Compare commits

...

86 Commits
0.10.0 ... fret

Author SHA1 Message Date
798aa2ceb9 remove dead code 2023-06-02 10:00:13 +02:00
183ff32beb igonre archives 2023-06-02 08:32:23 +02:00
89979b64d9 eval script wrangeling 2023-05-27 13:19:19 +02:00
35da9fdf24 HACK: interrupt limit for random fuzzing 2023-05-25 08:40:43 +02:00
1bca346b39 plot enpoints 2023-05-25 08:39:47 +02:00
8b90886299 paralellize plots 2023-05-23 12:06:14 +02:00
1bd7d853ac update plot script 2023-05-11 12:56:12 +02:00
253048e534 tweak time outputs 2023-05-10 09:25:22 +02:00
52cc00fedc add run_until_saturation 2023-05-08 18:23:32 +02:00
eec998c426 update snakefile 2023-05-04 11:47:56 +02:00
a328ddfd5f fix empty iterator crash, restart 2023-05-02 09:41:53 +02:00
6a042da5c1 set up configurations 2023-04-28 13:11:48 +02:00
2e20a22dc6 add missing use 2023-04-27 13:36:01 +02:00
bbc83ef6be randomize interrupts until wort 2023-04-24 15:33:03 +02:00
48466ac2d7 Test: remove pc from hash 2023-04-24 12:52:29 +02:00
ad8cecdba4 Test: hash notification states 2023-04-24 12:51:09 +02:00
c2afc0186e allow plotting from remote mount 2023-04-24 11:16:10 +02:00
4df67db479 update snakefile 2023-04-24 11:12:38 +02:00
402eff7b47 small fixes 2023-04-21 17:22:22 +02:00
a8a6c175c8 WIP: add simple interrupt time randomizer 2023-04-21 17:11:18 +02:00
8a79e12f91 update target_symbols 2023-04-21 14:12:04 +02:00
a3e38b6abb skip unchanged interrupts 2023-04-20 16:50:23 +02:00
eb04325f09 fix staeg setup 2023-04-20 16:32:19 +02:00
cfb8fa2b32 fix use 2023-04-20 16:04:45 +02:00
2889e9bf61 WIP: move interrupt mutation to new stage 2023-04-20 15:50:22 +02:00
960764cf85 wip: interrupt placement 2023-04-17 17:33:21 +02:00
e6816cc2de add interrupt mutator 2023-04-17 09:50:18 +02:00
f3180a35cc plot min and max lines 2023-03-23 13:20:23 +01:00
54312b2577 plot lines instead of points 2023-03-22 16:10:19 +01:00
6d920fd962 fixes 2023-03-21 16:58:44 +01:00
281979ecd8 revert changes 2023-03-21 16:39:21 +01:00
c628afaa81 add generation based genetic testing 2023-03-21 16:34:05 +01:00
c548c6bc09 snakefile: dump cases, fix random fuzzing 2023-03-17 11:15:55 +01:00
6e8769907d add a new scheduler for systemtraces 2023-03-16 16:13:16 +01:00
bf639e42fa fix snakefile, symbols 2023-03-14 17:08:05 +01:00
a05ff97d0c seed rng from SEED_RANDOM 2023-03-13 14:45:21 +01:00
f09034b7fe determinism fixes, scheduler precision, restarts 2023-03-13 14:43:58 +01:00
d118eeacbd switch to native breakpoints 2023-03-13 12:19:24 +01:00
57fc441118 fix interrupt config 2023-03-09 17:21:26 +01:00
10b5fe8a74 fix rng seed 2023-03-09 10:53:40 +01:00
7f987b037d configure restarting manager 2023-03-09 10:16:08 +01:00
58be280a62 add micro_longint 2023-03-03 12:30:36 +01:00
3c586f5047 fuzz multiple interrupts 2023-03-02 15:30:53 +01:00
9336b932d0 rework plotting 2023-02-28 17:01:04 +01:00
e0f73778e2 add interrupt fuzzing 2023-02-27 10:39:52 +01:00
e5ac5ba825 dump time for showmap 2023-02-24 12:25:08 +01:00
2acf3ef301 add plotting to snakefile 2023-02-24 12:07:53 +01:00
28bac2a850 add feed_longest to record random cases 2023-02-23 22:33:13 +01:00
41586dd8b1 plotting: respect types 2023-02-23 22:28:25 +01:00
7420aabeeb change feedback order 2023-02-20 12:28:39 +01:00
d118ff0056 fix build 2023-02-19 19:25:43 +01:00
dfe4f713b9 fix feedbacks 2023-02-19 18:38:31 +01:00
f7a05d2a7c benchmark using snakemake 2023-02-16 22:56:43 +01:00
2593bdf42f trace_abbs and dump path 2023-02-15 09:17:48 +01:00
8c8ab7c44e add graph feedback 2023-02-10 13:46:07 +01:00
9cadc5d61c update input sizes, dump worstcase, benchmarking 2023-02-07 14:59:21 +01:00
594554eca0 remove address translations, extend plots 2023-01-26 14:03:18 +01:00
267309b954 add hists to plot script 2023-01-26 09:47:12 +01:00
35435fbd97 speed up random generation 2023-01-25 16:14:17 +01:00
8fcc54bbdd write out times over time 2023-01-25 14:55:04 +01:00
1f538f9834 add sytemstate sceduler, fuzz until time 2023-01-25 12:59:17 +01:00
ba01f600ee re-add system state fuzzing 2023-01-24 09:11:45 +01:00
2cb479581d add virtual edge to longest runs 2023-01-19 10:33:13 +01:00
1fbf948478 do not force generated inputs 2023-01-17 10:26:27 +01:00
6e1d5695e3 debug stuff 2023-01-17 10:18:24 +01:00
8d31196614 random seeds, better plots 2023-01-17 10:01:15 +01:00
4c90144db5 add more benchmarks 2023-01-13 16:05:43 +01:00
eeaf7eb43f exectime increase feedback 2023-01-11 16:09:06 +01:00
68c4887dad rename bin, allow random fuzzing 2023-01-09 13:53:32 +01:00
7ca2d43f3d benchmark with duration 2023-01-09 12:39:51 +01:00
9f97852e4a add benchmark scripts 2023-01-09 12:39:35 +01:00
f4e1990387 add systemstate feature and dump times 2023-01-05 17:34:53 +01:00
d936234976 fix multicore build 2023-01-05 13:35:51 +01:00
795fbff61a ignore artifacts 2023-01-05 13:31:33 +01:00
6a9df35e28 minimal changes 2023-01-05 13:30:24 +01:00
9b9fbc3677 add interrupt injection 2023-01-03 20:09:45 +01:00
decae09931 input length and read input pointer 2022-12-23 15:32:20 +01:00
b812e994a6 draft: add graph feedback 2022-12-19 18:14:52 +01:00
4587f442d0 add TimeMaximizerCorpusScheduler 2022-12-19 17:44:58 +01:00
c748fecbe2 add last api callsite to system state 2022-12-19 13:13:38 +01:00
7595d25192 libafl_qemu: add jmp instrumentation 2022-12-19 13:12:37 +01:00
79bca99cc7 WIP: add systemstate tracking 2022-12-15 15:23:07 +01:00
b07f7ccbca add arguments 2022-12-12 17:41:33 +01:00
e3f38edd0a get time from ClockTimeFeedback 2022-12-12 15:30:05 +01:00
6ad55e3b29 fixup 2022-12-12 15:16:45 +01:00
f7ee38ebb2 WIP: port fret 2022-12-12 14:58:28 +01:00
31 changed files with 4997 additions and 0 deletions

4
fuzzers/FRET/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
*.qcow2
corpus
*.axf
demo

41
fuzzers/FRET/Cargo.toml Normal file
View File

@ -0,0 +1,41 @@
[package]
name = "fret"
version = "0.8.2"
authors = ["Andrea Fioraldi <andreafioraldi@gmail.com>", "Dominik Maier <domenukk@gmail.com>"]
edition = "2021"
[features]
default = ["std", "snapshot_restore", "singlecore", "restarting", "feed_systemtrace", "fuzz_int" ]
std = []
snapshot_restore = []
snapshot_fast = [ "snapshot_restore" ]
singlecore = []
restarting = ['singlecore']
trace_abbs = []
systemstate = []
feed_systemgraph = [ "systemstate" ]
feed_systemtrace = [ "systemstate" ]
feed_longest = [ ]
feed_afl = [ ]
feed_genetic = [ ]
fuzz_int = [ ]
gensize_1 = [ ]
gensize_10 = [ ]
gensize_100 = [ ]
observer_hitcounts = []
no_hash_state = []
run_until_saturation = []
[profile.release]
lto = true
codegen-units = 1
debug = true
[dependencies]
libafl = { path = "../../libafl/" }
libafl_qemu = { path = "../../libafl_qemu/", features = ["arm", "systemmode"] }
serde = { version = "1.0", default-features = false, features = ["alloc"] } # serialization lib
hashbrown = { version = "0.12", features = ["serde", "ahash-compile-time-rng"] } # A faster hashmap, nostd compatible
petgraph = { version="0.6.0", features = ["serde-1"] }
ron = "0.7" # write serialized data - including hashmaps
rand = "0.5"

26
fuzzers/FRET/README.md Normal file
View File

@ -0,0 +1,26 @@
# Qemu systemmode with launcher
This folder contains an example fuzzer for the qemu systemmode, using LLMP for fast multi-process fuzzing and crash detection.
## Build
To build this example, run
```bash
cargo build --release
cd example; sh build.sh; cd ..
```
This will build the the fuzzer (src/fuzzer.rs) and a small example binary based on FreeRTOS, which can run under a qemu emulation target.
## Run
Since the instrumentation is based on snapshtos QEMU needs a virtual drive (even if it is unused...).
Create on and then run the fuzzer:
```bash
# create an image
qemu-img create -f qcow2 dummy.qcow2 32M
# run the fuzzer
KERNEL=./example/example.elf target/release/qemu_systemmode -icount shift=auto,align=off,sleep=off -machine mps2-an385 -monitor null -kernel ./example/example.elf -serial null -nographic -snapshot -drive if=none,format=qcow2,file=dummy.qcow2 -S
```
Currently the ``KERNEL`` variable is needed because the fuzzer does not parse QEMUs arguments to find the binary.

12
fuzzers/FRET/benchmark/.gitignore vendored Normal file
View File

@ -0,0 +1,12 @@
*dump
timedump*
corpora
build
mnt
.R*
*.png
*.pdf
bins
.snakemake
*.zip
*.tar.*

View File

@ -0,0 +1,57 @@
TIME=7200
corpora/%/seed:
mkdir -p $$(dirname $@)
LINE=$$(grep "^$$(basename $*)" target_symbols.csv); \
export \
KERNEL=benchmark/build/$*.elf \
FUZZ_MAIN=$$(echo $$LINE | cut -d, -f2) \
FUZZ_INPUT=$$(echo $$LINE | cut -d, -f3) \
FUZZ_INPUT_LEN=$$(echo $$LINE | cut -d, -f4) \
BREAKPOINT=$$(echo $$LINE | cut -d, -f5) \
SEED_DIR=benchmark/corpora/$* \
DUMP_SEED=seed; \
../fuzzer.sh
timedump/%$(FUZZ_RANDOM)$(SUFFIX): corpora/%/seed
mkdir -p $$(dirname $@)
LINE=$$(grep "^$$(basename $*)" target_symbols.csv); \
export \
KERNEL=benchmark/build/$*.elf \
FUZZ_MAIN=$$(echo $$LINE | cut -d, -f2) \
FUZZ_INPUT=$$(echo $$LINE | cut -d, -f3) \
FUZZ_INPUT_LEN=$$(echo $$LINE | cut -d, -f4) \
BREAKPOINT=$$(echo $$LINE | cut -d, -f5) \
SEED_RANDOM=1 \
TIME_DUMP=benchmark/$@ \
CASE_DUMP=benchmark/$@; \
../fuzzer.sh + + + + + $(TIME) + + + > $@_log
#SEED_DIR=benchmark/corpora/$*
all_sequential: timedump/sequential/mpeg2$(FUZZ_RANDOM) timedump/sequential/dijkstra$(FUZZ_RANDOM) timedump/sequential/epic$(FUZZ_RANDOM) \
timedump/sequential/g723_enc$(FUZZ_RANDOM) timedump/sequential/audiobeam$(FUZZ_RANDOM) \
timedump/sequential/gsm_enc$(FUZZ_RANDOM)
all_kernel: timedump/kernel/bsort$(FUZZ_RANDOM) timedump/kernel/insertsort$(FUZZ_RANDOM) #timedump/kernel/fft$(FUZZ_RANDOM)
all_app: timedump/app/lift$(FUZZ_RANDOM)
all_system: timedump/lift$(FUZZ_RANDOM)$(SUFFIX)
all_period: timedump/waters$(FUZZ_RANDOM)$(SUFFIX)
tacle_rtos: timedump/tacle_rtos$(FUZZ_RANDOM)
graphics:
Rscript --vanilla plot_comparison.r mnt/timedump/sequential audiobeam
Rscript --vanilla plot_comparison.r mnt/timedump/sequential dijkstra
Rscript --vanilla plot_comparison.r mnt/timedump/sequential epic
Rscript --vanilla plot_comparison.r mnt/timedump/sequential g723_enc
# Rscript --vanilla plot_comparison.r mnt/timedump/sequential gsm_enc
# Rscript --vanilla plot_comparison.r mnt/timedump/sequential huff_dec
Rscript --vanilla plot_comparison.r mnt/timedump/sequential mpeg2
# Rscript --vanilla plot_comparison.r mnt/timedump/sequential rijndael_dec
# Rscript --vanilla plot_comparison.r mnt/timedump/sequential rijndael_enc
clean:
rm -rf corpora timedump

