607 lines
18 KiB
Plaintext
607 lines
18 KiB
Plaintext
/*
|
|
* FreeRTOS V202111.00
|
|
* Copyright (C) Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* https://www.FreeRTOS.org
|
|
* https://github.com/FreeRTOS
|
|
*
|
|
*/
|
|
|
|
#ifndef COMMON_H
|
|
#define COMMON_H
|
|
|
|
#include <listex.gh>
|
|
|
|
fixpoint list<t> rotate_left<t>(int n, list<t> xs) {
|
|
return append(drop(n, xs), take(n, xs));
|
|
}
|
|
|
|
fixpoint list<t> singleton<t>(t x) {
|
|
return cons(x, nil);
|
|
}
|
|
|
|
lemma void note(bool b)
|
|
requires b;
|
|
ensures b;
|
|
{}
|
|
|
|
lemma_auto void rotate_length<t>(int n, list<t> xs)
|
|
requires 0 <= n && n <= length(xs);
|
|
ensures length(rotate_left(n, xs)) == length(xs);
|
|
{}
|
|
|
|
lemma void take_length_eq<t>(int k, list<t> xs, list<t> ys)
|
|
requires 0 <= k && k <= length(xs) && take(k, xs) == ys;
|
|
ensures length(ys) == k;
|
|
{}
|
|
|
|
lemma void leq_bound(int x, int b)
|
|
requires b <= x && x <= b;
|
|
ensures x == b;
|
|
{}
|
|
|
|
lemma void mul_mono_l_strict(int x, int y, int n)
|
|
requires 0 < n &*& x < y;
|
|
ensures x * n < y * n;
|
|
{
|
|
for (int i = 1; i < n; i++)
|
|
invariant i <= n &*& x * i < y * i;
|
|
decreases n - i;
|
|
{}
|
|
}
|
|
|
|
lemma void div_leq(int x, int y, int n)
|
|
requires 0 < n && x * n <= y * n;
|
|
ensures x <= y;
|
|
{
|
|
assert x * n <= y * n;
|
|
if (x <= y) {
|
|
mul_mono_l(x,y,n);
|
|
} else {
|
|
mul_mono_l_strict(y,x,n); //< contradiction
|
|
}
|
|
}
|
|
|
|
lemma void div_lt(int x, int y, int n)
|
|
requires 0 < n && x * n < y * n;
|
|
ensures x < y;
|
|
{
|
|
assert x * n <= y * n;
|
|
if (x == y) {
|
|
} else if (x <= y) {
|
|
mul_mono_l(x,y,n);
|
|
} else {
|
|
assert y < x;
|
|
mul_mono_l(y,x,n); //< contradiction
|
|
}
|
|
}
|
|
|
|
lemma_auto void mod_same(int n)
|
|
requires 0 < n;
|
|
ensures n % n == 0;
|
|
{
|
|
div_rem_nonneg(n, n);
|
|
if (n / n < 1) {} else if (n / n > 1) {
|
|
mul_mono_l(2, n/n, n);
|
|
} else {}
|
|
}
|
|
|
|
lemma void mod_lt(int x, int n)
|
|
requires 0 <= x && x < n;
|
|
ensures x % n == x;
|
|
{
|
|
div_rem_nonneg(x, n);
|
|
if (x / n > 0) {
|
|
mul_mono_l(1, x / n, n);
|
|
} else {
|
|
}
|
|
}
|
|
|
|
lemma void mod_plus_one(int x, int y, int n)
|
|
requires 0 <= y && 0 < n && x == (y % n);
|
|
ensures ((x+1) % n) == ((y+1) % n);
|
|
{
|
|
div_rem_nonneg(y, n);
|
|
div_rem_nonneg(y+1, n);
|
|
div_rem_nonneg(y%n+1, n);
|
|
if (y%n+1 < n) {
|
|
mod_lt(y%n+1, n);
|
|
assert y%n == y - y/n*n;
|
|
assert (y+1)%n == y + 1 - (y + 1)/n*n;
|
|
if ((y+1)/n > y/n) {
|
|
mul_mono_l(y/n + 1, (y+1)/n, n);
|
|
} else if ((y+1)/n < y/n) {
|
|
mul_mono_l((y+1)/n + 1, y/n, n);
|
|
}
|
|
assert y - (y+1)/n*n == y - y/n*n;
|
|
assert y+1 - (y+1)/n*n == y - y/n*n + 1;
|
|
assert (y+1)%n == y%n + 1;
|
|
} else {
|
|
assert y%n+1 == n;
|
|
assert (y%n+1)%n == 0;
|
|
if (y/n + 1 < (y+1)/n) {
|
|
mul_mono_l(y/n + 2, (y+1)/n, n);
|
|
} else if (y/n + 1 > (y+1)/n) {
|
|
mul_mono_l((y+1)/n, y/n, n);
|
|
}
|
|
assert (y+1)/n == y/n + 1;
|
|
note((y+1)/n*n == (y/n + 1)*n);
|
|
assert (y+1)%n == 0;
|
