2021-11-30 14:51:24 +01:00

607 lines
18 KiB
Plaintext

/*
* FreeRTOS V202111.00
* Copyright (C) Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
#ifndef COMMON_H
#define COMMON_H
#include <listex.gh>
fixpoint list<t> rotate_left<t>(int n, list<t> xs) {
return append(drop(n, xs), take(n, xs));
}
fixpoint list<t> singleton<t>(t x) {
return cons(x, nil);
}
lemma void note(bool b)
requires b;
ensures b;
{}
lemma_auto void rotate_length<t>(int n, list<t> xs)
requires 0 <= n && n <= length(xs);
ensures length(rotate_left(n, xs)) == length(xs);
{}
lemma void take_length_eq<t>(int k, list<t> xs, list<t> ys)
requires 0 <= k && k <= length(xs) && take(k, xs) == ys;
ensures length(ys) == k;
{}
lemma void leq_bound(int x, int b)
requires b <= x && x <= b;
ensures x == b;
{}
lemma void mul_mono_l_strict(int x, int y, int n)
requires 0 < n &*& x < y;
ensures x * n < y * n;
{
for (int i = 1; i < n; i++)
invariant i <= n &*& x * i < y * i;
decreases n - i;
{}
}
lemma void div_leq(int x, int y, int n)
requires 0 < n && x * n <= y * n;
ensures x <= y;
{
assert x * n <= y * n;
if (x <= y) {
mul_mono_l(x,y,n);
} else {
mul_mono_l_strict(y,x,n); //< contradiction
}
}
lemma void div_lt(int x, int y, int n)
requires 0 < n && x * n < y * n;
ensures x < y;
{
assert x * n <= y * n;
if (x == y) {
} else if (x <= y) {
mul_mono_l(x,y,n);
} else {
assert y < x;
mul_mono_l(y,x,n); //< contradiction
}
}
lemma_auto void mod_same(int n)
requires 0 < n;
ensures n % n == 0;
{
div_rem_nonneg(n, n);
if (n / n < 1) {} else if (n / n > 1) {
mul_mono_l(2, n/n, n);
} else {}
}
lemma void mod_lt(int x, int n)
requires 0 <= x && x < n;
ensures x % n == x;
{
div_rem_nonneg(x, n);
if (x / n > 0) {
mul_mono_l(1, x / n, n);
} else {
}
}
lemma void mod_plus_one(int x, int y, int n)
requires 0 <= y && 0 < n && x == (y % n);
ensures ((x+1) % n) == ((y+1) % n);
{
div_rem_nonneg(y, n);
div_rem_nonneg(y+1, n);
div_rem_nonneg(y%n+1, n);
if (y%n+1 < n) {
mod_lt(y%n+1, n);
assert y%n == y - y/n*n;
assert (y+1)%n == y + 1 - (y + 1)/n*n;
if ((y+1)/n > y/n) {
mul_mono_l(y/n + 1, (y+1)/n, n);
} else if ((y+1)/n < y/n) {
mul_mono_l((y+1)/n + 1, y/n, n);
}
assert y - (y+1)/n*n == y - y/n*n;
assert y+1 - (y+1)/n*n == y - y/n*n + 1;
assert (y+1)%n == y%n + 1;
} else {
assert y%n+1 == n;
assert (y%n+1)%n == 0;
if (y/n + 1 < (y+1)/n) {
mul_mono_l(y/n + 2, (y+1)/n, n);
} else if (y/n + 1 > (y+1)/n) {
mul_mono_l((y+1)/n, y/n, n);
}
assert (y+1)/n == y/n + 1;
note((y+1)/n*n == (y/n + 1)*n);
assert (y+1)%n == 0;
}
assert (y%n+1)%n == (y+1)%n;
}
lemma void mod_mul(int x, int n, int y)
requires 0 < n && 0 <= x && 0 <= y;
ensures (x*n + y)%n == y%n;
{
mul_mono_l(0, x, n);
div_rem_nonneg(x*n+y, n);
div_rem_nonneg(y, n);
if ((x*n+y)/n > x + y/n) {
mul_mono_l(x + y/n + 1, (x*n+y)/n, n);
} else if ((x*n+y)/n < x + y/n) {
mul_mono_l((x*n+y)/n + 1, x + y/n, n);
}
note((x*n + y)/n == x + y/n);
note((x*n + y)/n*n == (x + y/n)*n);
}
lemma void mod_plus_distr(int x, int y, int n)
requires 0 < n && 0 <= x && 0 <= y;
ensures ((x % n) + y) % n == (x + y) % n;
{
div_rem_nonneg(x, n);
div_rem_nonneg(x%n+y, n);
div_rem_nonneg(x+y, n);
assert x == x/n*n + x%n;
mod_mul(x/n, n, x%n + y);
}
lemma_auto void mod_mod(int x, int n)