View File

@ -0,0 +1,281 @@
import csv
import os
def_flags="--no-default-features --features std,snapshot_restore,singlecore,restarting,run_until_saturation"
remote="timedump_253048_1873f6_all/"
RUNTIME=10
TARGET_REPS_A=2
TARGET_REPS_B=2
NUM_NODES=2
REP_PER_NODE_A=int(TARGET_REPS_A/NUM_NODES)
REP_PER_NODE_B=int(TARGET_REPS_B/NUM_NODES)
NODE_ID= 0 if os.getenv('NODE_ID') == None else int(os.environ['NODE_ID'])
MY_RANGE_A=range(NODE_ID*REP_PER_NODE_A,(NODE_ID+1)*REP_PER_NODE_A)
MY_RANGE_B=range(NODE_ID*REP_PER_NODE_B,(NODE_ID+1)*REP_PER_NODE_B)
rule build_showmap:
output:
directory("bins/target_showmap")
shell:
"cargo build --target-dir {output} {def_flags},systemstate"
rule build_random:
output:
directory("bins/target_random")
shell:
"cargo build --target-dir {output} {def_flags},feed_longest"
rule build_feedlongest:
output:
directory("bins/target_feedlongest")
shell:
"cargo build --target-dir {output} {def_flags},feed_longest"
rule build_frafl:
output:
directory("bins/target_frafl")
shell:
"cargo build --target-dir {output} {def_flags},feed_afl,feed_longest"
rule build_afl:
output:
directory("bins/target_afl")
shell:
"cargo build --target-dir {output} {def_flags},feed_afl,observer_hitcounts"
rule build_state:
output:
directory("bins/target_state")
shell:
"cargo build --target-dir {output} {def_flags},feed_systemtrace"
rule build_nohashstate:
output:
directory("bins/target_nohashstate")
shell:
"cargo build --target-dir {output} {def_flags},feed_systemtrace,no_hash_state"
rule build_graph:
output:
directory("bins/target_graph")
shell:
"cargo build --target-dir {output} {def_flags},feed_systemgraph"
rule build_showmap_int:
output:
directory("bins/target_showmap_int")
shell:
"cargo build --target-dir {output} {def_flags},systemstate,fuzz_int"
rule build_random_int:
output:
directory("bins/target_random_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_longest,fuzz_int"
rule build_state_int:
output:
directory("bins/target_state_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_systemtrace,fuzz_int"
rule build_nohashstate_int:
output:
directory("bins/target_nohashstate_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_systemtrace,fuzz_int,no_hash_state"
rule build_frafl_int:
output:
directory("bins/target_frafl_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_afl,feed_longest,fuzz_int"
rule build_afl_int:
output:
directory("bins/target_afl_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_afl,fuzz_int,observer_hitcounts"
rule build_feedlongest_int:
output:
directory("bins/target_feedlongest_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_longest,fuzz_int"
rule build_feedgeneration1:
output:
directory("bins/target_feedgeneration1")
shell:
"cargo build --target-dir {output} {def_flags},feed_genetic,gensize_1"
rule build_feedgeneration1_int:
output:
directory("bins/target_feedgeneration1_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_genetic,fuzz_int,gensize_1"
rule build_feedgeneration10:
output:
directory("bins/target_feedgeneration10")
shell:
"cargo build --target-dir {output} {def_flags},feed_genetic,gensize_10"
rule build_feedgeneration10_int:
output:
directory("bins/target_feedgeneration10_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_genetic,fuzz_int,gensize_10"
rule build_feedgeneration100:
output:
directory("bins/target_feedgeneration100")
shell:
"cargo build --target-dir {output} {def_flags},feed_genetic,gensize_100"
rule build_feedgeneration100_int:
output:
directory("bins/target_feedgeneration100_int")
shell:
"cargo build --target-dir {output} {def_flags},feed_genetic,fuzz_int,gensize_100"
rule run_bench:
input:
"build/{target}.elf",
"bins/target_{fuzzer}"
output:
multiext("timedump/{fuzzer}/{target}.{num}", "", ".log") # , ".case"
run:
with open('target_symbols.csv') as csvfile:
reader = csv.DictReader(csvfile)
line = next((x for x in reader if x['kernel']==wildcards.target), None)
if line == None:
return False
kernel=line['kernel']
fuzz_main=line['main_function']
fuzz_input=line['input_symbol']
fuzz_len=line['input_size']
bkp=line['return_function']
script="""
mkdir -p $(dirname {output[0]})
export KERNEL=$(pwd)/{input[0]}
export FUZZ_MAIN={fuzz_main}
export FUZZ_INPUT={fuzz_input}
export FUZZ_INPUT_LEN={fuzz_len}
export BREAKPOINT={bkp}
export SEED_RANDOM={wildcards.num}
export TIME_DUMP=$(pwd)/{output[0]}
export CASE_DUMP=$(pwd)/{output[0]}.case
export TRACE_DUMP=$(pwd)/{output[0]}.trace
export FUZZ_ITERS={RUNTIME}
export FUZZER=$(pwd)/{input[1]}/debug/fret
set +e
../fuzzer.sh > {output[1]} 2>&1
exit 0
"""
if wildcards.fuzzer.find('random') >= 0:
script="export FUZZ_RANDOM={output[1]}\n"+script
shell(script)
rule run_showmap:
input:
"{remote}build/{target}.elf",
"bins/target_showmap",
"bins/target_showmap_int",
"{remote}timedump/{fuzzer}/{target}.{num}.case"
output:
"{remote}timedump/{fuzzer}/{target}.{num}.trace.ron",
"{remote}timedump/{fuzzer}/{target}.{num}.case.time",
run:
with open('target_symbols.csv') as csvfile:
reader = csv.DictReader(csvfile)
line = next((x for x in reader if x['kernel']==wildcards.target), None)
if line == None:
return False
kernel=line['kernel']
fuzz_main=line['main_function']
fuzz_input=line['input_symbol']
fuzz_len=line['input_size']
bkp=line['return_function']
script=""
if wildcards.fuzzer.find('_int') > -1:
script="export FUZZER=$(pwd)/{input[2]}/debug/fret\n"
else:
script="export FUZZER=$(pwd)/{input[1]}/debug/fret\n"
script+="""
mkdir -p $(dirname {output})
export KERNEL=$(pwd)/{input[0]}
export FUZZ_MAIN={fuzz_main}
export FUZZ_INPUT={fuzz_input}
export FUZZ_INPUT_LEN={fuzz_len}
export BREAKPOINT={bkp}
export TRACE_DUMP=$(pwd)/{output[0]}
export DO_SHOWMAP=$(pwd)/{input[3]}
export TIME_DUMP=$(pwd)/{output[1]}
set +e
../fuzzer.sh
exit 0
"""
if wildcards.fuzzer.find('random') >= 0:
script="export FUZZ_RANDOM=1\n"+script
shell(script)
rule tarnsform_trace:
input:
"{remote}timedump/{fuzzer}/{target}.{num}.trace.ron"
output:
"{remote}timedump/{fuzzer}/{target}.{num}.trace.csv"
shell:
"$(pwd)/../../../../state2gantt/target/debug/state2gantt {input} > {output[0]}"
rule trace2gantt:
input:
"{remote}timedump/{fuzzer}/{target}.{num}.trace.csv"
output:
"{remote}timedump/{fuzzer}/{target}.{num}.trace.csv.png"
shell:
"Rscript --vanilla $(pwd)/../../../../state2gantt/gantt.R {input}"
rule all_main:
input:
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['random','afl','feedgeneration10','state'], target=['waters','watersv2'],num=range(0,3))
rule all_main_int:
input:
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['random_int','afl_int','feedgeneration10_int','state_int'], target=['waters_int','watersv2_int'],num=range(0,4))
rule all_compare_feedgeneration:
input:
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['feedgeneration1','feedgeneration10','feedgeneration100'], target=['waters_int','watersv2'],num=range(0,10))
rule all_compare_feedgeneration_int:
input:
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['feedgeneration1_int','feedgeneration10_int','feedgeneration100_int'], target=['waters_int','watersv2_int'],num=range(0,10))
rule all_compare_afl:
input:
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['afl','frafl','feedlongest'], target=['waters','watersv2'],num=range(0,10))
rule all_compare_afl_int:
input:
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['afl_int','frafl_int','feedlongest_int'], target=['waters_int','watersv2_int'],num=range(0,10))
rule all_images:
input:
expand("{remote}timedump/{fuzzer}/{target}.{num}.trace.csv.png",remote=remote, fuzzer=['afl','feedgeneration10','state'], target=['waters','watersv2'],num=range(0,3))
rule all_images_int:
input:
expand("{remote}timedump/{fuzzer}/{target}.{num}.trace.csv.png",remote=remote, fuzzer=['afl_int','feedgeneration10_int','state_int'], target=['waters_int','watersv2_int'],num=range(0,3))
rule clusterfuzz:
input:
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['random','afl','feedgeneration10','state'], target=['waters','watersv2'],num=MY_RANGE_A),
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['random_int','afl_int','feedgeneration10_int','state_int'], target=['waters_int','watersv2_int'],num=MY_RANGE_A),
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['feedgeneration1','feedgeneration10','feedgeneration100'], target=['waters_int','watersv2'],num=MY_RANGE_B),
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['feedgeneration1_int','feedgeneration10_int','feedgeneration100_int'], target=['waters_int','watersv2_int'],num=MY_RANGE_B),
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['afl','frafl','feedlongest'], target=['waters','watersv2'],num=MY_RANGE_B),
expand("timedump/{fuzzer}/{target}.{num}", fuzzer=['afl_int','frafl_int','feedlongest_int'], target=['waters_int','watersv2_int'],num=MY_RANGE_B),
rule all_bins:
input:
expand("bins/target_{target}{flag}",target=['random','afl','frafl','state','feedgeneration100'],flag=['','_int'])

View File

@ -0,0 +1,83 @@
library("mosaic")
args = commandArgs(trailingOnly=TRUE)
#myolors=c("#339933","#0066ff","#993300") # grün, balu, rot
myolors=c("dark green","dark blue","dark red", "yellow") # grün, balu, rot
if (length(args)==0) {
runtype="timedump"
target="waters"
filename_1=sprintf("%s.png",target)
filename_2=sprintf("%s_maxline.png",target)
filename_3=sprintf("%s_hist.png",target)
} else {
runtype=args[1]
target=args[2]
filename_1=sprintf("%s.png",args[2])
filename_2=sprintf("%s_maxline.png",args[2])
filename_3=sprintf("%s_hist.png",args[2])
# filename_1=args[3]
}
file_1=sprintf("~/code/FRET/LibAFL/fuzzers/FRET/benchmark/%s/%s_state",runtype,target)
file_2=sprintf("~/code/FRET/LibAFL/fuzzers/FRET/benchmark/%s/%s_afl",runtype,target)
file_3=sprintf("~/code/FRET/LibAFL/fuzzers/FRET/benchmark/%s/%s_random",runtype,target)
file_4=sprintf("~/code/FRET/LibAFL/fuzzers/FRET/benchmark/%s/%s_graph",runtype,target)
timetrace <- read.table(file_1, quote="\"", comment.char="")
timetrace_afl <- read.table(file_2, quote="\"", comment.char="")
timetrace_rand <- read.table(file_3, quote="\"", comment.char="")
timetrace_graph <- read.table(file_4, quote="\"", comment.char="")
timetrace[[2]]=seq_len(length(timetrace[[1]]))
timetrace_afl[[2]]=seq_len(length(timetrace_afl[[1]]))
timetrace_rand[[2]]=seq_len(length(timetrace_rand[[1]]))
timetrace_graph[[2]]=seq_len(length(timetrace_graph[[1]]))
names(timetrace)[1] <- "timetrace"
names(timetrace)[2] <- "iter"
names(timetrace_afl)[1] <- "timetrace"
names(timetrace_afl)[2] <- "iter"
names(timetrace_rand)[1] <- "timetrace"
names(timetrace_rand)[2] <- "iter"
names(timetrace_graph)[1] <- "timetrace"
names(timetrace_graph)[2] <- "iter"
png(file=filename_1)
# pdf(file=filename_1,width=8, height=8)
plot(timetrace[[2]],timetrace[[1]], col=myolors[1], xlab="iters", ylab="wcet", pch='.')
points(timetrace_afl[[2]],timetrace_afl[[1]], col=myolors[2], pch='.')
points(timetrace_rand[[2]],timetrace_rand[[1]], col=myolors[3], pch='.')
points(timetrace_graph[[2]],timetrace_graph[[1]], col=myolors[4], pch='.')
abline(lm(timetrace ~ iter, data=timetrace),col=myolors[1])
abline(lm(timetrace ~ iter, data=timetrace_afl),col=myolors[2])
abline(lm(timetrace ~ iter, data=timetrace_rand),col=myolors[3])
dev.off()
png(file=filename_3)
gf_histogram(~ timetrace,data=timetrace, fill=myolors[1]) %>%
gf_histogram(~ timetrace,data=timetrace_afl, fill=myolors[2]) %>%
gf_histogram(~ timetrace,data=timetrace_rand, fill=myolors[3]) %>%
gf_histogram(~ timetrace,data=timetrace_graph, fill=myolors[4])
dev.off()
# Takes a flat list
trace2maxline <- function(tr) {
maxline = tr
for (var in seq_len(length(maxline))[2:length(maxline)]) {
maxline[var] = max(maxline[var],maxline[var-1])
}
#plot(seq_len(length(maxline)),maxline,"l",xlab="Index",ylab="WOET")
return(maxline)
}
timetrace[[1]] <- trace2maxline(timetrace[[1]])
timetrace_afl[[1]] <- trace2maxline(timetrace_afl[[1]])
timetrace_rand[[1]] <- trace2maxline(timetrace_rand[[1]])
timetrace_graph[[1]] <- trace2maxline(timetrace_graph[[1]])
png(file=filename_2)
plot(timetrace[[2]],timetrace[[1]], col=myolors[1], xlab="iters", ylab="wcet", pch='.')
points(timetrace_afl[[2]],timetrace_afl[[1]], col=myolors[2], pch='.')
points(timetrace_rand[[2]],timetrace_rand[[1]], col=myolors[3], pch='.')
points(timetrace_graph[[2]],timetrace_graph[[1]], col=myolors[4], pch='.')
#abline(lm(timetrace ~ iter, data=timetrace),col=myolors[1])
#abline(lm(timetrace ~ iter, data=timetrace_afl),col=myolors[2])
#abline(lm(timetrace ~ iter, data=timetrace_rand),col=myolors[3])
dev.off()

View File

@ -0,0 +1,327 @@
library("mosaic")
library("dplyr")
library("foreach")
library("doParallel")
#setup parallel backend to use many processors
cores=detectCores()
cl <- makeCluster(cores[1]-1) #not to overload your computer
registerDoParallel(cl)
args = commandArgs(trailingOnly=TRUE)
if (length(args)==0) {
runtype="timedump_253048_1873f6_all/timedump"
target="waters_int"
outputpath="~/code/FRET/LibAFL/fuzzers/FRET/benchmark/"
#MY_SELECTION <- c('state', 'afl', 'graph', 'random')
SAVE_FILE=TRUE
} else {
runtype=args[1]
target=args[2]
outputpath=args[3]
MY_SELECTION <- args[4:length(args)]
SAVE_FILE=TRUE
}
worst_cases <- list(waters=0, waters_int=0, tmr=405669, micro_longint=0)
worst_case <- worst_cases[[target]]
if (is.null(worst_case)) {
worst_case = 0
}
#MY_COLORS=c("green","blue","red", "orange", "pink", "black")
MY_COLORS <- c("green", "blue", "red", "magenta", "orange", "cyan", "pink", "gray", "orange", "black", "yellow","brown")
BENCHDIR=sprintf("~/code/FRET/LibAFL/fuzzers/FRET/benchmark/%s",runtype)
BASENAMES=Filter(function(x) x!="" && substr(x,1,1)!='.',list.dirs(BENCHDIR,full.names=FALSE))
PATTERNS="%s.[0-9]*$"
#RIBBON='sd'
#RIBBON='span'
RIBBON='both'
DRAW_WC = worst_case > 0
LEGEND_POS="topright"
#LEGEND_POS="bottomright"
CONTINUE_LINE_TO_END=FALSE
# https://www.r-bloggers.com/2013/04/how-to-change-the-alpha-value-of-colours-in-r/
alpha <- function(col, alpha=1){
if(missing(col))
stop("Please provide a vector of colours.")
apply(sapply(col, col2rgb)/255, 2,
function(x)
rgb(x[1], x[2], x[3], alpha=alpha))
}
# Trimm a list of data frames to common length
trim_data <- function(input,len=NULL) {
if (is.null(len)) {
len <- min(sapply(input, function(v) dim(v)[1]))
}
return(lapply(input, function(d) slice_head(d,n=len)))
}
length_of_data <- function(input) {
min(sapply(input, function(v) dim(v)[1]))
}
# Takes a flat list
trace2maxline <- function(tr) {
maxline = tr
for (var in seq_len(length(maxline))[2:length(maxline)]) {
#if (maxline[var]>1000000000) {
# maxline[var]=maxline[var-1]
#} else {
maxline[var] = max(maxline[var],maxline[var-1])
#}
}
#plot(seq_len(length(maxline)),maxline,"l",xlab="Index",ylab="WOET")
return(maxline)
}
# Take a list of data frames, output same form but maxlines
data2maxlines <- function(tr) {
min_length <- min(sapply(tr, function(v) dim(v)[1]))
maxline <- tr
for (var in seq_len(length(tr))) {
maxline[[var]][[1]]=trace2maxline(tr[[var]][[1]])
}
return(maxline)
}
# Take a multi-column data frame, output same form but maxlines
frame2maxlines <- function(tr) {
for (var in seq_len(length(tr))) {
tr[[var]]=trace2maxline(tr[[var]])
}
return(tr)
}
trace2maxpoints <- function(tr) {
minval = tr[1,1]
collect = tr[1,]
for (i in seq_len(dim(tr)[1])) {
if (minval < tr[i,1]) {
collect = rbind(collect,tr[i,])
minval = tr[i,1]
}
}
tmp = tr[dim(tr)[1],]
tmp[1] = minval[1]
collect = rbind(collect,tmp)
return(collect)
}
sample_maxpoints <- function(tr,po) {
index = 1
collect=NULL
endpoint = dim(tr)[1]
for (p in po) {
if (p<=tr[1,2]) {
tmp = tr[index,]
tmp[2] = p
collect = rbind(collect, tmp)
} else if (p>=tr[endpoint,2]) {
tmp = tr[endpoint,]
tmp[2] = p
collect = rbind(collect, tmp)
} else {
for (i in seq(index,endpoint)-1) {
if (p >= tr[i,2] && p<tr[i+1,2]) {
tmp = tr[i,]
tmp[2] = p
collect = rbind(collect, tmp)
index = i
break
}
}
}
}
return(collect)
}
#https://www.r-bloggers.com/2012/01/parallel-r-loops-for-windows-and-linux/
all_runtypetables <- foreach (bn=BASENAMES) %do% {
runtypefiles <- list.files(file.path(BENCHDIR,bn),pattern=sprintf(PATTERNS,target),full.names = TRUE)
if (length(runtypefiles) > 0) {
runtypetables_reduced <- foreach(i=seq_len(length(runtypefiles))) %dopar% {
rtable = read.csv(runtypefiles[[i]], col.names=c(sprintf("%s%d",bn,i),sprintf("times%d",i)))
trace2maxpoints(rtable)
}
#runtypetables <- lapply(seq_len(length(runtypefiles)),
# function(i)read.csv(runtypefiles[[i]], col.names=c(sprintf("%s%d",bn,i),sprintf("times%d",i))))
#runtypetables_reduced <- lapply(runtypetables, trace2maxpoints)
runtypetables_reduced
#all_runtypetables = c(all_runtypetables, list(runtypetables_reduced))
}
}
all_runtypetables = all_runtypetables[lapply(all_runtypetables, length) > 0]
all_min_points = foreach(rtt=all_runtypetables,.combine = cbind) %do% {
bn = substr(names(rtt[[1]])[1],1,nchar(names(rtt[[1]])[1])-1)
ret = data.frame(min(unlist(lapply(rtt, function(v) v[dim(v)[1],2]))))
names(ret)[1] = bn
ret/(3600 * 1000)
}
all_max_points = foreach(rtt=all_runtypetables,.combine = cbind) %do% {
bn = substr(names(rtt[[1]])[1],1,nchar(names(rtt[[1]])[1])-1)
ret = data.frame(max(unlist(lapply(rtt, function(v) v[dim(v)[1],2]))))
names(ret)[1] = bn
ret/(3600 * 1000)
}
all_points = sort(unique(Reduce(c, lapply(all_runtypetables, function(v) Reduce(c, lapply(v, function(w) w[[2]]))))))
all_maxlines <- foreach (rtt=all_runtypetables) %do% {
bn = substr(names(rtt[[1]])[1],1,nchar(names(rtt[[1]])[1])-1)
runtypetables_sampled = foreach(v=rtt) %dopar% {
sample_maxpoints(v, all_points)[1]
}
#runtypetables_sampled = lapply(rtt, function(v) sample_maxpoints(v, all_points)[1])
tmp_frame <- Reduce(cbind, runtypetables_sampled)
statframe <- data.frame(rowMeans(tmp_frame),apply(tmp_frame, 1, sd),apply(tmp_frame, 1, min),apply(tmp_frame, 1, max), apply(tmp_frame, 1, median))
names(statframe) <- c(bn, sprintf("%s_sd",bn), sprintf("%s_min",bn), sprintf("%s_max",bn), sprintf("%s_med",bn))
#statframe[sprintf("%s_times",bn)] = all_points
round(statframe)
#all_maxlines = c(all_maxlines, list(round(statframe)))
}
one_frame<-data.frame(all_maxlines)
one_frame[length(one_frame)+1] <- all_points/(3600 * 1000)
names(one_frame)[length(one_frame)] <- 'time'
typenames = names(one_frame)[which(names(one_frame) != 'time')]
typenames = typenames[which(!endsWith(typenames, "_sd"))]
typenames = typenames[which(!endsWith(typenames, "_med"))]
ylow=min(one_frame[typenames])
yhigh=max(one_frame[typenames],worst_case)
typenames = typenames[which(!endsWith(typenames, "_min"))]
typenames = typenames[which(!endsWith(typenames, "_max"))]
ml2lines <- function(ml,lim) {
lines = NULL
last = 0
for (i in seq_len(dim(ml)[1])) {
if (!CONTINUE_LINE_TO_END && lim<ml[i,2]) {
break
}
lines = rbind(lines, cbind(X=last, Y=ml[i,1]))
lines = rbind(lines, cbind(X=ml[i,2], Y=ml[i,1]))
last = ml[i,2]
}
return(lines)
}
plotting <- function(selection, filename, MY_COLORS_) {
# filter out names of iters and sd cols
typenames = names(one_frame)[which(names(one_frame) != 'times')]
typenames = typenames[which(!endsWith(typenames, "_sd"))]
typenames = typenames[which(!endsWith(typenames, "_med"))]
typenames = typenames[which(!endsWith(typenames, "_min"))]
typenames = typenames[which(!endsWith(typenames, "_max"))]
typenames = selection[which(selection %in% typenames)]
if (length(typenames) == 0) {return()}
h_ = 500
w_ = h_*4/3
if (SAVE_FILE) {png(file=sprintf("%s%s_%s.png",outputpath,target,filename), width=w_, height=h_)}
par(mar=c(4,4,1,1))
par(oma=c(0,0,0,0))
plot(c(1,max(one_frame['time'])),c(ylow,yhigh), col='white', xlab="Time [h]", ylab="WORT [insn]", pch='.')
for (t in seq_len(length(typenames))) {
#proj = one_frame[seq(1, dim(one_frame)[1], by=max(1, length(one_frame[[1]])/(10*w_))),]
#points(proj[c('iters',typenames[t])], col=MY_COLORS_[t], pch='.')
avglines = ml2lines(one_frame[c(typenames[t],'time')],all_max_points[typenames[t]])
#lines(avglines, col=MY_COLORS_[t])
medlines = ml2lines(one_frame[c(sprintf("%s_med",typenames[t]),'time')],all_max_points[typenames[t]])
lines(medlines, col=MY_COLORS_[t], lty='solid')
milines = NULL
malines = NULL
milines = ml2lines(one_frame[c(sprintf("%s_min",typenames[t]),'time')],all_max_points[typenames[t]])
malines = ml2lines(one_frame[c(sprintf("%s_max",typenames[t]),'time')],all_max_points[typenames[t]])
if (exists("RIBBON") && ( RIBBON=='max' )) {
#lines(milines, col=MY_COLORS_[t], lty='dashed')
lines(malines, col=MY_COLORS_[t], lty='dashed')
#points(proj[c('iters',sprintf("%s_min",typenames[t]))], col=MY_COLORS_[t], pch='.')
#points(proj[c('iters',sprintf("%s_max",typenames[t]))], col=MY_COLORS_[t], pch='.')
}
if (exists("RIBBON") && RIBBON != '') {
for (i in seq_len(dim(avglines)[1]-1)) {
if (RIBBON=='both') {
# draw boxes
x_l <- milines[i,][['X']]
x_r <- milines[i+1,][['X']]
y_l <- milines[i,][['Y']]
y_h <- malines[i,][['Y']]
rect(x_l, y_l, x_r, y_h, col=alpha(MY_COLORS_[t], alpha=0.1), lwd=0)
}
if (FALSE && RIBBON=='span') {
# draw boxes
x_l <- milines[i,][['X']]
x_r <- milines[i+1,][['X']]
y_l <- milines[i,][['Y']]
y_h <- malines[i,][['Y']]
rect(x_l, y_l, x_r, y_h, col=alpha(MY_COLORS_[t], alpha=0.1), lwd=0)
}
#if (FALSE && RIBBON=='both' || RIBBON=='sd') {
# # draw sd
# x_l <- avglines[i,][['X']]
# x_r <- avglines[i+1,][['X']]
# y_l <- avglines[i,][['Y']]-one_frame[ceiling(i/2),][[sprintf("%s_sd",typenames[t])]]
# y_h <- avglines[i,][['Y']]+one_frame[ceiling(i/2),][[sprintf("%s_sd",typenames[t])]]
# if (x_r != x_l) {
# rect(x_l, y_l, x_r, y_h, col=alpha(MY_COLORS_[t], alpha=0.1), lwd=0)
# }
#}
#sd_ <- row[sprintf("%s_sd",typenames[t])][[1]]
#min_ <- row[sprintf("%s_min",typenames[t])][[1]]
#max_ <- row[sprintf("%s_max",typenames[t])][[1]]
#if (exists("RIBBON")) {
# switch (RIBBON,
# 'sd' = arrows(x_, y_-sd_, x_, y_+sd_, length=0, angle=90, code=3, col=alpha(MY_COLORS_[t], alpha=0.03)),
# 'both' = arrows(x_, y_-sd_, x_, y_+sd_, length=0, angle=90, code=3, col=alpha(MY_COLORS_[t], alpha=0.05)),
# 'span' = #arrows(x_, min_, x_, max_, length=0, angle=90, code=3, col=alpha(MY_COLORS_[t], alpha=0.03))
# )
#}
##arrows(x_, y_-sd_, x_, y_+sd_, length=0.05, angle=90, code=3, col=alpha(MY_COLORS[t], alpha=0.1))
}
}
}
leglines=typenames
if (DRAW_WC) {
lines(c(0,length(one_frame[[1]])),y=c(worst_case,worst_case), lty='dotted')
leglines=c(typenames, 'worst observed')
}
legend(LEGEND_POS, legend=leglines,#"topleft"
col=c(MY_COLORS_[1:length(typenames)],"black"),
lty=c(rep("solid",length(typenames)),"dotted"))
if (SAVE_FILE) {dev.off()}
}
stopCluster(cl)
par(mar=c(3.8,3.8,0,0))
par(oma=c(0,0,0,0))
#RIBBON='both'
#MY_SELECTION = c('state_int','generation100_int')
#MY_SELECTION = c('state_int','frafl_int')
if (exists("MY_SELECTION")) {
plotting(MY_SELECTION, 'custom', MY_COLORS[c(1,2)])
} else {
# MY_SELECTION=c('state', 'afl', 'random', 'feedlongest', 'feedgeneration', 'feedgeneration10')
#MY_SELECTION=c('state_int', 'afl_int', 'random_int', 'feedlongest_int', 'feedgeneration_int', 'feedgeneration10_int')
#MY_SELECTION=c('state', 'frAFL', 'statenohash', 'feedgeneration10')
#MY_SELECTION=c('state_int', 'frAFL_int', 'statenohash_int', 'feedgeneration10_int')
MY_SELECTION=typenames
RIBBON='both'
for (i in seq_len(length(MY_SELECTION))) {
n <- MY_SELECTION[i]
plotting(c(n), n, c(MY_COLORS[i]))
}
RIBBON='max'
plotting(MY_SELECTION,'all', MY_COLORS)
}
for (t in seq_len(length(typenames))) {
li = one_frame[dim(one_frame)[1],]
pear = (li[[typenames[[t]]]]-li[[sprintf("%s_med",typenames[[t]])]])/li[[sprintf("%s_sd",typenames[[t]])]]
print(sprintf("%s pearson: %g",typenames[[t]],pear))
}