|
}
|
|
assert (y%n+1)%n == (y+1)%n;
|
|
}
|
|
|
|
lemma void mod_mul(int x, int n, int y)
|
|
requires 0 < n && 0 <= x && 0 <= y;
|
|
ensures (x*n + y)%n == y%n;
|
|
{
|
|
mul_mono_l(0, x, n);
|
|
div_rem_nonneg(x*n+y, n);
|
|
div_rem_nonneg(y, n);
|
|
|
|
if ((x*n+y)/n > x + y/n) {
|
|
mul_mono_l(x + y/n + 1, (x*n+y)/n, n);
|
|
} else if ((x*n+y)/n < x + y/n) {
|
|
mul_mono_l((x*n+y)/n + 1, x + y/n, n);
|
|
}
|
|
note((x*n + y)/n == x + y/n);
|
|
note((x*n + y)/n*n == (x + y/n)*n);
|
|
}
|
|
|
|
lemma void mod_plus_distr(int x, int y, int n)
|
|
requires 0 < n && 0 <= x && 0 <= y;
|
|
ensures ((x % n) + y) % n == (x + y) % n;
|
|
{
|
|
div_rem_nonneg(x, n);
|
|
div_rem_nonneg(x%n+y, n);
|
|
div_rem_nonneg(x+y, n);
|
|
|
|
assert x == x/n*n + x%n;
|
|
mod_mul(x/n, n, x%n + y);
|
|
}
|
|
|
|
lemma_auto void mod_mod(int x, int n)
|
|
requires 0 < n && 0 <= x;
|
|
ensures (x % n) % n == (x % n);
|
|
{
|
|
mod_plus_distr(x, 0, n);
|
|
}
|
|
|
|
lemma void mod_plus(int x, int y, int n);
|
|
requires 0 < n && 0 <= x && 0 <= y;
|
|
ensures (x + y) % n == ((x % n) + (y % n)) % n;
|
|
|
|
lemma_auto void mod_range(int x, int n)
|
|
requires 0 <= x && 0 < n;
|
|
ensures 0 <= (x % n) && (x % n) < n;
|
|
{
|
|
div_rem_nonneg(x, n);
|
|
}
|
|
|
|
lemma void head_append<t>(list<t> xs, list<t> ys)
|
|
requires 0 < length(xs);
|
|
ensures head(append(xs, ys)) == head(xs);
|
|
{
|
|
switch(xs)
|
|
{
|
|
case cons(c, cs):
|
|
case nil:
|
|
}
|
|
}
|
|
|
|
lemma void drop_take_singleton<t>(int i, list<t> xs)
|
|
requires 0 < i && i < length(xs);
|
|
ensures drop(i-1, take(i, xs)) == singleton(nth(i-1, xs));
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (i == 1) {
|
|
} else {
|
|
drop_take_singleton(i-1, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void take_singleton<t>(int i, list<t> xs)
|
|
requires 0 <= i && i < length(xs);
|
|
ensures append(take(i, xs), singleton(nth(i, xs))) == take(i+1, xs);
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (i == 0) {
|
|
} else {
|
|
take_singleton(i-1, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void drop_update_le<t>(int i, int j, t x, list<t> xs)
|
|
requires 0 <= i && i <= j && j < length(xs);
|
|
ensures drop(i, update(j, x, xs)) == update(j - i, x, drop(i, xs));
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (i == 0) {
|
|
} else {
|
|
drop_update_le(i - 1, j - 1, x, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void drop_update_ge<t>(int i, int j, t x, list<t> xs)
|
|
requires 0 <= j && j < i && i < length(xs);
|
|
ensures drop(i, update(j, x, xs)) == drop(i, xs);
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (j == 0) {
|
|
} else {
|
|
drop_update_ge(i - 1, j - 1, x, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void take_update_le<t>(int i, int j, t x, list<t> xs)
|
|
requires 0 <= i && i <= j;
|
|
ensures take(i, update(j, x, xs)) == take(i, xs);
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (i == 0) {
|
|
} else {
|
|
take_update_le(i - 1, j - 1, x, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void take_update_ge<t>(int i, int j, t x, list<t> xs)