requires 0 < n && 0 <= x;
ensures (x % n) % n == (x % n);
{
mod_plus_distr(x, 0, n);
}
lemma void mod_plus(int x, int y, int n);
requires 0 < n && 0 <= x && 0 <= y;
ensures (x + y) % n == ((x % n) + (y % n)) % n;
lemma_auto void mod_range(int x, int n)
requires 0 <= x && 0 < n;
ensures 0 <= (x % n) && (x % n) < n;
{
div_rem_nonneg(x, n);
}
lemma void head_append<t>(list<t> xs, list<t> ys)
requires 0 < length(xs);
ensures head(append(xs, ys)) == head(xs);
{
switch(xs)
{
case cons(c, cs):
case nil:
}
}
lemma void drop_take_singleton<t>(int i, list<t> xs)
requires 0 < i && i < length(xs);
ensures drop(i-1, take(i, xs)) == singleton(nth(i-1, xs));
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (i == 1) {
} else {
drop_take_singleton(i-1, xs0);
}
}
}
lemma void take_singleton<t>(int i, list<t> xs)
requires 0 <= i && i < length(xs);
ensures append(take(i, xs), singleton(nth(i, xs))) == take(i+1, xs);
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (i == 0) {
} else {
take_singleton(i-1, xs0);
}
}
}
lemma void drop_update_le<t>(int i, int j, t x, list<t> xs)
requires 0 <= i && i <= j && j < length(xs);
ensures drop(i, update(j, x, xs)) == update(j - i, x, drop(i, xs));
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (i == 0) {
} else {
drop_update_le(i - 1, j - 1, x, xs0);
}
}
}
lemma void drop_update_ge<t>(int i, int j, t x, list<t> xs)
requires 0 <= j && j < i && i < length(xs);
ensures drop(i, update(j, x, xs)) == drop(i, xs);
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (j == 0) {
} else {
drop_update_ge(i - 1, j - 1, x, xs0);
}
}
}
lemma void take_update_le<t>(int i, int j, t x, list<t> xs)
requires 0 <= i && i <= j;
ensures take(i, update(j, x, xs)) == take(i, xs);
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (i == 0) {
} else {
take_update_le(i - 1, j - 1, x, xs0);
}
}
}
lemma void take_update_ge<t>(int i, int j, t x, list<t> xs)
requires 0 <= j && j < i && i <= length(xs);
ensures take(i, update(j, x, xs)) == update(j, x, take(i, xs));
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (j == 0) {
} else {
take_update_ge(i - 1, j - 1, x, xs0);
}
}
}
lemma void update_eq_append<t>(int i, t x, list<t> xs)
requires 0 <= i && i < length(xs);
ensures update(i, x, xs) == append(take(i, xs), cons(x, drop(i + 1, xs)));
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (i == 0) {
} else {
update_eq_append(i - 1, x, xs0);
}
}
}
lemma void take_append_ge<t>(int n, list<t> xs, list<t> ys)
requires length(xs) <= n;
ensures take(n, append(xs, ys)) == append(xs, take(n - length(xs), ys));
{
switch (xs) {
case nil:
case cons(x0, xs0):
take_append_ge(n - 1, xs0, ys);
}
}
lemma void drop_drop<t>(int m, int n, list<t> xs)
requires 0 <= m && 0 <= n;
ensures drop(m, drop(n, xs)) == drop(m+n, xs);
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (n == 0) {} else {
drop_drop(m, n-1, xs0);
}
}
}
lemma void take_take<t>(int m, int n, list<t> xs)
requires 0 <= m && m <= n && n <= length(xs);
ensures take(m, take(n, xs)) == take(m, xs);
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (m == 0) {} else {
take_take(m - 1, n - 1, xs0);
}
}
}
lemma_auto void take_head<t>(list<t> xs)
requires 0 < length(xs);