View File

@ -0,0 +1,24 @@
kernel,main_function,input_symbol,input_size,return_function
mpeg2,mpeg2_main,mpeg2_oldorgframe,90112,mpeg2_return
audiobeam,audiobeam_main,audiobeam_input,11520,audiobeam_return
epic,epic_main,epic_image,4096,epic_return
dijkstra,dijkstra_main,dijkstra_AdjMatrix,10000,dijkstra_return
fft,fft_main,fft_twidtable,2046,fft_return
bsort,bsort_main,bsort_Array,400,bsort_return
insertsort,insertsort_main,insertsort_a,400,insertsort_return
g723_enc,g723_enc_main,g723_enc_INPUT,1024,g723_enc_return
rijndael_dec,rijndael_dec_main,rijndael_dec_data,32768,rijndael_dec_return
rijndael_enc,rijndael_enc_main,rijndael_enc_data,31369,rijndael_enc_return
huff_dec,huff_dec_main,huff_dec_encoded,419,huff_dec_return
huff_enc,huff_enc_main,huff_enc_plaintext,600,huff_enc_return
gsm_enc,gsm_enc_main,gsm_enc_pcmdata,6400,gsm_enc_return
tmr,main,FUZZ_INPUT,32,trigger_Qemu_break
tacle_rtos,prvStage0,FUZZ_INPUT,604,trigger_Qemu_break
lift,main_lift,FUZZ_INPUT,100,trigger_Qemu_break
waters,main_waters,FUZZ_INPUT,4096,trigger_Qemu_break
watersv2,main_waters,FUZZ_INPUT,4096,trigger_Qemu_break
waters_int,main_waters,FUZZ_INPUT,4096,trigger_Qemu_break
watersv2_int,main_waters,FUZZ_INPUT,4096,trigger_Qemu_break
micro_branchless,main_branchless,FUZZ_INPUT,4,trigger_Qemu_break
micro_int,main_int,FUZZ_INPUT,16,trigger_Qemu_break
micro_longint,main_micro_longint,FUZZ_INPUT,16,trigger_Qemu_break
1 kernel main_function input_symbol input_size return_function
2 mpeg2 mpeg2_main mpeg2_oldorgframe 90112 mpeg2_return
3 audiobeam audiobeam_main audiobeam_input 11520 audiobeam_return
4 epic epic_main epic_image 4096 epic_return
5 dijkstra dijkstra_main dijkstra_AdjMatrix 10000 dijkstra_return
6 fft fft_main fft_twidtable 2046 fft_return
7 bsort bsort_main bsort_Array 400 bsort_return
8 insertsort insertsort_main insertsort_a 400 insertsort_return
9 g723_enc g723_enc_main g723_enc_INPUT 1024 g723_enc_return
10 rijndael_dec rijndael_dec_main rijndael_dec_data 32768 rijndael_dec_return
11 rijndael_enc rijndael_enc_main rijndael_enc_data 31369 rijndael_enc_return
12 huff_dec huff_dec_main huff_dec_encoded 419 huff_dec_return
13 huff_enc huff_enc_main huff_enc_plaintext 600 huff_enc_return
14 gsm_enc gsm_enc_main gsm_enc_pcmdata 6400 gsm_enc_return
15 tmr main FUZZ_INPUT 32 trigger_Qemu_break
16 tacle_rtos prvStage0 FUZZ_INPUT 604 trigger_Qemu_break
17 lift main_lift FUZZ_INPUT 100 trigger_Qemu_break
18 waters main_waters FUZZ_INPUT 4096 trigger_Qemu_break
19 watersv2 main_waters FUZZ_INPUT 4096 trigger_Qemu_break
20 waters_int main_waters FUZZ_INPUT 4096 trigger_Qemu_break
21 watersv2_int main_waters FUZZ_INPUT 4096 trigger_Qemu_break
22 micro_branchless main_branchless FUZZ_INPUT 4 trigger_Qemu_break
23 micro_int main_int FUZZ_INPUT 16 trigger_Qemu_break
24 micro_longint main_micro_longint FUZZ_INPUT 16 trigger_Qemu_break

2
fuzzers/FRET/example/build.sh Executable file
View File

@ -0,0 +1,2 @@
#!/bin/sh
arm-none-eabi-gcc -ggdb -ffreestanding -nostartfiles -lgcc -T mps2_m3.ld -mcpu=cortex-m3 main.c startup.c -o example.elf

View File

@ -0,0 +1,38 @@
int BREAKPOINT() {
for (;;)
{
}
}
int LLVMFuzzerTestOneInput(unsigned int* Data, unsigned int Size) {
//if (Data[3] == 0) {while(1){}} // cause a timeout
for (int i=0; i<Size; i++) {
// if (Data[i] > 0xFFd0 && Data[i] < 0xFFFF) {return 1;} // cause qemu to crash
for (int j=i+1; j<Size; j++) {
if (Data[j] == 0) {continue;}
if (Data[j]>Data[i]) {
int tmp = Data[i];
Data[i]=Data[j];
Data[j]=tmp;
if (Data[i] <= 100) {j--;}
}
}
}
return BREAKPOINT();
}
unsigned int FUZZ_INPUT[] = {
101,201,700,230,860,
234,980,200,340,678,
230,134,900,236,900,
123,800,123,658,607,
246,804,567,568,207,
407,246,678,457,892,
834,456,878,246,699,
854,234,844,290,125,
324,560,852,928,910,
790,853,345,234,586,
};
int main() {
LLVMFuzzerTestOneInput(FUZZ_INPUT, 50);
}

View File

@ -0,0 +1,143 @@
/*
* FreeRTOS V202112.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
MEMORY
{
RAM (xrw) : ORIGIN = 0x00000000, LENGTH = 4M
/* Originally */
/* FLASH (xr) : ORIGIN = 0x00000000, LENGTH = 4M */
/* RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 4M */
}
ENTRY(Reset_Handler)
_Min_Heap_Size = 0x300000 ; /* Required amount of heap. */
_Min_Stack_Size = 0x4000 ; /* Required amount of stack. */
M_VECTOR_RAM_SIZE = (16 + 48) * 4;
_estack = ORIGIN(RAM) + LENGTH(RAM);
SECTIONS
{
.isr_vector :
{
__vector_table = .;
KEEP(*(.isr_vector))
. = ALIGN(4);
} > RAM /* FLASH */
.text :
{
. = ALIGN(4);
*(.text*)
KEEP (*(.init))
KEEP (*(.fini))
KEEP(*(.eh_frame))
*(.rodata*)
. = ALIGN(4);
_etext = .;
} > RAM /* FLASH */
.ARM.extab :
{
. = ALIGN(4);
*(.ARM.extab* .gnu.linkonce.armextab.*)
. = ALIGN(4);
} >RAM /* FLASH */
.ARM :
{
. = ALIGN(4);
__exidx_start = .;
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
__exidx_end = .;
. = ALIGN(4);
} >RAM /* FLASH */
.interrupts_ram :
{
. = ALIGN(4);
__VECTOR_RAM__ = .;
__interrupts_ram_start__ = .;
. += M_VECTOR_RAM_SIZE;
. = ALIGN(4);
__interrupts_ram_end = .;
} > RAM
_sidata = LOADADDR(.data);
.data : /* AT ( _sidata ) */
{
. = ALIGN(4);
_sdata = .;
*(.data*)
. = ALIGN(4);
_edata = .;
} > RAM /* RAM AT > FLASH */
.uninitialized (NOLOAD):
{
. = ALIGN(32);
__uninitialized_start = .;
*(.uninitialized)
KEEP(*(.keep.uninitialized))
. = ALIGN(32);
__uninitialized_end = .;
} > RAM
.bss :
{
. = ALIGN(4);
_sbss = .;
__bss_start__ = _sbss;
*(.bss*)
*(COMMON)
. = ALIGN(4);
_ebss = .;
__bss_end__ = _ebss;
} >RAM
.heap :
{
. = ALIGN(8);
PROVIDE ( end = . );
PROVIDE ( _end = . );
_heap_bottom = .;
. = . + _Min_Heap_Size;
_heap_top = .;
. = . + _Min_Stack_Size;
. = ALIGN(8);
} >RAM
/* Set stack top to end of RAM, and stack limit move down by
* size of stack_dummy section */
__StackTop = ORIGIN(RAM) + LENGTH(RAM);
__StackLimit = __StackTop - _Min_Stack_Size;
PROVIDE(__stack = __StackTop);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(__StackLimit >= _heap_top, "region RAM overflowed with stack")
}

View File

@ -0,0 +1,114 @@
/*
* FreeRTOS V202112.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
typedef unsigned int uint32_t;
extern int main();
extern uint32_t _estack, _sidata, _sdata, _edata, _sbss, _ebss;
/* Prevent optimization so gcc does not replace code with memcpy */
__attribute__( ( optimize( "O0" ) ) )
__attribute__( ( naked ) )
void Reset_Handler( void )
{
/* set stack pointer */
__asm volatile ( "ldr r0, =_estack" );
__asm volatile ( "mov sp, r0" );
/* copy .data section from flash to RAM */
// Not needed for this example, see linker script
// for( uint32_t * src = &_sidata, * dest = &_sdata; dest < &_edata; )
// {
// *dest++ = *src++;
// }
/* zero out .bss section */
for( uint32_t * dest = &_sbss; dest < &_ebss; )
{
*dest++ = 0;
}
/* jump to board initialisation */
void _start( void );
_start();
}
const uint32_t * isr_vector[] __attribute__( ( section( ".isr_vector" ) ) ) =
{
( uint32_t * ) &_estack,
( uint32_t * ) &Reset_Handler, /* Reset -15 */
0, /* NMI_Handler -14 */
0, /* HardFault_Handler -13 */
0, /* MemManage_Handler -12 */
0, /* BusFault_Handler -11 */
0, /* UsageFault_Handler -10 */
0, /* reserved */
0, /* reserved */
0, /* reserved */
0, /* reserved -6 */
0, /* SVC_Handler -5 */
0, /* DebugMon_Handler -4 */
0, /* reserved */
0, /* PendSV handler -2 */
0, /* SysTick_Handler -1 */
0, /* uart0 receive 0 */
0, /* uart0 transmit */
0, /* uart1 receive */
0, /* uart1 transmit */
0, /* uart 2 receive */
0, /* uart 2 transmit */
0, /* GPIO 0 combined interrupt */
0, /* GPIO 2 combined interrupt */
0, /* Timer 0 */
0, /* Timer 1 */
0, /* Dial Timer */
0, /* SPI0 SPI1 */
0, /* uart overflow 1, 2,3 */
0, /* Ethernet 13 */
};
__attribute__( ( naked ) ) void exit(__attribute__((unused)) int status )
{
/* Force qemu to exit using ARM Semihosting */
__asm volatile (
"mov r1, r0\n"
"cmp r1, #0\n"
"bne .notclean\n"
"ldr r1, =0x20026\n" /* ADP_Stopped_ApplicationExit, a clean exit */
".notclean:\n"
"movs r0, #0x18\n" /* SYS_EXIT */
"bkpt 0xab\n"
"end: b end\n"
);
}
void _start( void )
{
main( );
exit( 0 );
}