|
|
requires 0 <= j && j < i && i <= length(xs);
|
|
ensures take(i, update(j, x, xs)) == update(j, x, take(i, xs));
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (j == 0) {
|
|
} else {
|
|
take_update_ge(i - 1, j - 1, x, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void update_eq_append<t>(int i, t x, list<t> xs)
|
|
requires 0 <= i && i < length(xs);
|
|
ensures update(i, x, xs) == append(take(i, xs), cons(x, drop(i + 1, xs)));
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (i == 0) {
|
|
} else {
|
|
update_eq_append(i - 1, x, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void take_append_ge<t>(int n, list<t> xs, list<t> ys)
|
|
requires length(xs) <= n;
|
|
ensures take(n, append(xs, ys)) == append(xs, take(n - length(xs), ys));
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
take_append_ge(n - 1, xs0, ys);
|
|
}
|
|
}
|
|
|
|
lemma void drop_drop<t>(int m, int n, list<t> xs)
|
|
requires 0 <= m && 0 <= n;
|
|
ensures drop(m, drop(n, xs)) == drop(m+n, xs);
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (n == 0) {} else {
|
|
drop_drop(m, n-1, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void take_take<t>(int m, int n, list<t> xs)
|
|
requires 0 <= m && m <= n && n <= length(xs);
|
|
ensures take(m, take(n, xs)) == take(m, xs);
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (m == 0) {} else {
|
|
take_take(m - 1, n - 1, xs0);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma_auto void take_head<t>(list<t> xs)
|
|
requires 0 < length(xs);
|
|
ensures take(1, xs) == singleton(head(xs));
|
|
{
|
|
switch(xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
}
|
|
}
|
|
|
|
/* Following lemma from `verifast/bin/rt/_list.java` */
|
|
lemma void remove_remove_nth<t>(list<t> xs, t x)
|
|
requires mem(x, xs) == true;
|
|
ensures remove(x, xs) == remove_nth(index_of(x, xs), xs);
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(h, tl):
|
|
if (x == h) {
|
|
assert index_of(x, xs) == 0;
|
|
} else {
|
|
remove_remove_nth(tl, x);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void mem_take_false<t>(t x, int n, list<t> xs)
|
|
requires mem(x, xs) == false;
|
|
ensures mem(x, take(n, xs)) == false;
|
|
{
|
|
switch (xs) {
|
|
case nil:
|
|
case cons(x0, xs0):
|
|
if (x0 != x && n != 0)
|
|
mem_take_false(x, n - 1, xs0);
|
|
}
|
|
}
|
|
|
|
/* Following lemma from `verifast/bin/rt/_list.java`. Renamed to
|
|
avoid clash with listex.c's nth_drop lemma. */
|
|
lemma void nth_drop2<t>(list<t> vs, int i)
|
|
requires 0 <= i && i < length(vs);
|
|
ensures nth(i, vs) == head(drop(i, vs));
|
|
{
|
|
switch (vs) {
|
|
case nil:
|
|
case cons(v, vs0):
|
|
if (i == 0) {
|
|
} else {
|
|
nth_drop2(vs0, i - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void enq_lemma<t>(int k, int i, list<t> xs, list<t> ys, t z)
|
|
requires 0 <= k && 0 <= i && 0 < length(xs) && k < length(xs) && i < length(xs) && take(k, rotate_left(i, xs)) == ys;
|
|
ensures take(k+1, rotate_left(i, update((i+k)%length(xs), z, xs))) == append(ys, cons(z, nil));