ensures take(1, xs) == singleton(head(xs));
{
switch(xs) {
case nil:
case cons(x0, xs0):
}
}
/* Following lemma from `verifast/bin/rt/_list.java` */
lemma void remove_remove_nth<t>(list<t> xs, t x)
requires mem(x, xs) == true;
ensures remove(x, xs) == remove_nth(index_of(x, xs), xs);
{
switch (xs) {
case nil:
case cons(h, tl):
if (x == h) {
assert index_of(x, xs) == 0;
} else {
remove_remove_nth(tl, x);
}
}
}
lemma void mem_take_false<t>(t x, int n, list<t> xs)
requires mem(x, xs) == false;
ensures mem(x, take(n, xs)) == false;
{
switch (xs) {
case nil:
case cons(x0, xs0):
if (x0 != x && n != 0)
mem_take_false(x, n - 1, xs0);
}
}
/* Following lemma from `verifast/bin/rt/_list.java`. Renamed to
avoid clash with listex.c's nth_drop lemma. */
lemma void nth_drop2<t>(list<t> vs, int i)
requires 0 <= i && i < length(vs);
ensures nth(i, vs) == head(drop(i, vs));
{
switch (vs) {
case nil:
case cons(v, vs0):
if (i == 0) {
} else {
nth_drop2(vs0, i - 1);
}
}
}
lemma void enq_lemma<t>(int k, int i, list<t> xs, list<t> ys, t z)
requires 0 <= k && 0 <= i && 0 < length(xs) && k < length(xs) && i < length(xs) && take(k, rotate_left(i, xs)) == ys;
ensures take(k+1, rotate_left(i, update((i+k)%length(xs), z, xs))) == append(ys, cons(z, nil));
{
int j = (i+k)%length(xs);
assert take(k, append(drop(i, xs), take(i, xs))) == ys;
if (i + k < length(xs)) {
mod_lt(i + k, length(xs));
assert j == i + k;
drop_update_le(i, i + k, z, xs);
assert drop(i, update(i + k, z, xs)) == update(k, z, drop(i, xs));
take_update_le(i, i + k, z, xs);
assert take(i, update(i + k, z, xs)) == take(i, xs);
take_append(k+1, update(k, z, drop(i, xs)), take(i, xs));
assert take(k+1, append(update(k, z, drop(i, xs)), take(i, xs))) == take(k+1, update(k, z, drop(i, xs)));
update_eq_append(k, z, drop(i, xs));
assert update(k, z, drop(i, xs)) == append(take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))));
take_append_ge(k+1, take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))));
assert take(k+1, append(take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))))) ==
append(take(k, drop(i, xs)), {z});
take_append(k, drop(i, xs), take(i, xs));
assert take(k+1, append(take(k, drop(i, xs)), cons(z, drop(k + 1, drop(i, xs))))) ==
append(take(k, append(drop(i, xs), take(i, xs))), {z});
assert take(k+1, update(k, z, drop(i, xs))) ==
append(take(k, append(drop(i, xs), take(i, xs))), {z});
assert take(k+1, append(update(k, z, drop(i, xs)), take(i, xs))) ==
append(take(k, append(drop(i, xs), take(i, xs))), {z});
assert take(k+1, append(drop(i, update(i + k, z, xs)), take(i, update(i + k, z, xs)))) ==
append(take(k, append(drop(i, xs), take(i, xs))), {z});
} else {
assert i + k < 2 * length(xs);
div_rem_nonneg(i + k, length(xs));
if ((i + k) / length(xs) > 1) {
mul_mono_l(2, (i + k) / length(xs), length(xs));
} else if ((i + k) / length(xs) < 1) {
mul_mono_l((i + k) / length(xs), 0, length(xs));
}
assert j == i + k - length(xs);
assert j < i;
drop_update_ge(i, j, z, xs);
assert drop(i, update(j, z, xs)) == drop(i, xs);
take_update_ge(i, j, z, xs);
assert update(j, z, take(i, xs)) == take(i, update(j, z, xs));
take_append_ge(k+1, drop(i, xs), take(i, update(j, z, xs)));
