FRET-FreeRTOS/FreeRTOS/Test/VeriFast/queue/xQueueReceiveFromISR.c
2021-11-30 14:51:24 +01:00

144 lines
6.3 KiB
C

/*
* FreeRTOS V202111.00
* Copyright (C) Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
#include "proof/queue.h"
#include "proof/queuecontracts.h"
BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
void * const pvBuffer,
BaseType_t * const pxHigherPriorityTaskWoken )
/*@requires [1/2]queuehandle(xQueue, ?N, ?M, ?is_isr) &*& is_isr == true &*&
* chars(pvBuffer, M, ?x) &*&
* pxHigherPriorityTaskWoken == NULL ? true : integer(pxHigherPriorityTaskWoken, _);@*/
/*@ensures [1/2]queuehandle(xQueue, N, M, is_isr) &*&
* (result == pdPASS ? chars(pvBuffer, M, _) : chars(pvBuffer, M, x)) &*&
* (pxHigherPriorityTaskWoken == NULL ? true : integer(pxHigherPriorityTaskWoken, _));@*/
{
BaseType_t xReturn;
UBaseType_t uxSavedInterruptStatus;
#ifdef VERIFAST /*< const pointer declaration */
Queue_t * pxQueue = xQueue;
#else
Queue_t * const pxQueue = xQueue;
configASSERT( pxQueue );
configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
#endif
/* RTOS ports that support interrupt nesting have the concept of a maximum
* system call (or maximum API call) interrupt priority. Interrupts that are
* above the maximum system call priority are kept permanently enabled, even
* when the RTOS kernel is in a critical section, but cannot make any calls to
* FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
* then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
* failure if a FreeRTOS API function is called from an interrupt that has been
* assigned a priority above the configured maximum system call priority.
* Only FreeRTOS functions that end in FromISR can be called from interrupts
* that have been assigned a priority at or (logically) below the maximum
* system call interrupt priority. FreeRTOS maintains a separate interrupt
* safe API to ensure interrupt entry is as fast and as simple as possible.
* More information (albeit Cortex-M specific) is provided on the following
* link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
/*@assert queue(pxQueue, ?Storage, N, M, ?W, ?R, ?K, ?is_locked, ?abs);@*/
{
const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
/* Cannot block in an ISR, so check there is data available. */
if( uxMessagesWaiting > ( UBaseType_t ) 0 )
{
const int8_t cRxLock = pxQueue->cRxLock;
traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
/*@close queue(pxQueue, Storage, N, M, W, R, K, is_locked, abs);@*/
prvCopyDataFromQueue( pxQueue, pvBuffer );
/*@open queue_after_prvCopyDataFromQueue(pxQueue, Storage, N, M, W, (R+1)%N, K, is_locked, abs);@*/
pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
/*@assert buffer(Storage, N, M, ?contents);@*/
/*@deq_lemma(K, (R+1)%N, contents, abs, head(abs));@*/
/* If the queue is locked the event list will not be modified.
* Instead update the lock count so the task that unlocks the queue
* will know that an ISR has removed data while the queue was
* locked. */
if( cRxLock == queueUNLOCKED )
{
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
{
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
{
/* The task waiting has a higher priority than us so
* force a context switch. */
if( pxHigherPriorityTaskWoken != NULL )
{
*pxHigherPriorityTaskWoken = pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
/* Increment the lock count so the task that unlocks the queue
* knows that data was removed while it was locked. */
configASSERT( cRxLock != queueINT8_MAX );
pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
}
/*@close queue(pxQueue, Storage, N, M, W, (R+1)%N, K-1, is_locked, tail(abs));@*/
/*@assert chars(pvBuffer, M, head(abs));@*/
xReturn = pdPASS;
}
else
{
/*@close queue(pxQueue, Storage, N, M, W, R, K, is_locked, abs);@*/
xReturn = pdFAIL;
traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
}
}
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
return xReturn;
}