ROM memory regions don't consume a memslot. These get used very
 | |
|      *   rarely for memory devices (R/O NVDIMMs).
 | |
|      * * Memslots without a fd (memory-backend-ram) don't necessarily
 | |
|      *   consume a memslot. Such setups are quite rare and possibly bogus:
 | |
|      *   the memory would be inaccessible by such vhost devices.
 | |
|      *
 | |
|      * So for vhost, in corner cases we might over-estimate the number of
 | |
|      * memslots that are currently used or that might still be reserved
 | |
|      * (required - used).
 | |
|      */
 | |
|     dms->used_memslots += add ? 1 : -1;
 | |
| 
 | |
|     if (dms->used_memslots > dms->required_memslots) {
 | |
|         warn_report("Memory devices use more memory slots than indicated as required.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void memory_devices_region_add(MemoryListener *listener,
 | |
|                                       MemoryRegionSection *mrs)
 | |
| {
 | |
|     return memory_devices_region_mod(listener, mrs, true);
 | |
| }
 | |
| 
 | |
| static void memory_devices_region_del(MemoryListener *listener,
 | |
|                                       MemoryRegionSection *mrs)
 | |
| {
 | |
|     return memory_devices_region_mod(listener, mrs, false);
 | |
| }
 | |
| 
 | |
| void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size)
 | |
| {
 | |
|     g_assert(size);
 | |
|     g_assert(!ms->device_memory);
 | |
|     ms->device_memory = g_new0(DeviceMemoryState, 1);
 | |
|     ms->device_memory->base = base;
 | |
| 
 | |
|     memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory",
 | |
|                        size);
 | |
|     address_space_init(&ms->device_memory->as, &ms->device_memory->mr,
 | |
|                        "device-memory");
 | |
|     memory_region_add_subregion(get_system_memory(), ms->device_memory->base,
 | |
|                                 &ms->device_memory->mr);
 | |
| 
 | |
|     /* Track the number of memslots used by memory devices. */
 | |
|     ms->device_memory->listener.region_add = memory_devices_region_add;
 | |
|     ms->device_memory->listener.region_del = memory_devices_region_del;
 | |
|     memory_listener_register(&ms->device_memory->listener,
 | |
|                              &ms->device_memory->as);
 | |
| }
 | |
| 
 | |
| static const TypeInfo memory_device_info = {
 | |
|     .name          = TYPE_MEMORY_DEVICE,
 | |
|     .parent        = TYPE_INTERFACE,
 | |
|     .class_size = sizeof(MemoryDeviceClass),
 | |
| };
 | |
| 
 | |
| static void memory_device_register_types(void)
 | |
| {
 | |
|     type_register_static(&memory_device_info);
 | |
| }
 | |
| 
 | |
| type_init(memory_device_register_types)
 |