assert take(k+1, append(drop(i, update(j, z, xs)), take(i, update(j, z, xs)))) ==
append(drop(i, xs), take(j+1, update(j, z, take(i, xs))));
update_eq_append(j, z, take(i, xs));
assert update(j, z, take(i, xs)) == append(take(j, take(i, xs)), cons(z, drop(j + 1, take(i, xs))));
take_take(j, i, xs);
assert update(j, z, take(i, xs)) == append(take(j, xs), cons(z, drop(j+1, take(i, xs))));
take_append_ge(j+1, take(j, xs), cons(z, drop(j+1, take(i, xs))));
assert append(drop(i, xs), take(j+1, update(j, z, take(i, xs)))) ==
append(drop(i, xs), append(take(j, xs), {z}));
take_append_ge(k, drop(i, xs), take(i, xs));
append_assoc(drop(i, xs), take(j, xs), {z});
assert append(drop(i, xs), append(take(j, xs), {z})) ==
append(take(k, append(drop(i, xs), take(i, xs))), {z});
assert append(drop(i, xs), take(j+1, update(j, z, take(i, xs)))) ==
append(take(k, append(drop(i, xs), take(i, xs))), {z});
}
assert take(k+1, append(drop(i, update(j, z, xs)), take(i, update(j, z, xs)))) ==
append(take(k, append(drop(i, xs), take(i, xs))), {z});
assert take(k+1, append(drop(i, update(j, z, xs)), take(i, update(j, z, xs)))) == append(ys, {z});
}
lemma void front_enq_lemma<t>(int k, int i, list<t> xs, list<t> ys, t z)
requires 0 < length(xs) && 0 <= k && k < length(xs) && 0 <= i && i < length(xs) && take(k, rotate_left((i+1)%length(xs), xs)) == ys;
ensures take(k+1, rotate_left(i, update(i, z, xs))) == cons(z, ys);
{
int n = length(xs);
if (i+1 < n) {
mod_lt(i+1, n);
assert i < n;
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
take(k+1, append(drop(i, update(i, z, xs)), take(i, update(i, z, xs))));
drop_update_le(i, i, z, xs);
take_update_le(i, i, z, xs);
assert take(k+1, append(drop(i, update(i, z, xs)), take(i, update(i, z, xs)))) ==
take(k+1, append(update(0, z, drop(i, xs)), take(i, xs)));
update_eq_append(0, z, drop(i, xs));
assert update(0, z, drop(i, xs)) == cons(z, drop(1, drop(i, xs)));
drop_drop(1, i, xs);
assert take(k+1, append(update(0, z, drop(i, xs)), take(i, xs))) ==
take(k+1, append(cons(z, drop(i+1, xs)), take(i, xs)));
assert take(k+1, append(cons(z, drop(i+1, xs)), take(i, xs))) ==
cons(z, take(k, append(drop(i+1, xs), take(i, xs))));
assert ys == take(k, rotate_left(i+1, xs));
assert ys == take(k, append(drop(i+1, xs), take(i+1, xs)));
if (k <= length(drop(i+1, xs))) {
take_append(k, drop(i+1, xs), take(i+1, xs));
take_append(k, drop(i+1, xs), take(i, xs));
} else {
take_append_ge(k, drop(i+1, xs), take(i+1, xs));
take_append_ge(k, drop(i+1, xs), take(i, xs));
assert (i+1) + k < 2 * n;
div_rem_nonneg((i+1) + k, n);
if (((i+1) + k) / n > 1) {
mul_mono_l(2, ((i+1) + k) / n, n);
} else if (((i+1) + k) / n < 1) {
mul_mono_l(((i+1) + k) / n, 0, n);
}
int j = ((i+1)+k)%n;
assert j <= i;
int l = length(drop(i+1, xs));
assert l == n - i - 1;
take_take(k - l, i + 1, xs);
take_take(k - l, i, xs);
}
} else {
assert i == (n-1);
assert (i + 1) % n == 0;
drop_update_le(i, i, z, xs);
update_eq_append(0, z, xs);
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
take(k+1, append(drop(i, update(i, z, xs)), take(i, update(i, z, xs))));
drop_update_le(i, i, z, xs);
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