25
fuzzers/FRET/fuzzer.sh Executable file
View File

@ -0,0 +1,25 @@
#!/usr/bin/env bash
parent_path=$( cd "$(dirname "${BASH_SOURCE[0]}")" ; pwd -P )
cd "$parent_path"
[ -n "$1" -a "$1" != "+" -a -z "$KERNEL" ] && export KERNEL="$1"
[ -n "$2" -a "$2" != "+" -a -z "$FUZZ_MAIN" ] && export FUZZ_MAIN="$2"
[ -n "$3" -a "$3" != "+" -a -z "$FUZZ_INPUT" ] && export FUZZ_INPUT="$3"
[ -n "$4" -a "$4" != "+" -a -z "$FUZZ_INPUT_LEN" ] && export FUZZ_INPUT_LEN="$4"
[ -n "$5" -a "$5" != "+" -a -z "$BREAKPOINT" ] && export BREAKPOINT="$5"
[ -n "$6" -a "$6" != "+" -a -z "$FUZZ_ITERS" ] && export FUZZ_ITERS="$6"
[ -n "$7" -a "$7" != "+" -a -z "$TIME_DUMP" ] && export TIME_DUMP="$7"
[ -n "$8" -a "$8" != "+" -a -z "$CASE_DUMP" ] && export CASE_DUMP="$8"
[ -n "$9" -a "$9" != "+" -a -z "$DO_SHOWMAP" ] && export DO_SHOWMAP="$9"
[ -n "${10}" -a "${10}" != "+" -a -z "$SHOWMAP_TEXTINPUT" ] && export SHOWMAP_TEXTINPUT="${10}"
[ -n "${11}" -a "${11}" != "+" -a -z "$TRACE_DUMP" ] && export TRACE_DUMP="${11}"
[ -z "$FUZZER" ] && export FUZZER=target/debug/fret
set +e
$FUZZER -icount shift=4,align=off,sleep=off -machine mps2-an385 -monitor null -kernel $KERNEL -serial null -nographic -S -semihosting --semihosting-config enable=on,target=native -snapshot -drive if=none,format=qcow2,file=dummy.qcow2
if [ "$exitcode" = "101" ]
then
exit 101
else
exit 0
fi

344
fuzzers/FRET/src/clock.rs Normal file
View File

@ -0,0 +1,344 @@
use hashbrown::{hash_map::Entry, HashMap};
use libafl::{
bolts::{
current_nanos,
rands::StdRand,
tuples::{tuple_list},
},
executors::{ExitKind},
fuzzer::{StdFuzzer},
inputs::{BytesInput, HasTargetBytes},
observers::{Observer,VariableMapObserver},
state::{StdState, HasNamedMetadata},
Error,
observers::ObserversTuple, prelude::UsesInput, impl_serdeany,
};
use serde::{Deserialize, Serialize};
use std::{cell::UnsafeCell, cmp::max, env, fs::OpenOptions, io::Write, time::Instant};
use libafl::bolts::tuples::Named;
use libafl_qemu::{
emu,
emu::Emulator,
executor::QemuExecutor,
helper::{QemuHelper, QemuHelperTuple, QemuInstrumentationFilter},
};
use libafl::events::EventFirer;
use libafl::state::HasClientPerfMonitor;
use libafl::inputs::Input;
use libafl::feedbacks::Feedback;
use libafl::SerdeAny;
use libafl::state::HasMetadata;
use libafl::corpus::testcase::Testcase;
use core::{fmt::Debug, time::Duration};
// use libafl::feedbacks::FeedbackState;
// use libafl::state::HasFeedbackStates;
use libafl::bolts::tuples::MatchName;
use std::time::{SystemTime, UNIX_EPOCH};
pub static mut FUZZ_START_TIMESTAMP : SystemTime = UNIX_EPOCH;
//========== Metadata
#[derive(Debug, SerdeAny, Serialize, Deserialize)]
pub struct QemuIcountMetadata {
runtime: u64,
}
/// Metadata for [`QemuClockIncreaseFeedback`]
#[derive(Debug, Serialize, Deserialize, SerdeAny)]
pub struct MaxIcountMetadata {
pub max_icount_seen: u64,
pub name: String,
}
// impl FeedbackState for MaxIcountMetadata
// {
// fn reset(&mut self) -> Result<(), Error> {
// self.max_icount_seen = 0;
// Ok(())
// }
// }
impl Named for MaxIcountMetadata
{
#[inline]
fn name(&self) -> &str {
self.name.as_str()
}
}
impl MaxIcountMetadata
{
/// Create new `MaxIcountMetadata`
#[must_use]
pub fn new(name: &'static str) -> Self {
Self {
max_icount_seen: 0,
name: name.to_string(),
}
}
}
impl Default for MaxIcountMetadata {
fn default() -> Self {
Self::new("MaxClock")
}
}
/// A piece of metadata tracking all icounts
#[derive(Debug, SerdeAny, Serialize, Deserialize)]
pub struct IcHist (pub Vec<(u64, u128)>, pub (u64,u128));
//========== Observer
/// A simple observer, just overlooking the runtime of the target.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct QemuClockObserver {
name: String,
start_tick: u64,
end_tick: u64,
}
impl QemuClockObserver {
/// Creates a new [`QemuClockObserver`] with the given name.
#[must_use]
pub fn new(name: &'static str) -> Self {
Self {
name: name.to_string(),
start_tick: 0,
end_tick: 0,
}
}
/// Gets the runtime for the last execution of this target.
#[must_use]
pub fn last_runtime(&self) -> u64 {
self.end_tick - self.start_tick
}
}
impl<S> Observer<S> for QemuClockObserver
where
S: UsesInput + HasMetadata,
{
fn pre_exec(&mut self, _state: &mut S, _input: &S::Input) -> Result<(), Error> {
// Only remember the pre-run ticks if presistent mode ist used
#[cfg(not(feature = "snapshot_restore"))]
unsafe {
self.start_tick=emu::icount_get_raw();
self.end_tick=self.start_tick;
}
// unsafe {
// println!("clock pre {}",emu::icount_get_raw());
// }
Ok(())
}
fn post_exec(&mut self, _state: &mut S, _input: &S::Input, _exit_kind: &ExitKind) -> Result<(), Error> {
unsafe { self.end_tick = emu::icount_get_raw() };
// println!("clock post {}", self.end_tick);
// println!("Number of Ticks: {} <- {} {}",self.end_tick - self.start_tick, self.end_tick, self.start_tick);
let metadata =_state.metadata_mut();
let hist = metadata.get_mut::<IcHist>();
let timestamp = SystemTime::now().duration_since(unsafe {FUZZ_START_TIMESTAMP}).unwrap().as_millis();
match hist {
None => {
metadata.insert(IcHist(vec![(self.end_tick - self.start_tick, timestamp)],
(self.end_tick - self.start_tick, timestamp)));
}
Some(v) => {
v.0.push((self.end_tick - self.start_tick, timestamp));
if (v.1.0 < self.end_tick-self.start_tick) {
v.1 = (self.end_tick - self.start_tick, timestamp);
}
if v.0.len() >= 100 {
if let Ok(td) = env::var("TIME_DUMP") {
let mut file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.append(true)
.open(td).expect("Could not open timedump");
let newv : Vec<(u64, u128)> = Vec::with_capacity(100);
for i in std::mem::replace(&mut v.0, newv).into_iter() {
writeln!(file, "{},{}", i.0, i.1).expect("Write to dump failed");
}
} else {
// If we don't write out values we don't need to remember them at all
v.0.clear();
}
}
}
}
Ok(())
}
}
impl Named for QemuClockObserver {
#[inline]
fn name(&self) -> &str {
&self.name
}
}
impl Default for QemuClockObserver {
fn default() -> Self {
Self {
name: String::from("clock"),
start_tick: 0,
end_tick: 0,
}
}
}
//========== Feedback
/// Nop feedback that annotates execution time in the new testcase, if any
/// for this Feedback, the testcase is never interesting (use with an OR).
/// It decides, if the given [`QemuClockObserver`] value of a run is interesting.
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct ClockTimeFeedback {
exec_time: Option<Duration>,
name: String,
}
impl<S> Feedback<S> for ClockTimeFeedback
where
S: UsesInput + HasClientPerfMonitor + HasMetadata,
{
#[allow(clippy::wrong_self_convention)]
fn is_interesting<EM, OT>(
&mut self,
_state: &mut S,
_manager: &mut EM,
_input: &S::Input,
observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
// TODO Replace with match_name_type when stable
let observer = observers.match_name::<QemuClockObserver>(self.name()).unwrap();
self.exec_time = Some(Duration::from_nanos(observer.last_runtime() << 4)); // Assume a somewhat realistic multiplier of clock, it does not matter
Ok(false)
}
/// Append to the testcase the generated metadata in case of a new corpus item
#[inline]
fn append_metadata(
&mut self,
_state: &mut S,
testcase: &mut Testcase<S::Input>,
) -> Result<(), Error> {
*testcase.exec_time_mut() = self.exec_time;
self.exec_time = None;
Ok(())
}
/// Discard the stored metadata in case that the testcase is not added to the corpus
#[inline]
fn discard_metadata(&mut self, _state: &mut S, _input: &S::Input) -> Result<(), Error> {
self.exec_time = None;
Ok(())
}
}
impl Named for ClockTimeFeedback {
#[inline]
fn name(&self) -> &str {
self.name.as_str()
}
}
impl ClockTimeFeedback {
/// Creates a new [`ClockFeedback`], deciding if the value of a [`QemuClockObserver`] with the given `name` of a run is interesting.
#[must_use]
pub fn new(name: &'static str) -> Self {
Self {
exec_time: None,
name: name.to_string(),
}
}
/// Creates a new [`ClockFeedback`], deciding if the given [`QemuClockObserver`] value of a run is interesting.
#[must_use]
pub fn new_with_observer(observer: &QemuClockObserver) -> Self {
Self {
exec_time: None,
name: observer.name().to_string(),
}
}
}
/// A [`Feedback`] rewarding increasing the execution cycles on Qemu.
#[derive(Debug)]
pub struct QemuClockIncreaseFeedback {
name: String,
}
impl<S> Feedback<S> for QemuClockIncreaseFeedback
where
S: UsesInput + HasNamedMetadata + HasClientPerfMonitor + Debug,
{
fn is_interesting<EM, OT>(
&mut self,
state: &mut S,
_manager: &mut EM,
_input: &S::Input,
_observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
let observer = _observers.match_name::<QemuClockObserver>("clock")
.expect("QemuClockObserver not found");
let clock_state = state
.named_metadata_mut()
.get_mut::<MaxIcountMetadata>(&self.name)
.unwrap();
if observer.last_runtime() > clock_state.max_icount_seen {
// println!("Clock improving {}",observer.last_runtime());
clock_state.max_icount_seen = observer.last_runtime();
return Ok(true);
}
Ok(false)
}
/// Append to the testcase the generated metadata in case of a new corpus item
#[inline]
fn append_metadata(&mut self, _state: &mut S, testcase: &mut Testcase<S::Input>) -> Result<(), Error> {
// testcase.metadata_mut().insert(QemuIcountMetadata{runtime: self.last_runtime});
Ok(())
}
/// Discard the stored metadata in case that the testcase is not added to the corpus
#[inline]
fn discard_metadata(&mut self, _state: &mut S, _input: &S::Input) -> Result<(), Error> {
Ok(())
}
}
impl Named for QemuClockIncreaseFeedback {
#[inline]
fn name(&self) -> &str {
&self.name
}
}
impl QemuClockIncreaseFeedback {
/// Creates a new [`HitFeedback`]
#[must_use]
pub fn new(name: &'static str) -> Self {
Self {name: String::from(name)}
}
}
impl Default for QemuClockIncreaseFeedback {
fn default() -> Self {
Self::new("MaxClock")
}
}