|
|
{
|
|
int j = (i+k)%length(xs);
|
|
assert take(k, append(drop(i, xs), take(i, xs))) == ys;
|
|
if (i + k < length(xs)) {
|
|
mod_lt(i + k, length(xs));
|
|
assert j == i + k;
|
|
drop_update_le(i, i + k, z, xs);
|
|
assert drop(i, update(i + k, z, xs)) == update(k, z, drop(i, xs));
|
|
take_update_le(i, i + k, z, xs);
|
|
assert take(i, update(i + k, z, xs)) == take(i, xs);
|
|
take_append(k+1, update(k, z, drop(i, xs)), take(i, xs));
|
|
assert take(k+1, append(update(k, z, drop(i, xs)), take(i, xs))) == take(k+1, update(k, z, drop(i, xs)));
|
|
update_eq_append(k, z, drop(i, xs));
|
|
assert update(k, z, drop(i, xs)) == append(take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))));
|
|
take_append_ge(k+1, take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))));
|
|
assert take(k+1, append(take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))))) ==
|
|
append(take(k, drop(i, xs)), {z});
|
|
take_append(k, drop(i, xs), take(i, xs));
|
|
assert take(k+1, append(take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))))) ==
|
|
append(take(k, append(drop(i, xs), take(i, xs))), {z});
|
|
assert take(k+1, update(k, z, drop(i, xs))) ==
|
|
append(take(k, append(drop(i, xs), take(i, xs))), {z});
|
|
assert take(k+1, append(update(k, z, drop(i, xs)), take(i, xs))) ==
|
|
append(take(k, append(drop(i, xs), take(i, xs))), {z});
|
|
assert take(k+1, append(drop(i, update(i + k, z, xs)), take(i, update(i + k, z, xs)))) ==
|
|
append(take(k, append(drop(i, xs), take(i, xs))), {z});
|
|
|
|
} else {
|
|
assert i + k < 2 * length(xs);
|
|
div_rem_nonneg(i + k, length(xs));
|
|
if ((i + k) / length(xs) > 1) {
|
|
mul_mono_l(2, (i + k) / length(xs), length(xs));
|
|
} else if ((i + k) / length(xs) < 1) {
|
|
mul_mono_l((i + k) / length(xs), 0, length(xs));
|
|
}
|
|
assert j == i + k - length(xs);
|
|
assert j < i;
|
|
drop_update_ge(i, j, z, xs);
|
|
assert drop(i, update(j, z, xs)) == drop(i, xs);
|
|
take_update_ge(i, j, z, xs);
|
|
assert update(j, z, take(i, xs)) == take(i, update(j, z, xs));
|
|
take_append_ge(k+1, drop(i, xs), take(i, update(j, z, xs)));
|
|
assert take(k+1, append(drop(i, update(j, z, xs)), take(i, update(j, z, xs)))) ==
|
|
append(drop(i, xs), take(j+1, update(j, z, take(i, xs))));
|
|
update_eq_append(j, z, take(i, xs));
|
|
assert update(j, z, take(i, xs)) == append(take(j, take(i, xs)), cons(z, drop(j + 1, take(i, xs))));
|
|
take_take(j, i, xs);
|
|
assert update(j, z, take(i, xs)) == append(take(j, xs), cons(z, drop(j+1, take(i, xs))));
|
|
take_append_ge(j+1, take(j, xs), cons(z, drop(j+1, take(i, xs))));
|
|
assert append(drop(i, xs), take(j+1, update(j, z, take(i, xs)))) ==
|
|
append(drop(i, xs), append(take(j, xs), {z}));
|
|
take_append_ge(k, drop(i, xs), take(i, xs));
|
|
append_assoc(drop(i, xs), take(j, xs), {z});
|
|
assert append(drop(i, xs), append(take(j, xs), {z})) ==
|
|
append(take(k, append(drop(i, xs), take(i, xs))), {z});
|
|
assert append(drop(i, xs), take(j+1, update(j, z, take(i, xs)))) ==
|
|