take(k+1, append(update(0, z, drop(i, xs)), take(i, update(i, z, xs))));
update_eq_append(0, z, drop(i, xs));
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
take(k+1, append(cons(z, drop(1, drop(i, xs))), take(i, update(i, z, xs))));
drop_drop(1, i, xs);
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
take(k+1, append(cons(z, nil), take(i, update(i, z, xs))));
take_update_le(i, i, z, xs);
assert take(k+1, rotate_left(i, update(i, z, xs))) ==
cons(z, take(k, take(i, xs)));
take_take(k, i, xs);
assert take(k+1, rotate_left(i, update(i, z, xs))) == cons(z, ys);
}
}
lemma void deq_lemma<t>(int k, int i, list<t> xs, list<t> ys, t z)
requires 0 < k && k <= length(xs) && 0 <= i && i < length(xs) && take(k, rotate_left(i, xs)) == ys && z == head(ys);
ensures take(k-1, rotate_left((i+1)%length(xs), xs)) == tail(ys);
{
int j = (i+1)%length(xs);
drop_n_plus_one(i, xs);
assert tail(take(k, append(drop(i, xs), take(i, xs)))) == take(k-1, append(drop(i+1, xs), take(i, xs)));
if (i+1 < length(xs)) {
mod_lt(i+1, length(xs));
assert j == i+1;
if (k-1 <= length(xs)-j) {
take_append(k-1, drop(j, xs), take(j, xs));
take_append(k-1, drop(j, xs), take(i, xs));
} else {
assert k+i > length(xs);
take_append_ge(k-1, drop(j, xs), take(j, xs));
take_append_ge(k-1, drop(j, xs), take(i, xs));
assert k-1-(length(xs)-j) == k+i-length(xs);
assert k+i-length(xs) <= i;
take_take(k+i-length(xs), j, xs);
take_take(k+i-length(xs), i, xs);
assert take(k+i-length(xs), take(j, xs)) == take(k+i-length(xs), take(i, xs));
}
} else {
assert i+1 == length(xs);
assert (i+1)%length(xs) == 0;
assert j == 0;
assert append(drop(j, xs), take(j, xs)) == xs;
assert append(drop(i+1, xs), take(i, xs)) == take(i, xs);
take_append_ge(k-1, drop(i+1, xs), take(i, xs));
take_take(k-1, i, xs);
}
assert take(k-1, append(drop(j, xs), take(j, xs))) == take(k-1, append(drop(i+1, xs), take(i, xs)));
assert take(k-1, append(drop(j, xs), take(j, xs))) == tail(take(k, append(drop(i, xs), take(i, xs))));
}
lemma void deq_value_lemma<t>(int k, int i, list<t> xs, list<t> ys)
requires 0 < k && k <= length(ys) && 0 <= i && i < length(xs) && take(k, rotate_left(i, xs)) == ys;
ensures nth(i, xs) == head(ys);
{
drop_n_plus_one(i, xs);
assert nth(i, xs) == head(take(k, append(drop(i, xs), take(i, xs))));
}
lemma void combine_list_no_change<t>(list<t>prefix, t x, list<t>suffix, int i, list<t> xs)
requires 0 <= i && i < length(xs) && prefix == take(i, xs) && x == nth(i, xs) && suffix == drop(i+1, xs);
ensures xs == append(prefix, cons(x, suffix));
{
drop_n_plus_one(i, xs);
}
/* Following lemma from `verifast/examples/vstte2010/problem4.java`. */
lemma void update_rewrite<t>(list<t> vs, t v, int pos)
requires 0 <= pos && pos < length(vs);
ensures update(pos, v, vs) == append(take(pos, vs), cons(v, (drop(pos+1, vs))));
{
switch(vs) {
case nil:
case cons(h, t):
if (pos == 0) {
} else {
update_rewrite(t, v, pos - 1);
}
}
}
lemma void combine_list_update<t>(list<t>prefix, t x, list<t>suffix, int i, list<t> xs)
requires 0 <= i && i < length(xs) && prefix == take(i, xs) && suffix == drop(i+1, xs);
ensures update(i, x, xs) == append(prefix, cons(x, suffix));
{
update_rewrite(xs, x, i);
}
#endif /* COMMON_H */