715
fuzzers/FRET/src/fuzzer.rs Normal file
View File

@ -0,0 +1,715 @@
//! A fuzzer using qemu in systemmode for binary-only coverage of kernels
//!
use core::time::Duration;
use std::{env, path::PathBuf, process::{self, abort}, io::{Read, Write}, fs::{self, OpenOptions}, cmp::{min, max}, mem::transmute_copy, collections::btree_map::Range};
use libafl::{
bolts::{
core_affinity::Cores,
current_nanos,
launcher::Launcher,
rands::StdRand,
shmem::{ShMemProvider, StdShMemProvider},
tuples::tuple_list,
AsSlice,
},
corpus::{Corpus, InMemoryCorpus, OnDiskCorpus},
events::EventConfig,
executors::{ExitKind, TimeoutExecutor},
feedback_or,
feedback_or_fast,
feedbacks::{CrashFeedback, MaxMapFeedback, TimeoutFeedback},
fuzzer::{Fuzzer, StdFuzzer},
inputs::{BytesInput, HasTargetBytes},
monitors::MultiMonitor,
observers::{VariableMapObserver},
schedulers::{IndexesLenTimeMinimizerScheduler, QueueScheduler},
state::{HasCorpus, StdState, HasMetadata, HasNamedMetadata},
Error,
prelude::{SimpleMonitor, SimpleEventManager, AsMutSlice, RandBytesGenerator, Generator, SimpleRestartingEventManager, HasBytesVec, minimizer::TopRatedsMetadata, havoc_mutations, StdScheduledMutator, HitcountsMapObserver}, Evaluator, stages::StdMutationalStage,
};
use libafl_qemu::{
edges, edges::QemuEdgeCoverageHelper, elf::EasyElf, emu::Emulator, GuestPhysAddr, QemuExecutor,
QemuHooks, Regs, QemuInstrumentationFilter, GuestAddr,
emu::libafl_qemu_set_native_breakpoint, emu::libafl_qemu_remove_native_breakpoint,
};
use rand::{SeedableRng, StdRng, Rng};
use crate::{
clock::{QemuClockObserver, ClockTimeFeedback, QemuClockIncreaseFeedback, IcHist, FUZZ_START_TIMESTAMP},
qemustate::QemuStateRestoreHelper,
systemstate::{helpers::QemuSystemStateHelper, observers::QemuSystemStateObserver, feedbacks::{DumpSystraceFeedback, NovelSystemStateFeedback}, graph::{SysMapFeedback, SysGraphFeedbackState, GraphMaximizerCorpusScheduler}, schedulers::{LongestTraceScheduler, GenerationScheduler}}, worst::{TimeMaximizerCorpusScheduler, ExecTimeIncFeedback, TimeStateMaximizerCorpusScheduler, AlwaysTrueFeedback},
mutational::MyStateStage,
mutational::{MINIMUM_INTER_ARRIVAL_TIME},
};
use std::time::{SystemTime, UNIX_EPOCH};
pub static mut RNG_SEED: u64 = 1;
pub static mut LIMIT : u32 = u32::MAX;
pub const MAX_NUM_INTERRUPT: usize = 32;
pub const DO_NUM_INTERRUPT: usize = 32;
pub static mut MAX_INPUT_SIZE: usize = 32;
/// Read ELF program headers to resolve physical load addresses.
fn virt2phys(vaddr: GuestPhysAddr, tab: &EasyElf) -> GuestPhysAddr {
let ret;
for i in &tab.goblin().program_headers {
if i.vm_range().contains(&vaddr.try_into().unwrap()) {
ret = vaddr - TryInto::<GuestPhysAddr>::try_into(i.p_vaddr).unwrap()
+ TryInto::<GuestPhysAddr>::try_into(i.p_paddr).unwrap();
return ret - (ret % 2);
}
}
return vaddr;
}
extern "C" {
static mut libafl_interrupt_offsets : [u32; 32];
static mut libafl_num_interrupts : usize;
}
pub fn fuzz() {
unsafe {FUZZ_START_TIMESTAMP = SystemTime::now();}
let mut starttime = std::time::Instant::now();
if let Ok(s) = env::var("FUZZ_SIZE") {
str::parse::<usize>(&s).expect("FUZZ_SIZE was not a number");
};
// Hardcoded parameters
let timeout = Duration::from_secs(10);
let broker_port = 1337;
let cores = Cores::from_cmdline("1").unwrap();
let corpus_dirs = [PathBuf::from("./corpus")];
let objective_dir = PathBuf::from("./crashes");
let mut elf_buffer = Vec::new();
let elf = EasyElf::from_file(
env::var("KERNEL").expect("KERNEL env not set"),
&mut elf_buffer,
)
.unwrap();
// the main address where the fuzzer starts
// if this is set for freeRTOS it has an influence on where the data will have to be written,
// since the startup routine copies the data segemnt to it's virtual address
let main_addr = elf
.resolve_symbol(&env::var("FUZZ_MAIN").unwrap_or_else(|_| "FUZZ_MAIN".to_owned()), 0);
if let Some(main_addr) = main_addr {
println!("main address = {:#x}", main_addr);
}
let input_addr = elf
.resolve_symbol(
&env::var("FUZZ_INPUT").unwrap_or_else(|_| "FUZZ_INPUT".to_owned()),
0,
)
.expect("Symbol or env FUZZ_INPUT not found") as GuestPhysAddr;
let input_addr = virt2phys(input_addr,&elf) as GuestPhysAddr;
println!("FUZZ_INPUT @ {:#x}", input_addr);
let test_length_ptr = elf
.resolve_symbol("FUZZ_LENGTH", 0).map(|x| x as GuestPhysAddr);
let test_length_ptr = Option::map_or(test_length_ptr, None, |x| Some(virt2phys(x,&elf)));
let input_counter_ptr = elf
.resolve_symbol(&env::var("FUZZ_POINTER").unwrap_or_else(|_| "FUZZ_POINTER".to_owned()), 0)
.map(|x| x as GuestPhysAddr);
let input_counter_ptr = Option::map_or(input_counter_ptr, None, |x| Some(virt2phys(x,&elf)));
#[cfg(feature = "systemstate")]
let curr_tcb_pointer = elf // loads to the address specified in elf, without respecting program headers
.resolve_symbol("pxCurrentTCB", 0)
.expect("Symbol pxCurrentTCBC not found");
// let curr_tcb_pointer = virt2phys(curr_tcb_pointer,&elf);
#[cfg(feature = "systemstate")]
println!("TCB pointer at {:#x}", curr_tcb_pointer);
#[cfg(feature = "systemstate")]
let task_queue_addr = elf
.resolve_symbol("pxReadyTasksLists", 0)
.expect("Symbol pxReadyTasksLists not found");
// let task_queue_addr = virt2phys(task_queue_addr,&elf.goblin());
#[cfg(feature = "systemstate")]
println!("Task Queue at {:#x}", task_queue_addr);
#[cfg(feature = "systemstate")]
let svh = elf
.resolve_symbol("xPortPendSVHandler", 0)
.expect("Symbol xPortPendSVHandler not found");
// let svh=virt2phys(svh, &elf);
// let svh = elf
// .resolve_symbol("vPortEnterCritical", 0)
// .expect("Symbol vPortEnterCritical not found");
#[cfg(feature = "systemstate")]
let app_start = elf
.resolve_symbol("__APP_CODE_START__", 0)
.expect("Symbol __APP_CODE_START__ not found");
#[cfg(feature = "systemstate")]
let app_end = elf
.resolve_symbol("__APP_CODE_END__", 0)
.expect("Symbol __APP_CODE_END__ not found");
#[cfg(feature = "systemstate")]
let app_range = app_start..app_end;
#[cfg(feature = "systemstate")]
dbg!(app_range.clone());
let breakpoint = elf
.resolve_symbol(
&env::var("BREAKPOINT").unwrap_or_else(|_| "BREAKPOINT".to_owned()),
0,
)
.expect("Symbol or env BREAKPOINT not found");
println!("Breakpoint address = {:#x}", breakpoint);
unsafe {
libafl_num_interrupts = 0;
}
if let Ok(input_len) = env::var("FUZZ_INPUT_LEN") {
unsafe {MAX_INPUT_SIZE = str::parse::<usize>(&input_len).expect("FUZZ_INPUT_LEN was not a number");}
}
unsafe {dbg!(MAX_INPUT_SIZE);}
if let Ok(seed) = env::var("SEED_RANDOM") {
unsafe {RNG_SEED = str::parse::<u64>(&seed).expect("SEED_RANDOM must be an integer.");}
}
let mut run_client = |state: Option<_>, mut mgr, _core_id| {
// Initialize QEMU
let args: Vec<String> = env::args().collect();
let env: Vec<(String, String)> = env::vars().collect();
let emu = Emulator::new(&args, &env);
if let Some(main_addr) = main_addr {
unsafe {
libafl_qemu_set_native_breakpoint(main_addr);
emu.run();
libafl_qemu_remove_native_breakpoint(main_addr);
}
}
unsafe { libafl_qemu_set_native_breakpoint(breakpoint); }// BREAKPOINT
// The wrapped harness function, calling out to the LLVM-style harness
let mut harness = |input: &BytesInput| {
let target = input.target_bytes();
let mut buf = target.as_slice();
let mut len = buf.len();
unsafe {
#[cfg(feature = "fuzz_int")]
{
let mut start_tick : u32 = 0;
for i in 0..DO_NUM_INTERRUPT {
let mut t : [u8; 4] = [0,0,0,0];
if len > (i+1)*4 {
for j in 0 as usize..4 as usize {
t[j]=buf[i*4+j];
}
if i == 0 || true {
unsafe {start_tick = u32::from_le_bytes(t) % LIMIT;}
} else {
start_tick = u32::saturating_add(start_tick,max(MINIMUM_INTER_ARRIVAL_TIME,u32::from_le_bytes(t)));
}
libafl_interrupt_offsets[i] = start_tick;
libafl_num_interrupts = i+1;
}
}
if buf.len() > libafl_num_interrupts*4 {
buf = &buf[libafl_num_interrupts*4..];
len = buf.len();
}
// println!("Load: {:?}", libafl_interrupt_offsets[0..libafl_num_interrupts].to_vec());
}
if len > MAX_INPUT_SIZE {
buf = &buf[0..MAX_INPUT_SIZE];
len = MAX_INPUT_SIZE;
}
emu.write_phys_mem(input_addr, buf);
if let Some(s) = test_length_ptr {
emu.write_phys_mem(s as u64, &len.to_le_bytes())
}
emu.run();
// If the execution stops at any point other then the designated breakpoint (e.g. a breakpoint on a panic method) we consider it a crash
let mut pcs = (0..emu.num_cpus())
.map(|i| emu.cpu_from_index(i))
.map(|cpu| -> Result<u32, String> { cpu.read_reg(Regs::Pc) });
match pcs
.find(|pc| (breakpoint..breakpoint + 5).contains(pc.as_ref().unwrap_or(&0)))
{
Some(_) => ExitKind::Ok,
None => ExitKind::Crash,
}
}
};
// Create an observation channel using the coverage map
let edges = unsafe { &mut edges::EDGES_MAP };
let edges_counter = unsafe { &mut edges::MAX_EDGES_NUM };
let edges_observer = VariableMapObserver::new("edges", edges, edges_counter);
#[cfg(feature = "observer_hitcounts")]
let edges_observer = HitcountsMapObserver::new(edges_observer);
// Create an observation channel to keep track of the execution time
let clock_time_observer = QemuClockObserver::new("clocktime");
let systemstate_observer = QemuSystemStateObserver::new();
// Feedback to rate the interestingness of an input
// This one is composed by two Feedbacks in OR
let mut feedback = feedback_or!(
// Time feedback, this one does not need a feedback state
ClockTimeFeedback::new_with_observer(&clock_time_observer)
);
#[cfg(feature = "feed_genetic")]
let mut feedback = feedback_or!(
feedback,
AlwaysTrueFeedback::new()
);
#[cfg(feature = "feed_afl")]
let mut feedback = feedback_or!(
feedback,
// New maximization map feedback linked to the edges observer and the feedback state
MaxMapFeedback::new_tracking(&edges_observer, true, true)
);
#[cfg(feature = "feed_longest")]
let mut feedback = feedback_or!(
// afl feedback needs to be activated first for MapIndexesMetadata
feedback,
// Feedback to reward any input which increses the execution time
ExecTimeIncFeedback::new()
);
#[cfg(all(feature = "systemstate",not(any(feature = "feed_systemgraph",feature = "feed_systemtrace"))))]
let mut feedback = feedback_or!(
feedback,
DumpSystraceFeedback::with_dump(env::var("TRACE_DUMP").ok().map(PathBuf::from))
);
#[cfg(feature = "feed_systemtrace")]
let mut feedback = feedback_or!(
feedback,
// AlwaysTrueFeedback::new(),
NovelSystemStateFeedback::default()
);
#[cfg(feature = "feed_systemgraph")]
let mut feedback = feedback_or!(
feedback,
SysMapFeedback::default()
);
// A feedback to choose if an input is a solution or not
let mut objective = feedback_or_fast!(CrashFeedback::new(), TimeoutFeedback::new());
// If not restarting, create a State from scratch
let mut state = state.unwrap_or_else(|| {
StdState::new(
// RNG
unsafe {StdRand::with_seed(RNG_SEED) },
// Corpus that will be evolved, we keep it in memory for performance
InMemoryCorpus::new(),
// Corpus in which we store solutions (crashes in this example),
// on disk so the user can get them after stopping the fuzzer
OnDiskCorpus::new(objective_dir.clone()).unwrap(),
// States of the feedbacks.
// The feedbacks can report the data that should persist in the State.
&mut feedback,
// Same for objective feedbacks
&mut objective,
)
.unwrap()
});
// A minimization+queue policy to get testcasess from the corpus
#[cfg(not(any(feature = "feed_afl",feature = "feed_systemgraph",feature = "feed_systemtrace", feature = "feed_genetic")))]
let scheduler = QueueScheduler::new();
#[cfg(all(feature = "feed_afl",not(any(feature = "feed_systemgraph",feature = "feed_systemtrace"))))]
let scheduler = TimeMaximizerCorpusScheduler::new(QueueScheduler::new());
#[cfg(feature = "feed_systemtrace")]
let scheduler = LongestTraceScheduler::new(TimeStateMaximizerCorpusScheduler::new(QueueScheduler::new()));
#[cfg(feature = "feed_systemgraph")]
let scheduler = GraphMaximizerCorpusScheduler::new(QueueScheduler::new());
#[cfg(feature = "feed_genetic")]
let scheduler = GenerationScheduler::new();
// A fuzzer with feedbacks and a corpus scheduler
let mut fuzzer = StdFuzzer::new(scheduler, feedback, objective);
#[cfg(not(feature = "systemstate"))]
let qhelpers = tuple_list!(
QemuEdgeCoverageHelper::default(),
QemuStateRestoreHelper::new()
);
#[cfg(feature = "systemstate")]
let qhelpers = tuple_list!(
QemuEdgeCoverageHelper::default(),
QemuStateRestoreHelper::new(),
QemuSystemStateHelper::new(svh,curr_tcb_pointer,task_queue_addr,input_counter_ptr,app_range.clone())
);
let mut hooks = QemuHooks::new(&emu,qhelpers);
#[cfg(not(feature = "systemstate"))]
let observer_list = tuple_list!(edges_observer, clock_time_observer);
#[cfg(feature = "systemstate")]
let observer_list = tuple_list!(edges_observer, clock_time_observer, systemstate_observer);
// Create a QEMU in-process executor
let executor = QemuExecutor::new(
&mut hooks,
&mut harness,
observer_list,
&mut fuzzer,
&mut state,
&mut mgr,
)
.expect("Failed to create QemuExecutor");
// Wrap the executor to keep track of the timeout
let mut executor = TimeoutExecutor::new(executor, timeout);
let mutations = havoc_mutations();
// Setup an havoc mutator with a mutational stage
let mutator = StdScheduledMutator::new(mutations);
// #[cfg(not(all(feature = "feed_systemtrace", feature = "fuzz_int")))]
// let mut stages = tuple_list!(StdMutationalStage::new(mutator));
// #[cfg(all(feature = "feed_systemtrace", feature = "fuzz_int"))]
#[cfg(feature = "fuzz_int")]
let mut stages = tuple_list!(StdMutationalStage::new(mutator),MyStateStage::new());
#[cfg(not(feature = "fuzz_int"))]
let mut stages = tuple_list!(StdMutationalStage::new(mutator));
if env::var("DO_SHOWMAP").is_ok() {
let s = &env::var("DO_SHOWMAP").unwrap();
let show_input = if s=="-" {
let mut buf = Vec::<u8>::new();
std::io::stdin().read_to_end(&mut buf).expect("Could not read Stdin");
buf
} else if s=="$" {
env::var("SHOWMAP_TEXTINPUT").expect("SHOWMAP_TEXTINPUT not set").as_bytes().to_owned()
} else {
fs::read(s).expect("Input file for DO_SHOWMAP can not be read")
};
fuzzer.evaluate_input(&mut state, &mut executor, &mut mgr, BytesInput::new(show_input))
.unwrap();
if let Ok(td) = env::var("TIME_DUMP") {
let mut file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.append(true)
.open(td).expect("Could not open timedump");
if let Some(ichist) = state.metadata_mut().get_mut::<IcHist>() {
for i in ichist.0.drain(..) {
writeln!(file, "{},{}", i.0, i.1).expect("Write to dump failed");
}
}
}
} else {
if let Ok(_) = env::var("SEED_RANDOM") {
unsafe {
let mut rng = StdRng::seed_from_u64(RNG_SEED);
for i in 0..100 {
let inp = BytesInput::new(vec![rng.gen::<u8>(); MAX_INPUT_SIZE]);
fuzzer.evaluate_input(&mut state, &mut executor, &mut mgr, inp).unwrap();
}
}
}
else if let Ok(sf) = env::var("SEED_DIR") {
state
.load_initial_inputs(&mut fuzzer, &mut executor, &mut mgr, &[PathBuf::from(&sf)])
.unwrap_or_else(|_| {
println!("Failed to load initial corpus at {:?}", &corpus_dirs);
process::exit(0);
});
println!("We imported {} inputs from seedfile.", state.corpus().count());
} else if state.corpus().count() < 1 {
state
.load_initial_inputs(&mut fuzzer, &mut executor, &mut mgr, &corpus_dirs)
.unwrap_or_else(|_| {
println!("Failed to load initial corpus at {:?}", &corpus_dirs);
process::exit(0);
});
println!("We imported {} inputs from disk.", state.corpus().count());
}
match env::var("FUZZ_ITERS") {
Err(_) => {
fuzzer
.fuzz_loop(&mut stages, &mut executor, &mut state, &mut mgr)
.unwrap();
},
Ok(t) => {
println!("Iterations {}",t);
let num = str::parse::<u64>(&t).expect("FUZZ_ITERS was not a number");
if let Ok(s) = env::var("FUZZ_RANDOM") { unsafe {
if s.contains("watersv2_int") {
println!("V2");
LIMIT=7000000;
} else {
println!("V1");
LIMIT=5000000;
}
println!("Random Fuzzing, ignore corpus");
// let mut generator = RandBytesGenerator::new(MAX_INPUT_SIZE);
let target_duration = Duration::from_secs(num);
let start_time = std::time::Instant::now();
let mut rng = StdRng::seed_from_u64(RNG_SEED);
while start_time.elapsed() < target_duration {
// let inp = generator.generate(&mut state).unwrap();
// libafl's generator is too slow
let inp = BytesInput::new(vec![rng.gen::<u8>(); MAX_INPUT_SIZE]);
fuzzer.evaluate_input(&mut state, &mut executor, &mut mgr, inp).unwrap();
}
}} else {
// fuzzer
// .fuzz_loop_for_duration(&mut stages, &mut executor, &mut state, &mut mgr, Duration::from_secs(num))
// .unwrap();
fuzzer
.fuzz_loop_until(&mut stages, &mut executor, &mut state, &mut mgr, starttime.checked_add(Duration::from_secs(num)).unwrap())
.unwrap();
#[cfg(feature = "run_until_saturation")]
{
{
let mut dumper = |marker : String| {
if let Ok(td) = env::var("TIME_DUMP") {
let mut file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.append(true)
.open(td).expect("Could not open timedump");
if let Some(ichist) = state.metadata_mut().get_mut::<IcHist>() {
for i in ichist.0.drain(..) {
writeln!(file, "{},{}", i.0, i.1).expect("Write to dump failed");
}
}
}
if let Ok(td) = env::var("CASE_DUMP") {
println!("Dumping worst case to {:?}", td);
let corpus = state.corpus();
let mut worst = Duration::new(0,0);
let mut worst_input = None;
for i in 0..corpus.count() {
let tc = corpus.get(i).expect("Could not get element from corpus").borrow();
if worst < tc.exec_time().expect("Testcase missing duration") {
worst_input = Some(tc.input().as_ref().unwrap().bytes().to_owned());
worst = tc.exec_time().expect("Testcase missing duration");
}
}
match worst_input {
Some(wi) => {
// let cd = format!("{}.case",&td);
let mut cd = td.clone();
cd.push_str(&marker);
fs::write(&cd,wi).expect("Failed to write worst corpus element");
},
None => (),
}
#[cfg(feature = "feed_systemgraph")]
{
let mut gd = String::from(&td);
gd.push_str(&format!(".graph{}", marker));
if let Some(md) = state.named_metadata_mut().get_mut::<SysGraphFeedbackState>("SysMap") {
fs::write(&gd,ron::to_string(&md).expect("Failed to serialize graph")).expect("Failed to write graph");
}
}
{
let mut gd = String::from(&td);
if let Some(md) = state.metadata_mut().get_mut::<TopRatedsMetadata>() {
let mut uniq: Vec<usize> = md.map.values().map(|x| x.clone()).collect();
uniq.sort();
uniq.dedup();
gd.push_str(&format!(".{}.toprated{}", uniq.len(), marker));
fs::write(&gd,ron::to_string(&md.map).expect("Failed to serialize metadata")).expect("Failed to write graph");
}
}
}
};
dumper(format!(".iter_{}",t));
}
println!("Start running until saturation");
let mut last = state.metadata().get::<IcHist>().unwrap().1;
while SystemTime::now().duration_since(unsafe {FUZZ_START_TIMESTAMP}).unwrap().as_millis() < last.1 + Duration::from_secs(10800).as_millis() {
starttime=starttime.checked_add(Duration::from_secs(30)).unwrap();
fuzzer
.fuzz_loop_until(&mut stages, &mut executor, &mut state, &mut mgr, starttime)
.unwrap();
let after = state.metadata().get::<IcHist>().unwrap().1;
if after.0 > last.0 {
last=after;
}
if let Ok(td) = env::var("CASE_DUMP") {
println!("Dumping worst case to {:?}", td);
let corpus = state.corpus();
let mut worst = Duration::new(0,0);
let mut worst_input = None;
for i in 0..corpus.count() {
let tc = corpus.get(i).expect("Could not get element from corpus").borrow();
if worst < tc.exec_time().expect("Testcase missing duration") {
worst_input = Some(tc.input().as_ref().unwrap().bytes().to_owned());
worst = tc.exec_time().expect("Testcase missing duration");
}
}
match worst_input {
Some(wi) => {
// let cd = format!("{}.case",&td);
let cd = td.clone();
fs::write(&cd,wi).expect("Failed to write worst corpus element");
},
None => (),
}
#[cfg(feature = "feed_systemgraph")]
{
let mut gd = String::from(&td);
gd.push_str(".graph" );
if let Some(md) = state.named_metadata_mut().get_mut::<SysGraphFeedbackState>("SysMap") {
fs::write(&gd,ron::to_string(&md).expect("Failed to serialize graph")).expect("Failed to write graph");
}
}
{
let mut gd = String::from(&td);
if let Some(md) = state.metadata_mut().get_mut::<TopRatedsMetadata>() {
let mut uniq: Vec<usize> = md.map.values().map(|x| x.clone()).collect();
uniq.sort();
uniq.dedup();
gd.push_str(&format!(".{}.toprated", uniq.len()));
fs::write(&gd,ron::to_string(&md.map).expect("Failed to serialize metadata")).expect("Failed to write graph");
}
}
}
}
}
}
if let Ok(td) = env::var("TIME_DUMP") {
let mut file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.append(true)
.open(td).expect("Could not open timedump");
if let Some(ichist) = state.metadata_mut().get_mut::<IcHist>() {
for i in ichist.0.drain(..) {
writeln!(file, "{},{}", i.0, i.1).expect("Write to dump failed");
}
}
}
if let Ok(td) = env::var("CASE_DUMP") {
println!("Dumping worst case to {:?}", td);
let corpus = state.corpus();
let mut worst = Duration::new(0,0);
let mut worst_input = None;
for i in 0..corpus.count() {
let tc = corpus.get(i).expect("Could not get element from corpus").borrow();
if worst < tc.exec_time().expect("Testcase missing duration") {
worst_input = Some(tc.input().as_ref().unwrap().bytes().to_owned());
worst = tc.exec_time().expect("Testcase missing duration");
}
}
match worst_input {
Some(wi) => {
// let cd = format!("{}.case",&td);
let cd = td.clone();
fs::write(&cd,wi).expect("Failed to write worst corpus element");
},
None => (),
}
#[cfg(feature = "feed_systemgraph")]
{
let mut gd = String::from(&td);
gd.push_str(".graph");
if let Some(md) = state.named_metadata_mut().get_mut::<SysGraphFeedbackState>("SysMap") {
fs::write(&gd,ron::to_string(&md).expect("Failed to serialize graph")).expect("Failed to write graph");
}
}
{
let mut gd = String::from(&td);
if let Some(md) = state.metadata_mut().get_mut::<TopRatedsMetadata>() {
let mut uniq: Vec<usize> = md.map.values().map(|x| x.clone()).collect();
uniq.sort();
uniq.dedup();
gd.push_str(&format!(".{}.toprated", uniq.len()));
fs::write(&gd,ron::to_string(&md.map).expect("Failed to serialize metadata")).expect("Failed to write graph");
}
}
}
},
}
}
#[cfg(not(feature = "singlecore"))]
return Ok(());
};
// Special case where no fuzzing happens, but standard input is dumped
if let Ok(input_dump) = env::var("DUMP_SEED") {
// Initialize QEMU
let args: Vec<String> = env::args().collect();
let env: Vec<(String, String)> = env::vars().collect();
let emu = Emulator::new(&args, &env);
if let Some(main_addr) = main_addr {
unsafe { libafl_qemu_set_native_breakpoint(main_addr); }// BREAKPOINT
}
unsafe {
emu.run();
let mut buf = [0u8].repeat(MAX_INPUT_SIZE);
emu.read_phys_mem(input_addr, buf.as_mut_slice());
let dir = env::var("SEED_DIR").map_or("./corpus".to_string(), |x| x);
let filename = if input_dump == "" {"input"} else {&input_dump};
println!("Dumping input to: {}/{}",&dir,filename);
fs::write(format!("{}/{}",&dir,filename), buf).expect("could not write input dump");
}
return
}
#[cfg(feature = "singlecore")]
{
let monitor = SimpleMonitor::new(|s| println!("{}", s));
#[cfg(not(feature = "restarting"))]
{
let mgr = SimpleEventManager::new(monitor);
run_client(None, mgr, 0);
}
#[cfg(feature = "restarting")]
{
let mut shmem_provider = StdShMemProvider::new().unwrap();
let (state, mut mgr) = match SimpleRestartingEventManager::launch(monitor, &mut shmem_provider)
{
// The restarting state will spawn the same process again as child, then restarted it each time it crashes.
Ok(res) => res,
Err(err) => match err {
Error::ShuttingDown => {
return;
}
_ => {
panic!("Failed to setup the restarter: {}", err);
}
},
};
run_client(state, mgr, 0);
}
}
// else -> multicore
#[cfg(not(feature = "singlecore"))]
{
// The shared memory allocator
let shmem_provider = StdShMemProvider::new().expect("Failed to init shared memory");
// The stats reporter for the broker
let monitor = MultiMonitor::new(|s| println!("{}", s));
// Build and run a Launcher
match Launcher::builder()
.shmem_provider(shmem_provider)
.broker_port(broker_port)
.configuration(EventConfig::from_build_id())
.monitor(monitor)
.run_client(&mut run_client)
.cores(&cores)
// .stdout_file(Some("/dev/null"))
.build()
.launch()
{
Ok(()) => (),
Err(Error::ShuttingDown) => println!("Fuzzing stopped by user. Good bye."),
Err(err) => panic!("Failed to run launcher: {:?}", err),
}
}
}