append(take(k, append(drop(i, xs), take(i, xs))), {z});
|
|
}
|
|
assert take(k+1, append(drop(i, update(j, z, xs)), take(i, update(j, z, xs)))) ==
|
|
append(take(k, append(drop(i, xs), take(i, xs))), {z});
|
|
assert take(k+1, append(drop(i, update(j, z, xs)), take(i, update(j, z, xs)))) == append(ys, {z});
|
|
}
|
|
|
|
lemma void front_enq_lemma<t>(int k, int i, list<t> xs, list<t> ys, t z)
|
|
requires 0 < length(xs) && 0 <= k && k < length(xs) && 0 <= i && i < length(xs) && take(k, rotate_left((i+1)%length(xs), xs)) == ys;
|
|
ensures take(k+1, rotate_left(i, update(i, z, xs))) == cons(z, ys);
|
|
{
|
|
int n = length(xs);
|
|
if (i+1 < n) {
|
|
mod_lt(i+1, n);
|
|
assert i < n;
|
|
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
|
|
take(k+1, append(drop(i, update(i, z, xs)), take(i, update(i, z, xs))));
|
|
drop_update_le(i, i, z, xs);
|
|
take_update_le(i, i, z, xs);
|
|
assert take(k+1, append(drop(i, update(i, z, xs)), take(i, update(i, z, xs)))) ==
|
|
take(k+1, append(update(0, z, drop(i, xs)), take(i, xs)));
|
|
update_eq_append(0, z, drop(i, xs));
|
|
assert update(0, z, drop(i, xs)) == cons(z, drop(1, drop(i, xs)));
|
|
drop_drop(1, i, xs);
|
|
assert take(k+1, append(update(0, z, drop(i, xs)), take(i, xs))) ==
|
|
take(k+1, append(cons(z, drop(i+1, xs)), take(i, xs)));
|
|
assert take(k+1, append(cons(z, drop(i+1, xs)), take(i, xs))) ==
|
|
cons(z, take(k, append(drop(i+1, xs), take(i, xs))));
|
|
|
|
assert ys == take(k, rotate_left(i+1, xs));
|
|
assert ys == take(k, append(drop(i+1, xs), take(i+1, xs)));
|
|
if (k <= length(drop(i+1, xs))) {
|
|
take_append(k, drop(i+1, xs), take(i+1, xs));
|
|
take_append(k, drop(i+1, xs), take(i, xs));
|
|
} else {
|
|
take_append_ge(k, drop(i+1, xs), take(i+1, xs));
|
|
take_append_ge(k, drop(i+1, xs), take(i, xs));
|
|
|
|
assert (i+1) + k < 2 * n;
|
|
div_rem_nonneg((i+1) + k, n);
|
|
if (((i+1) + k) / n > 1) {
|
|
mul_mono_l(2, ((i+1) + k) / n, n);
|
|
} else if (((i+1) + k) / n < 1) {
|
|
mul_mono_l(((i+1) + k) / n, 0, n);
|
|
}
|
|
int j = ((i+1)+k)%n;
|
|
assert j <= i;
|
|
int l = length(drop(i+1, xs));
|
|
assert l == n - i - 1;
|
|
take_take(k - l, i + 1, xs);
|
|
take_take(k - l, i, xs);
|
|
}
|
|
} else {
|
|
assert i == (n-1);
|
|
assert (i + 1) % n == 0;
|
|
drop_update_le(i, i, z, xs);
|
|
update_eq_append(0, z, xs);
|
|
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
|
|
take(k+1, append(drop(i, update(i, z, xs)), take(i, update(i, z, xs))));
|
|
drop_update_le(i, i, z, xs);
|
|
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
|
|
take(k+1, append(update(0, z, drop(i, xs)), take(i, update(i, z, xs))));
|
|
update_eq_append(0, z, drop(i, xs));
|
|
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
|
|
take(k+1, append(cons(z, drop(1, drop(i, xs))), take(i, update(i, z, xs))));
|
|
drop_drop(1, i, xs);
|
|
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
|
|
take(k+1, append(cons(z, nil), take(i, update(i, z, xs))));
|
|
take_update_le(i, i, z, xs);
|
|
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
|
|
cons(z, take(k, take(i, xs)));