13
fuzzers/FRET/src/lib.rs Normal file
View File

@ -0,0 +1,13 @@
#![feature(is_sorted)]
#[cfg(target_os = "linux")]
mod fuzzer;
#[cfg(target_os = "linux")]
mod clock;
#[cfg(target_os = "linux")]
mod qemustate;
#[cfg(target_os = "linux")]
pub mod systemstate;
#[cfg(target_os = "linux")]
mod mutational;
#[cfg(target_os = "linux")]
mod worst;

24
fuzzers/FRET/src/main.rs Normal file
View File

@ -0,0 +1,24 @@
#![feature(is_sorted)]
//! A libfuzzer-like fuzzer using qemu for binary-only coverage
#[cfg(target_os = "linux")]
mod fuzzer;
#[cfg(target_os = "linux")]
mod clock;
#[cfg(target_os = "linux")]
mod qemustate;
#[cfg(target_os = "linux")]
mod systemstate;
#[cfg(target_os = "linux")]
mod worst;
#[cfg(target_os = "linux")]
mod mutational;
#[cfg(target_os = "linux")]
pub fn main() {
fuzzer::fuzz();
}
#[cfg(not(target_os = "linux"))]
pub fn main() {
panic!("qemu-user and libafl_qemu is only supported on linux!");
}

View File

@ -0,0 +1,240 @@
//| The [`MutationalStage`] is the default stage used during fuzzing.
//! For the current input, it will perform a range of random mutations, and then run them in the executor.
use core::marker::PhantomData;
use std::cmp::{max, min};
use libafl::{
bolts::rands::Rand,
corpus::{Corpus, self},
fuzzer::Evaluator,
mark_feature_time,
stages::{Stage},
start_timer,
state::{HasClientPerfMonitor, HasCorpus, HasRand, UsesState, HasMetadata},
Error, prelude::{HasBytesVec, UsesInput, new_hash_feedback, StdRand, RandomSeed, MutationResult, Mutator},
};
use crate::{systemstate::{FreeRTOSSystemStateMetadata, RefinedFreeRTOSSystemState}, fuzzer::DO_NUM_INTERRUPT, clock::IcHist};
pub const MINIMUM_INTER_ARRIVAL_TIME : u32 = 700 * 1000 * (1 << 4);
//======================= Custom mutator
/// The default mutational stage
#[derive(Clone, Debug, Default)]
pub struct MyStateStage<E, EM, Z> {
#[allow(clippy::type_complexity)]
phantom: PhantomData<(E, EM, Z)>,
}
impl<E, EM, Z> MyStateStage<E, EM, Z>
where
E: UsesState<State = Z::State>,
EM: UsesState<State = Z::State>,
Z: Evaluator<E, EM>,
Z::State: HasClientPerfMonitor + HasCorpus + HasRand,
{
pub fn new() -> Self {
Self { phantom: PhantomData }
}
}
impl<E, EM, Z> Stage<E, EM, Z> for MyStateStage<E, EM, Z>
where
E: UsesState<State = Z::State>,
EM: UsesState<State = Z::State>,
Z: Evaluator<E, EM>,
Z::State: HasClientPerfMonitor + HasCorpus + HasRand + HasMetadata,
<Z::State as UsesInput>::Input: HasBytesVec
{
fn perform(
&mut self,
fuzzer: &mut Z,
executor: &mut E,
state: &mut Self::State,
manager: &mut EM,
corpus_idx: usize,
) -> Result<(), Error> {
let mut _input = state
.corpus()
.get(corpus_idx)?
.borrow_mut().clone();
let mut newinput = _input.input_mut().as_mut().unwrap().clone();
// let mut tmpinput = _input.input_mut().as_mut().unwrap().clone();
let mut do_rerun = false;
{
// need our own random generator, because borrowing rules
let mut myrand = StdRand::new();
let mut target_bytes : Vec<u8> = vec![];
{
let input = _input.input_mut().as_ref().unwrap();
let tmp = &mut state.rand_mut();
myrand.set_seed(tmp.next());
target_bytes = input.bytes().to_vec();
}
// produce a slice of absolute interrupt times
let mut interrupt_offsets : [u32; 32] = [0u32; 32];
let mut num_interrupts : usize = 0;
{
let mut start_tick : u32 = 0;
for i in 0..DO_NUM_INTERRUPT {
let mut t : [u8; 4] = [0,0,0,0];
if target_bytes.len() > (i+1)*4 {
for j in 0 as usize..4 as usize {
t[j]=target_bytes[i*4+j];
}
if i == 0 || true {
start_tick = u32::from_le_bytes(t);
} else {
start_tick = u32::saturating_add(start_tick,max(MINIMUM_INTER_ARRIVAL_TIME,u32::from_le_bytes(t)));
}
interrupt_offsets[i] = start_tick;
num_interrupts = i+1;
}
}
}
interrupt_offsets.sort();
// println!("Vor Mutator: {:?}", interrupt_offsets[0..num_interrupts].to_vec());
// let num_i = min(target_bytes.len() / 4, DO_NUM_INTERRUPT);
let mut suffix = target_bytes.split_off(4 * num_interrupts);
let mut prefix : Vec<[u8; 4]> = vec![];
// let mut suffix : Vec<u8> = vec![];
#[cfg(feature = "feed_systemtrace")]
{
let tmp = _input.metadata().get::<FreeRTOSSystemStateMetadata>();
if tmp.is_some() {
let trace = tmp.expect("FreeRTOSSystemStateMetadata not found");
// calculate hits and identify snippets
let mut last_m = false;
let mut marks : Vec<(&RefinedFreeRTOSSystemState, usize, usize)>= vec![]; // 1: got interrupted, 2: interrupt handler
for i in 0..trace.inner.len() {
let curr = &trace.inner[i];
let m = interrupt_offsets[0..num_interrupts].iter().any(|x| (curr.start_tick..curr.end_tick).contains(&(*x as u64)));
if m {
marks.push((curr, i, 1));
// println!("1: {}",curr.current_task.task_name);
} else if last_m {
marks.push((curr, i, 2));
// println!("2: {}",curr.current_task.task_name);
} else {
marks.push((curr, i, 0));
}
last_m = m;
}
for i in 0..num_interrupts {
// bounds based on minimum inter-arrival time
let mut lb = 0;
let mut ub : u32 = marks[marks.len()-1].0.end_tick.try_into().expect("ticks > u32");
if i > 0 {
lb = u32::saturating_add(interrupt_offsets[i-1],MINIMUM_INTER_ARRIVAL_TIME);
}
if i < num_interrupts-1 {
ub = u32::saturating_sub(interrupt_offsets[i+1],MINIMUM_INTER_ARRIVAL_TIME);
}
// get old hit and handler
let old_hit = marks.iter().filter(
|x| x.0.start_tick < (interrupt_offsets[i] as u64) && (interrupt_offsets[i] as u64) < x.0.end_tick
).next();
let old_handler = match old_hit {
Some(s) => if s.1 < num_interrupts-1 && s.1 < marks.len()-1 {
Some(marks[s.1+1])
} else {None},
None => None
};
// find reachable alternatives
let alternatives : Vec<_> = marks.iter().filter(|x|
x.2 != 2 &&
(
x.0.start_tick < (lb as u64) && (lb as u64) < x.0.end_tick
|| x.0.start_tick < (ub as u64) && (ub as u64) < x.0.end_tick )
).collect();
// in cases there are no alternatives
if alternatives.len() == 0 {
if old_hit.is_none() {
// choose something random
let untouched : Vec<_> = marks.iter().filter(
|x| x.2 == 0
).collect();
if untouched.len() > 0 {
let tmp = interrupt_offsets[i];
let choice = myrand.choose(untouched);
interrupt_offsets[i] = myrand.between(choice.0.start_tick, choice.0.end_tick)
.try_into().expect("tick > u32");
do_rerun = true;
}
// println!("no alternatives, choose random i: {} {} -> {}",i,tmp,interrupt_offsets[i]);
continue;
} else {
// do nothing
// println!("no alternatives, do nothing i: {} {}",i,interrupt_offsets[i]);
continue;
}
}
let replacement = myrand.choose(alternatives);
if (old_hit.map_or(false, |x| x == replacement)) {
// use the old value
// println!("chose old value, do nothing i: {} {}",i,interrupt_offsets[i]);
continue;
} else {
let extra = if (old_hit.map_or(false, |x| x.1 < replacement.1)) {
// move futher back, respect old_handler
old_handler.map_or(0, |x| x.0.end_tick - x.0.start_tick)
} else { 0 };
let tmp = interrupt_offsets[i];
interrupt_offsets[i] = (myrand.between(replacement.0.start_tick,
replacement.0.end_tick) + extra).try_into().expect("ticks > u32");
// println!("chose new alternative, i: {} {} -> {}",i,tmp, interrupt_offsets[i]);
do_rerun = true;
}
}
let mut numbers : Vec<u32> = interrupt_offsets[0..num_interrupts].to_vec();
numbers.sort();
// println!("Mutator: {:?}", numbers);
let mut start : u32 = 0;
// for i in 0..numbers.len() {
// let tmp = numbers[i];
// numbers[i] = numbers[i]-start;
// start = tmp;
// }
for i in 0..numbers.len() {
prefix.push(u32::to_le_bytes(numbers[i]));
}
}
}
#[cfg(not(feature = "feed_systemtrace"))]
{
let metadata = state.metadata();
let hist = metadata.get::<IcHist>().unwrap();
let maxtick : u64 = hist.1.0;
// let maxtick : u64 = (_input.exec_time().expect("No duration found").as_nanos() >> 4).try_into().unwrap();
let mut numbers : Vec<u32> = vec![];
for i in 0..num_interrupts {
prefix.push(u32::to_le_bytes(myrand.between(0, min(maxtick, u32::MAX as u64)).try_into().expect("ticks > u32")));
}
}
let mut n : Vec<u8> = vec![];
n = [prefix.concat(), suffix].concat();
newinput.bytes_mut().clear();
newinput.bytes_mut().append(&mut n);
}
// InterruptShifterMutator::mutate(&mut mymut, state, &mut input, 0)?;
if do_rerun {
let (_, corpus_idx) = fuzzer.evaluate_input(state, executor, manager, newinput)?;
}
Ok(())
}
}
impl<E, EM, Z> UsesState for MyStateStage<E, EM, Z>
where
E: UsesState<State = Z::State>,
EM: UsesState<State = Z::State>,
Z: Evaluator<E, EM>,
Z::State: HasClientPerfMonitor + HasCorpus + HasRand,
{
type State = Z::State;
}

View File

@ -0,0 +1,96 @@
use libafl::prelude::UsesInput;
use libafl_qemu::CPUArchState;
use libafl_qemu::Emulator;
use libafl_qemu::FastSnapshot;
use libafl_qemu::QemuExecutor;
use libafl_qemu::QemuHelper;
use libafl_qemu::QemuHelperTuple;
use libafl::{executors::ExitKind, inputs::Input, observers::ObserversTuple, state::HasMetadata};
use libafl_qemu::QemuHooks;
use libafl_qemu::{
emu,
};
// TODO be thread-safe maybe with https://amanieu.github.io/thread_local-rs/thread_local/index.html
#[derive(Debug)]
pub struct QemuStateRestoreHelper {
has_snapshot: bool,
use_snapshot: bool,
saved_cpu_states: Vec<CPUArchState>,
fastsnap: Option<FastSnapshot>
}
impl QemuStateRestoreHelper {
#[must_use]
pub fn new() -> Self {
Self {
has_snapshot: false,
use_snapshot: true,
saved_cpu_states: vec![],
fastsnap: None
}
}
}
impl Default for QemuStateRestoreHelper {
fn default() -> Self {
Self::new()
}
}
impl<S> QemuHelper<S> for QemuStateRestoreHelper
where
S: UsesInput,
{
const HOOKS_DO_SIDE_EFFECTS: bool = true;
fn init_hooks<QT>(&self, _hooks: &QemuHooks<'_, QT, S>)
where
QT: QemuHelperTuple<S>,
{
}
fn first_exec<QT>(&self, _hooks: &QemuHooks<'_, QT, S>)
where
QT: QemuHelperTuple<S>,
{
}
fn post_exec(&mut self, emulator: &Emulator, _input: &S::Input) {
// unsafe { println!("snapshot post {}",emu::icount_get_raw()) };
}
fn pre_exec(&mut self, emulator: &Emulator, _input: &S::Input) {
// only restore in pre-exec, to preserve the post-execution state for inspection
#[cfg(feature = "snapshot_restore")]
{
#[cfg(feature = "snapshot_fast")]
match self.fastsnap {
Some(s) => emulator.restore_fast_snapshot(s),
None => {self.fastsnap = Some(emulator.create_fast_snapshot(true));},
}
#[cfg(not(feature = "snapshot_fast"))]
if !self.has_snapshot {
emulator.save_snapshot("Start", true);
self.has_snapshot = true;
}
else
{
emulator.load_snapshot("Start", true);
}
}
#[cfg(not(feature = "snapshot_restore"))]
if !self.has_snapshot {
self.saved_cpu_states = (0..emulator.num_cpus())
.map(|i| emulator.cpu_from_index(i).save_state())
.collect();
self.has_snapshot = true;
} else {
for (i, s) in self.saved_cpu_states.iter().enumerate() {
emulator.cpu_from_index(i).restore_state(s);
}
}
// unsafe { println!("snapshot pre {}",emu::icount_get_raw()) };
}
}