|
|
take_take(k, i, xs);
|
|
assert take(k+1, rotate_left(i, update(i, z, xs))) == cons(z, ys);
|
|
}
|
|
}
|
|
|
|
lemma void deq_lemma<t>(int k, int i, list<t> xs, list<t> ys, t z)
|
|
requires 0 < k && k <= length(xs) && 0 <= i && i < length(xs) && take(k, rotate_left(i, xs)) == ys && z == head(ys);
|
|
ensures take(k-1, rotate_left((i+1)%length(xs), xs)) == tail(ys);
|
|
{
|
|
int j = (i+1)%length(xs);
|
|
drop_n_plus_one(i, xs);
|
|
assert tail(take(k, append(drop(i, xs), take(i, xs)))) == take(k-1, append(drop(i+1, xs), take(i, xs)));
|
|
if (i+1 < length(xs)) {
|
|
mod_lt(i+1, length(xs));
|
|
assert j == i+1;
|
|
if (k-1 <= length(xs)-j) {
|
|
take_append(k-1, drop(j, xs), take(j, xs));
|
|
take_append(k-1, drop(j, xs), take(i, xs));
|
|
} else {
|
|
assert k+i > length(xs);
|
|
take_append_ge(k-1, drop(j, xs), take(j, xs));
|
|
take_append_ge(k-1, drop(j, xs), take(i, xs));
|
|
assert k-1-(length(xs)-j) == k+i-length(xs);
|
|
assert k+i-length(xs) <= i;
|
|
take_take(k+i-length(xs), j, xs);
|
|
take_take(k+i-length(xs), i, xs);
|
|
assert take(k+i-length(xs), take(j, xs)) == take(k+i-length(xs), take(i, xs));
|
|
}
|
|
} else {
|
|
assert i+1 == length(xs);
|
|
assert (i+1)%length(xs) == 0;
|
|
assert j == 0;
|
|
assert append(drop(j, xs), take(j, xs)) == xs;
|
|
assert append(drop(i+1, xs), take(i, xs)) == take(i, xs);
|
|
take_append_ge(k-1, drop(i+1, xs), take(i, xs));
|
|
take_take(k-1, i, xs);
|
|
}
|
|
assert take(k-1, append(drop(j, xs), take(j, xs))) == take(k-1, append(drop(i+1, xs), take(i, xs)));
|
|
assert take(k-1, append(drop(j, xs), take(j, xs))) == tail(take(k, append(drop(i, xs), take(i, xs))));
|
|
}
|
|
|
|
lemma void deq_value_lemma<t>(int k, int i, list<t> xs, list<t> ys)
|
|
requires 0 < k && k <= length(ys) && 0 <= i && i < length(xs) && take(k, rotate_left(i, xs)) == ys;
|
|
ensures nth(i, xs) == head(ys);
|
|
{
|
|
drop_n_plus_one(i, xs);
|
|
assert nth(i, xs) == head(take(k, append(drop(i, xs), take(i, xs))));
|
|
}
|
|
|
|
lemma void combine_list_no_change<t>(list<t>prefix, t x, list<t>suffix, int i, list<t> xs)
|
|
requires 0 <= i && i < length(xs) && prefix == take(i, xs) && x == nth(i, xs) && suffix == drop(i+1, xs);
|
|
ensures xs == append(prefix, cons(x, suffix));
|
|
{
|
|
drop_n_plus_one(i, xs);
|
|
}
|
|
|
|
/* Following lemma from `verifast/examples/vstte2010/problem4.java`. */
|
|
lemma void update_rewrite<t>(list<t> vs, t v, int pos)
|
|
requires 0 <= pos && pos < length(vs);
|
|
ensures update(pos, v, vs) == append(take(pos, vs), cons(v, (drop(pos+1, vs))));
|
|
{
|
|
switch(vs) {
|
|
case nil:
|
|
case cons(h, t):
|
|
if (pos == 0) {
|
|
} else {
|
|
update_rewrite(t, v, pos - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
lemma void combine_list_update<t>(list<t>prefix, t x, list<t>suffix, int i, list<t> xs)
|
|
requires 0 <= i && i < length(xs) && prefix == take(i, xs) && suffix == drop(i+1, xs);
|
|
ensures update(i, x, xs) == append(prefix, cons(x, suffix));
|
|
{
|
|
update_rewrite(xs, x, i);
|
|
}
|
|
|
|
#endif /* COMMON_H */
|