View File

@ -0,0 +1,299 @@
use libafl::SerdeAny;
use libafl::bolts::ownedref::OwnedSlice;
use libafl::inputs::BytesInput;
use libafl::prelude::UsesInput;
use libafl::state::HasNamedMetadata;
use std::path::PathBuf;
use crate::clock::QemuClockObserver;
use libafl::corpus::Testcase;
use libafl::bolts::tuples::MatchName;
use std::collections::hash_map::DefaultHasher;
use std::hash::Hasher;
use std::hash::Hash;
use libafl::events::EventFirer;
use libafl::state::HasClientPerfMonitor;
use libafl::feedbacks::Feedback;
use libafl::bolts::tuples::Named;
use libafl::Error;
use hashbrown::HashMap;
use libafl::{executors::ExitKind, inputs::Input, observers::ObserversTuple, state::HasMetadata};
use serde::{Deserialize, Serialize};
use super::RefinedFreeRTOSSystemState;
use super::FreeRTOSSystemStateMetadata;
use super::observers::QemuSystemStateObserver;
use petgraph::prelude::DiGraph;
use petgraph::graph::NodeIndex;
use petgraph::Direction;
use std::cmp::Ordering;
//============================= Feedback
/// Shared Metadata for a systemstateFeedback
#[derive(Debug, Serialize, Deserialize, SerdeAny, Clone, Default)]
pub struct SystemStateFeedbackState
{
known_traces: HashMap<u64,(u64,u64,usize)>, // encounters,ticks,length
longest: Vec<RefinedFreeRTOSSystemState>,
}
impl Named for SystemStateFeedbackState
{
#[inline]
fn name(&self) -> &str {
"systemstate"
}
}
// impl FeedbackState for systemstateFeedbackState
// {
// fn reset(&mut self) -> Result<(), Error> {
// self.longest.clear();
// self.known_traces.clear();
// Ok(())
// }
// }
/// A Feedback reporting novel System-State Transitions. Depends on [`QemuSystemStateObserver`]
#[derive(Serialize, Deserialize, Clone, Debug, Default)]
pub struct NovelSystemStateFeedback
{
last_trace: Option<Vec<RefinedFreeRTOSSystemState>>,
// known_traces: HashMap<u64,(u64,usize)>,
}
impl<S> Feedback<S> for NovelSystemStateFeedback
where
S: UsesInput + HasClientPerfMonitor + HasNamedMetadata,
{
fn is_interesting<EM, OT>(
&mut self,
state: &mut S,
manager: &mut EM,
input: &S::Input,
observers: &OT,
exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>
{
let observer = observers.match_name::<QemuSystemStateObserver>("systemstate")
.expect("QemuSystemStateObserver not found");
let clock_observer = observers.match_name::<QemuClockObserver>("clocktime") //TODO not fixed
.expect("QemuClockObserver not found");
let feedbackstate = match state
.named_metadata_mut()
.get_mut::<SystemStateFeedbackState>("systemstate") {
Some(s) => s,
None => {
let n=SystemStateFeedbackState::default();
state.named_metadata_mut().insert(n, "systemstate");
state.named_metadata_mut().get_mut::<SystemStateFeedbackState>("systemstate").unwrap()
}
};
// let feedbackstate = state
// .feedback_states_mut()
// .match_name_mut::<systemstateFeedbackState>("systemstate")
// .unwrap();
// Do Stuff
let mut hasher = DefaultHasher::new();
observer.last_run.hash(&mut hasher);
let somehash = hasher.finish();
let mut is_novel = false;
let mut takes_longer = false;
match feedbackstate.known_traces.get_mut(&somehash) {
None => {
is_novel = true;
feedbackstate.known_traces.insert(somehash,(1,clock_observer.last_runtime(),observer.last_run.len()));
}
Some(s) => {
s.0+=1;
if s.1 < clock_observer.last_runtime() {
s.1 = clock_observer.last_runtime();
takes_longer = true;
}
}
}
if observer.last_run.len() > feedbackstate.longest.len() {
feedbackstate.longest=observer.last_run.clone();
}
self.last_trace = Some(observer.last_run.clone());
// if (!is_novel) { println!("not novel") };
Ok(is_novel | takes_longer)
}
/// Append to the testcase the generated metadata in case of a new corpus item
#[inline]
fn append_metadata(&mut self, _state: &mut S, testcase: &mut Testcase<S::Input>) -> Result<(), Error> {
let a = self.last_trace.take();
match a {
Some(s) => testcase.metadata_mut().insert(FreeRTOSSystemStateMetadata::new(s)),
None => (),
}
Ok(())
}
/// Discard the stored metadata in case that the testcase is not added to the corpus
#[inline]
fn discard_metadata(&mut self, _state: &mut S, _input: &S::Input) -> Result<(), Error> {
self.last_trace = None;
Ok(())
}
}
impl Named for NovelSystemStateFeedback
{
#[inline]
fn name(&self) -> &str {
"systemstate"
}
}
//=============================
pub fn match_traces(target: &Vec<RefinedFreeRTOSSystemState>, last: &Vec<RefinedFreeRTOSSystemState>) -> bool {
let mut ret = true;
if target.len() > last.len() {return false;}
for i in 0..target.len() {
ret &= target[i].current_task.task_name==last[i].current_task.task_name;
}
ret
}
pub fn match_traces_name(target: &Vec<String>, last: &Vec<RefinedFreeRTOSSystemState>) -> bool {
let mut ret = true;
if target.len() > last.len() {return false;}
for i in 0..target.len() {
ret &= target[i]==last[i].current_task.task_name;
}
ret
}
/// A Feedback reporting novel System-State Transitions. Depends on [`QemuSystemStateObserver`]
#[derive(Serialize, Deserialize, Clone, Debug, Default)]
pub struct HitSystemStateFeedback
{
target: Option<Vec<String>>,
}
impl<S> Feedback<S> for HitSystemStateFeedback
where
S: UsesInput + HasClientPerfMonitor,
{
fn is_interesting<EM, OT>(
&mut self,
state: &mut S,
manager: &mut EM,
input: &S::Input,
observers: &OT,
exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>
{
let observer = observers.match_name::<QemuSystemStateObserver>("systemstate")
.expect("QemuSystemStateObserver not found");
// Do Stuff
match &self.target {
Some(s) => {
// #[cfg(debug_assertions)] eprintln!("Hit systemstate Feedback trigger");
Ok(match_traces_name(s, &observer.last_run))
},
None => Ok(false),
}
}
}
impl Named for HitSystemStateFeedback
{
#[inline]
fn name(&self) -> &str {
"hit_systemstate"
}
}
impl HitSystemStateFeedback {
pub fn new(target: Option<Vec<RefinedFreeRTOSSystemState>>) -> Self {
Self {target: target.map(|x| x.into_iter().map(|y| y.current_task.task_name).collect())}
}
}
//=========================== Debugging Feedback
/// A [`Feedback`] meant to dump the system-traces for debugging. Depends on [`QemuSystemStateObserver`]
#[derive(Debug)]
pub struct DumpSystraceFeedback
{
dumpfile: Option<PathBuf>,
dump_metadata: bool,
last_trace: Option<Vec<RefinedFreeRTOSSystemState>>,
}
impl<S> Feedback<S> for DumpSystraceFeedback
where
S: UsesInput + HasClientPerfMonitor,
{
fn is_interesting<EM, OT>(
&mut self,
state: &mut S,
manager: &mut EM,
input: &S::Input,
observers: &OT,
exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>
{
let observer = observers.match_name::<QemuSystemStateObserver>("systemstate")
.expect("QemuSystemStateObserver not found");
let names : Vec<String> = observer.last_run.iter().map(|x| x.current_task.task_name.clone()).collect();
match &self.dumpfile {
Some(s) => {
std::fs::write(s,ron::to_string(&observer.last_run).expect("Error serializing hashmap")).expect("Can not dump to file");
self.dumpfile = None
},
None => if !self.dump_metadata {println!("{:?}\n{:?}",observer.last_run,names);}
};
if self.dump_metadata {self.last_trace=Some(observer.last_run.clone());}
Ok(!self.dump_metadata)
}
/// Append to the testcase the generated metadata in case of a new corpus item
#[inline]
fn append_metadata(&mut self, _state: &mut S, testcase: &mut Testcase<S::Input>) -> Result<(), Error> {
if !self.dump_metadata {return Ok(());}
let a = self.last_trace.take();
match a {
Some(s) => testcase.metadata_mut().insert(FreeRTOSSystemStateMetadata::new(s)),
None => (),
}
Ok(())
}
/// Discard the stored metadata in case that the testcase is not added to the corpus
#[inline]
fn discard_metadata(&mut self, _state: &mut S, _input: &S::Input) -> Result<(), Error> {
self.last_trace = None;
Ok(())
}
}
impl Named for DumpSystraceFeedback
{
#[inline]
fn name(&self) -> &str {
"Dumpsystemstate"
}
}
impl DumpSystraceFeedback
{
/// Creates a new [`DumpSystraceFeedback`]
#[must_use]
pub fn new() -> Self {
Self {dumpfile: None, dump_metadata: false, last_trace: None}
}
pub fn with_dump(dumpfile: Option<PathBuf>) -> Self {
Self {dumpfile: dumpfile, dump_metadata: false, last_trace: None}
}
pub fn metadata_only() -> Self {
Self {dumpfile: None, dump_metadata: true, last_trace: None}
}
}

View File

@ -0,0 +1,122 @@
#![allow(non_camel_case_types,non_snake_case,non_upper_case_globals,deref_nullptr)]
use serde::{Deserialize, Serialize};
// Manual Types
use libafl_qemu::Emulator;
/*========== Start of generated Code =============*/
pub type char_ptr = ::std::os::raw::c_uint;
pub type ListItem_t_ptr = ::std::os::raw::c_uint;
pub type StackType_t_ptr = ::std::os::raw::c_uint;
pub type void_ptr = ::std::os::raw::c_uint;
pub type tskTaskControlBlock_ptr = ::std::os::raw::c_uint;
pub type xLIST_ptr = ::std::os::raw::c_uint;
pub type xLIST_ITEM_ptr = ::std::os::raw::c_uint;
/* automatically generated by rust-bindgen 0.59.2 */
pub type __uint8_t = ::std::os::raw::c_uchar;
pub type __uint16_t = ::std::os::raw::c_ushort;
pub type __uint32_t = ::std::os::raw::c_uint;
pub type StackType_t = u32;
pub type UBaseType_t = ::std::os::raw::c_uint;
pub type TickType_t = u32;
#[repr(C)]
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct xLIST_ITEM {
pub xItemValue: TickType_t,
pub pxNext: xLIST_ITEM_ptr,
pub pxPrevious: xLIST_ITEM_ptr,
pub pvOwner: void_ptr,
pub pvContainer: xLIST_ptr,
}
pub type ListItem_t = xLIST_ITEM;
#[repr(C)]
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct xMINI_LIST_ITEM {
pub xItemValue: TickType_t,
pub pxNext: xLIST_ITEM_ptr,
pub pxPrevious: xLIST_ITEM_ptr,
}
pub type MiniListItem_t = xMINI_LIST_ITEM;
#[repr(C)]
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct xLIST {
pub uxNumberOfItems: UBaseType_t,
pub pxIndex: ListItem_t_ptr,
pub xListEnd: MiniListItem_t,
}
pub type List_t = xLIST;
pub type TaskHandle_t = tskTaskControlBlock_ptr;
pub const eTaskState_eRunning: eTaskState = 0;
pub const eTaskState_eReady: eTaskState = 1;
pub const eTaskState_eBlocked: eTaskState = 2;
pub const eTaskState_eSuspended: eTaskState = 3;
pub const eTaskState_eDeleted: eTaskState = 4;
pub const eTaskState_eInvalid: eTaskState = 5;
pub type eTaskState = ::std::os::raw::c_uint;
#[repr(C)]
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct xTASK_STATUS {
pub xHandle: TaskHandle_t,
pub pcTaskName: char_ptr,
pub xTaskNumber: UBaseType_t,
pub eCurrentState: eTaskState,
pub uxCurrentPriority: UBaseType_t,
pub uxBasePriority: UBaseType_t,
pub ulRunTimeCounter: u32,
pub pxStackBase: StackType_t_ptr,
pub usStackHighWaterMark: u16,
}
pub type TaskStatus_t = xTASK_STATUS;
#[repr(C)]
#[derive(Debug, Copy, Clone, Default, Serialize, Deserialize)]
pub struct tskTaskControlBlock {
pub pxTopOfStack: StackType_t_ptr,
pub xStateListItem: ListItem_t,
pub xEventListItem: ListItem_t,
pub uxPriority: UBaseType_t,
pub pxStack: StackType_t_ptr,
pub pcTaskName: [::std::os::raw::c_char; 10usize],
pub uxBasePriority: UBaseType_t,
pub uxMutexesHeld: UBaseType_t,
pub ulNotifiedValue: [u32; 1usize],
pub ucNotifyState: [u8; 1usize],
pub ucStaticallyAllocated: u8,
pub ucDelayAborted: u8,
}
pub type tskTCB = tskTaskControlBlock;
pub type TCB_t = tskTCB;
/*========== End of generated Code =============*/
pub trait emu_lookup {
fn lookup(emu: &Emulator, addr: ::std::os::raw::c_uint) -> Self;
}
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum rtos_struct {
TCB_struct(TCB_t),
List_struct(List_t),
List_Item_struct(ListItem_t),
List_MiniItem_struct(MiniListItem_t),
}
#[macro_export]
macro_rules! impl_emu_lookup {
($struct_name:ident) => {
impl $crate::systemstate::freertos::emu_lookup for $struct_name {
fn lookup(emu: &Emulator, addr: ::std::os::raw::c_uint) -> $struct_name {
let mut tmp : [u8; std::mem::size_of::<$struct_name>()] = [0u8; std::mem::size_of::<$struct_name>()];
unsafe {
emu.read_mem(addr.into(), &mut tmp);
std::mem::transmute::<[u8; std::mem::size_of::<$struct_name>()], $struct_name>(tmp)
}
}
}
};
}
impl_emu_lookup!(TCB_t);
impl_emu_lookup!(List_t);
impl_emu_lookup!(ListItem_t);
impl_emu_lookup!(MiniListItem_t);
impl_emu_lookup!(void_ptr);
impl_emu_lookup!(TaskStatus_t);

View File

@ -0,0 +1,604 @@
use libafl::SerdeAny;
/// Feedbacks organizing SystemStates as a graph
use libafl::inputs::HasBytesVec;
use libafl::bolts::rands::RandomSeed;
use libafl::bolts::rands::StdRand;
use libafl::mutators::Mutator;
use libafl::mutators::MutationResult;
use libafl::prelude::HasTargetBytes;
use libafl::prelude::UsesInput;
use libafl::state::HasNamedMetadata;
use libafl::state::UsesState;
use core::marker::PhantomData;
use libafl::state::HasCorpus;
use libafl::state::HasSolutions;
use libafl::state::HasRand;
use crate::worst::MaxExecsLenFavFactor;
use libafl::schedulers::MinimizerScheduler;
use libafl::bolts::HasRefCnt;
use libafl::bolts::AsSlice;
use libafl::bolts::ownedref::OwnedSlice;
use libafl::inputs::BytesInput;
use std::path::PathBuf;
use crate::clock::QemuClockObserver;
use libafl::corpus::Testcase;
use libafl::bolts::tuples::MatchName;
use std::collections::hash_map::DefaultHasher;
use std::hash::Hasher;
use std::hash::Hash;
use libafl::events::EventFirer;
use libafl::state::HasClientPerfMonitor;
use libafl::feedbacks::Feedback;
use libafl::bolts::tuples::Named;
use libafl::Error;
use hashbrown::HashMap;
use libafl::{executors::ExitKind, inputs::Input, observers::ObserversTuple, state::HasMetadata};
use serde::{Deserialize, Serialize};
use super::RefinedFreeRTOSSystemState;
use super::FreeRTOSSystemStateMetadata;
use super::observers::QemuSystemStateObserver;
use petgraph::prelude::DiGraph;
use petgraph::graph::NodeIndex;
use petgraph::Direction;
use std::cmp::Ordering;
use libafl::bolts::rands::Rand;
//============================= Data Structures
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Default)]
pub struct VariantTuple
{
pub start_tick: u64,
pub end_tick: u64,
input_counter: u32,
pub input: Vec<u8>, // in the end any kind of input are bytes, regardless of type and lifetime
}
impl VariantTuple {
fn from(other: &RefinedFreeRTOSSystemState,input: Vec<u8>) -> Self {
VariantTuple{
start_tick: other.start_tick,
end_tick: other.end_tick,
input_counter: other.input_counter,
input: input,
}
}
}
#[derive(Serialize, Deserialize, Clone, Debug, Default)]
pub struct SysGraphNode
{
base: RefinedFreeRTOSSystemState,
pub variants: Vec<VariantTuple>,
}
impl SysGraphNode {
fn from(base: RefinedFreeRTOSSystemState, input: Vec<u8>) -> Self {
SysGraphNode{variants: vec![VariantTuple::from(&base, input)], base:base }
}
/// unites the variants of this value with another, draining the other if the bases are equal
fn unite(&mut self, other: &mut SysGraphNode) -> bool {
if self!=other {return false;}
self.variants.append(&mut other.variants);
self.variants.dedup();
return true;
}
/// add a Varint from a [`RefinedFreeRTOSSystemState`]
fn unite_raw(&mut self, other: &RefinedFreeRTOSSystemState, input: &Vec<u8>) -> bool {
if &self.base!=other {return false;}
self.variants.push(VariantTuple::from(other, input.clone()));
self.variants.dedup();
return true;
}
/// add a Varint from a [`RefinedFreeRTOSSystemState`], if it's interesting
fn unite_interesting(&mut self, other: &RefinedFreeRTOSSystemState, input: &Vec<u8>) -> bool {
if &self.base!=other {return false;}
let interesting =
self.variants.iter().all(|x| x.end_tick-x.start_tick<other.end_tick-other.start_tick) || // longest variant
self.variants.iter().all(|x| x.end_tick-x.start_tick>other.end_tick-other.start_tick) || // shortest variant
self.variants.iter().all(|x| x.input_counter>other.input_counter) || // longest input
self.variants.iter().all(|x| x.input_counter<other.input_counter); // shortest input
if interesting {
let var = VariantTuple::from(other, input.clone());
self.variants.push(var);
}
return interesting;
}
pub fn get_taskname(&self) -> &str {
&self.base.current_task.task_name
}
pub fn get_input_counts(&self) -> Vec<u32> {
self.variants.iter().map(|x| x.input_counter).collect()
}
}
impl PartialEq for SysGraphNode {
fn eq(&self, other: &SysGraphNode) -> bool {
self.base==other.base
}
}
// Wrapper around Vec<RefinedFreeRTOSSystemState> to attach as Metadata
#[derive(Debug, Default, Serialize, Deserialize, Clone)]
pub struct SysGraphMetadata {
pub inner: Vec<NodeIndex>,
indices: Vec<usize>,
tcref: isize,
}
impl SysGraphMetadata {
pub fn new(inner: Vec<NodeIndex>) -> Self{
Self {indices: inner.iter().map(|x| x.index()).collect(), inner: inner, tcref: 0}
}
}
impl AsSlice for SysGraphMetadata {
/// Convert the slice of system-states to a slice of hashes over enumerated states
fn as_slice(&self) -> &[usize] {
self.indices.as_slice()
}
type Entry = usize;
}
impl HasRefCnt for SysGraphMetadata {
fn refcnt(&self) -> isize {
self.tcref
}
fn refcnt_mut(&mut self) -> &mut isize {
&mut self.tcref
}
}
libafl::impl_serdeany!(SysGraphMetadata);
pub type GraphMaximizerCorpusScheduler<CS> =
MinimizerScheduler<CS, MaxExecsLenFavFactor<<CS as UsesState>::State>,SysGraphMetadata>;
//============================= Graph Feedback
/// Improved System State Graph
#[derive(Serialize, Deserialize, Clone, Debug, Default, SerdeAny)]
pub struct SysGraphFeedbackState
{
pub graph: DiGraph<SysGraphNode, ()>,
entrypoint: NodeIndex,
exit: NodeIndex,
name: String,
}
impl SysGraphFeedbackState
{
pub fn new() -> Self {
let mut graph = DiGraph::<SysGraphNode, ()>::new();
let mut entry = SysGraphNode::default();
entry.base.current_task.task_name="Start".to_string();
let mut exit = SysGraphNode::default();
exit.base.current_task.task_name="End".to_string();
let entry = graph.add_node(entry);
let exit = graph.add_node(exit);
Self {graph: graph, entrypoint: entry, exit: exit, name: String::from("SysMap")}
}
fn insert(&mut self, list: Vec<RefinedFreeRTOSSystemState>, input: &Vec<u8>) {
let mut current_index = self.entrypoint;
for n in list {
let mut done = false;
for i in self.graph.neighbors_directed(current_index, Direction::Outgoing) {
if n == self.graph[i].base {
done = true;
current_index = i;
break;
}
}
if !done {
let j = self.graph.add_node(SysGraphNode::from(n,input.clone()));
self.graph.add_edge(current_index, j, ());
current_index = j;
}
}
}
/// Try adding a system state path from a [Vec<RefinedFreeRTOSSystemState>], return true if the path was interesting
fn update(&mut self, list: &Vec<RefinedFreeRTOSSystemState>, input: &Vec<u8>) -> (bool, Vec<NodeIndex>) {
let mut current_index = self.entrypoint;
let mut novel = false;
let mut trace : Vec<NodeIndex> = vec![current_index];
for n in list {
let mut matching : Option<NodeIndex> = None;
for i in self.graph.neighbors_directed(current_index, Direction::Outgoing) {
let tmp = &self.graph[i];
if n == &tmp.base {
matching = Some(i);
current_index = i;
break;
}
}
match matching {
None => {
novel = true;
let j = self.graph.add_node(SysGraphNode::from(n.clone(),input.clone()));
self.graph.add_edge(current_index, j, ());
current_index = j;
},
Some(i) => {
novel |= self.graph[i].unite_interesting(&n, input);
}
}
trace.push(current_index);
}
self.graph.update_edge(current_index, self.exit, ()); // every path ends in the exit noded
return (novel, trace);
}
}
impl Named for SysGraphFeedbackState
{
#[inline]
fn name(&self) -> &str {
&self.name
}
}
impl SysGraphFeedbackState
{
fn reset(&mut self) -> Result<(), Error> {
self.graph.clear();
let mut entry = SysGraphNode::default();
entry.base.current_task.task_name="Start".to_string();
let mut exit = SysGraphNode::default();
exit.base.current_task.task_name="End".to_string();
self.entrypoint = self.graph.add_node(entry);
self.exit = self.graph.add_node(exit);
Ok(())
}
}
/// A Feedback reporting novel System-State Transitions. Depends on [`QemuSystemStateObserver`]
#[derive(Serialize, Deserialize, Clone, Debug, Default)]
pub struct SysMapFeedback
{
name: String,
last_trace: Option<Vec<NodeIndex>>,
}
impl SysMapFeedback {
pub fn new() -> Self {
Self {name: String::from("SysMapFeedback"), last_trace: None }
}
}
impl<S> Feedback<S> for SysMapFeedback
where
S: UsesInput + HasClientPerfMonitor + HasNamedMetadata,
S::Input: HasTargetBytes,
{
#[allow(clippy::wrong_self_convention)]
fn is_interesting<EM, OT>(
&mut self,
state: &mut S,
_manager: &mut EM,
_input: &S::Input,
observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
let observer = observers.match_name::<QemuSystemStateObserver>("systemstate")
.expect("QemuSystemStateObserver not found");
let feedbackstate = match state
.named_metadata_mut()
.get_mut::<SysGraphFeedbackState>("SysMap") {
Some(s) => s,
None => {
let n=SysGraphFeedbackState::default();
state.named_metadata_mut().insert(n, "SysMap");
state.named_metadata_mut().get_mut::<SysGraphFeedbackState>("SysMap").unwrap()
}
};
let ret = feedbackstate.update(&observer.last_run, &observer.last_input);
self.last_trace = Some(ret.1);
Ok(ret.0)
}
/// Append to the testcase the generated metadata in case of a new corpus item
#[inline]
fn append_metadata(&mut self, _state: &mut S, testcase: &mut Testcase<S::Input>) -> Result<(), Error> {
let a = self.last_trace.take();
match a {
Some(s) => testcase.metadata_mut().insert(SysGraphMetadata::new(s)),
None => (),
}
Ok(())
}
/// Discard the stored metadata in case that the testcase is not added to the corpus
#[inline]
fn discard_metadata(&mut self, _state: &mut S, _input: &S::Input) -> Result<(), Error> {
self.last_trace = None;
Ok(())
}
}
impl Named for SysMapFeedback
{
#[inline]
fn name(&self) -> &str {
&self.name
}
}
//============================= Mutators
//=============================== Snippets
// pub struct RandGraphSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// phantom: PhantomData<(I, S)>,
// }
// impl<I, S> RandGraphSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// pub fn new() -> Self {
// RandGraphSnippetMutator{phantom: PhantomData}
// }
// }
// impl<I, S> Mutator<I, S> for RandGraphSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// fn mutate(
// &mut self,
// state: &mut S,
// input: &mut I,
// _stage_idx: i32
// ) -> Result<MutationResult, Error>
// {
// // need our own random generator, because borrowing rules
// let mut myrand = StdRand::new();
// let tmp = &mut state.rand_mut();
// myrand.set_seed(tmp.next());
// drop(tmp);
// let feedbackstate = state
// .feedback_states()
// .match_name::<SysGraphFeedbackState>("SysMap")
// .unwrap();
// let g = &feedbackstate.graph;
// let tmp = state.metadata().get::<SysGraphMetadata>();
// if tmp.is_none() { // if there are no metadata it was probably not interesting anyways
// return Ok(MutationResult::Skipped);
// }
// let trace =tmp.expect("SysGraphMetadata not found");
// // follow the path, extract snippets from last reads, find common snippets.
// // those are likley keys parts. choose random parts from other sibling traces
// let sibling_inputs : Vec<&Vec<u8>>= g[*trace.inner.last().unwrap()].variants.iter().map(|x| &x.input).collect();
// let mut snippet_collector = vec![];
// let mut per_input_counters = HashMap::<&Vec<u8>,usize>::new(); // ugly workaround to track multiple inputs
// for t in &trace.inner {
// let node = &g[*t];
// let mut per_node_snippets = HashMap::<&Vec<u8>,&[u8]>::new();
// for v in &node.variants {
// match per_input_counters.get_mut(&v.input) {
// None => {
// if sibling_inputs.iter().any(|x| *x==&v.input) { // only collect info about siblin inputs from target
// per_input_counters.insert(&v.input, v.input_counter.try_into().unwrap());
// }
// },
// Some(x) => {
// let x_u = *x;
// if x_u<v.input_counter as usize {
// *x=v.input_counter as usize;
// per_node_snippets.insert(&v.input,&v.input[x_u..v.input_counter as usize]);
// }
// }
// }
// }
// snippet_collector.push(per_node_snippets);
// }
// let mut new_input : Vec<u8> = vec![];
// for c in snippet_collector {
// new_input.extend_from_slice(myrand.choose(c).1);
// }
// for i in new_input.iter().enumerate() {
// input.bytes_mut()[i.0]=*i.1;
// }
// Ok(MutationResult::Mutated)
// }
// fn post_exec(
// &mut self,
// _state: &mut S,
// _stage_idx: i32,
// _corpus_idx: Option<usize>
// ) -> Result<(), Error> {
// Ok(())
// }
// }
// impl<I, S> Named for RandGraphSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// fn name(&self) -> &str {
// "RandGraphSnippetMutator"
// }
// }
// //=============================== Snippets
// pub struct RandInputSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// phantom: PhantomData<(I, S)>,
// }
// impl<I, S> RandInputSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// pub fn new() -> Self {
// RandInputSnippetMutator{phantom: PhantomData}
// }
// }
// impl<I, S> Mutator<I, S> for RandInputSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// fn mutate(
// &mut self,
// state: &mut S,
// input: &mut I,
// _stage_idx: i32
// ) -> Result<MutationResult, Error>
// {
// // need our own random generator, because borrowing rules
// let mut myrand = StdRand::new();
// let tmp = &mut state.rand_mut();
// myrand.set_seed(tmp.next());
// drop(tmp);
// let feedbackstate = state
// .feedback_states()
// .match_name::<SysGraphFeedbackState>("SysMap")
// .unwrap();
// let g = &feedbackstate.graph;
// let tmp = state.metadata().get::<SysGraphMetadata>();
// if tmp.is_none() { // if there are no metadata it was probably not interesting anyways
// return Ok(MutationResult::Skipped);
// }
// let trace = tmp.expect("SysGraphMetadata not found");
// let mut collection : Vec<Vec<u8>> = Vec::new();
// let mut current_pointer : usize = 0;
// for t in &trace.inner {
// let node = &g[*t];
// for v in &node.variants {
// if v.input == input.bytes() {
// if v.input_counter > current_pointer.try_into().unwrap() {
// collection.push(v.input[current_pointer..v.input_counter as usize].to_owned());
// current_pointer = v.input_counter as usize;
// }
// break;
// }
// }
// }
// let index_to_mutate = myrand.below(collection.len() as u64) as usize;
// for i in 0..collection[index_to_mutate].len() {
// collection[index_to_mutate][i] = myrand.below(0xFF) as u8;
// }
// for i in collection.concat().iter().enumerate() {
// input.bytes_mut()[i.0]=*i.1;
// }
// Ok(MutationResult::Mutated)
// }
// fn post_exec(
// &mut self,
// _state: &mut S,
// _stage_idx: i32,
// _corpus_idx: Option<usize>
// ) -> Result<(), Error> {
// Ok(())
// }
// }
// impl<I, S> Named for RandInputSnippetMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// fn name(&self) -> &str {
// "RandInputSnippetMutator"
// }
// }
// //=============================== Suffix
// pub struct RandGraphSuffixMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// phantom: PhantomData<(I, S)>,
// }
// impl<I, S> RandGraphSuffixMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// pub fn new() -> Self {
// RandGraphSuffixMutator{phantom: PhantomData}
// }
// }
// impl<I, S> Mutator<I, S> for RandGraphSuffixMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// fn mutate(
// &mut self,
// state: &mut S,
// input: &mut I,
// _stage_idx: i32
// ) -> Result<MutationResult, Error>
// {
// // need our own random generator, because borrowing rules
// let mut myrand = StdRand::new();
// let tmp = &mut state.rand_mut();
// myrand.set_seed(tmp.next());
// drop(tmp);
// let feedbackstate = state
// .feedback_states()
// .match_name::<SysGraphFeedbackState>("SysMap")
// .unwrap();
// let g = &feedbackstate.graph;
// let tmp = state.metadata().get::<SysGraphMetadata>();
// if tmp.is_none() { // if there are no metadata it was probably not interesting anyways
// return Ok(MutationResult::Skipped);
// }
// let trace =tmp.expect("SysGraphMetadata not found");
// // follow the path, extract snippets from last reads, find common snippets.
// // those are likley keys parts. choose random parts from other sibling traces
// let inp_c_end = g[*trace.inner.last().unwrap()].base.input_counter;
// let mut num_to_reverse = myrand.below(trace.inner.len().try_into().unwrap());
// for t in trace.inner.iter().rev() {
// let int_c_prefix = g[*t].base.input_counter;
// if int_c_prefix < inp_c_end {
// num_to_reverse-=1;
// if num_to_reverse<=0 {
// let mut new_input=input.bytes()[..(int_c_prefix as usize)].to_vec();
// let mut ext : Vec<u8> = (int_c_prefix..inp_c_end).map(|_| myrand.next().to_le_bytes()).flatten().collect();
// new_input.append(&mut ext);
// for i in new_input.iter().enumerate() {
// if input.bytes_mut().len()>i.0 {
// input.bytes_mut()[i.0]=*i.1;
// }
// else { break };
// }
// break;
// }
// }
// }
// Ok(MutationResult::Mutated)
// }
// fn post_exec(
// &mut self,
// _state: &mut S,
// _stage_idx: i32,
// _corpus_idx: Option<usize>
// ) -> Result<(), Error> {
// Ok(())
// }
// }
// impl<I, S> Named for RandGraphSuffixMutator<I, S>
// where
// I: Input + HasBytesVec,
// S: HasRand + HasMetadata + HasCorpus<I> + HasSolutions<I>,
// {
// fn name(&self) -> &str {
// "RandGraphSuffixMutator"
// }
// }

View File

@ -0,0 +1,209 @@
use std::cell::UnsafeCell;
use std::io::Write;
use std::ops::Range;
use libafl::prelude::UsesInput;
use libafl_qemu::Emulator;
use libafl_qemu::GuestAddr;
use libafl_qemu::QemuHooks;
use libafl_qemu::edges::QemuEdgesMapMetadata;
use libafl_qemu::emu;
use libafl_qemu::hooks;
use crate::systemstate::RawFreeRTOSSystemState;
use crate::systemstate::CURRENT_SYSTEMSTATE_VEC;
use crate::systemstate::NUM_PRIOS;
use super::freertos::TCB_t;
use super::freertos::rtos_struct::List_Item_struct;
use super::freertos::rtos_struct::*;
use super::freertos;
use libafl_qemu::{
helper::{QemuHelper, QemuHelperTuple},
// edges::SAVED_JUMP,
};
//============================= Struct definitions
pub static mut INTR_OFFSET : Option<u64> = None;
pub static mut INTR_DONE : bool = true;
// only used when inputs are injected
pub static mut NEXT_INPUT : Vec<u8> = Vec::new();
//============================= Qemu Helper
/// A Qemu Helper with reads FreeRTOS specific structs from Qemu whenever certain syscalls occur, also inject inputs
#[derive(Debug)]
pub struct QemuSystemStateHelper {
kerneladdr: u32,
tcb_addr: u32,
ready_queues: u32,
input_counter: Option<u64>,
app_range: Range<u32>,
}
impl QemuSystemStateHelper {
#[must_use]
pub fn new(
kerneladdr: u32,
tcb_addr: u32,
ready_queues: u32,
input_counter: Option<u64>,
app_range: Range<u32>,
) -> Self {
QemuSystemStateHelper {
kerneladdr,
tcb_addr: tcb_addr,
ready_queues: ready_queues,
input_counter: input_counter,
app_range,
}
}
}
impl<S> QemuHelper<S> for QemuSystemStateHelper
where
S: UsesInput,
{
fn first_exec<QT>(&self, _hooks: &QemuHooks<'_, QT, S>)
where
QT: QemuHelperTuple<S>,
{
_hooks.instruction(self.kerneladdr, exec_syscall_hook::<QT, S>, false);
#[cfg(feature = "trace_abbs")]
_hooks.jmps(Some(gen_jmp_is_syscall::<QT, S>), Some(trace_api_call::<QT, S>));
}
// TODO: refactor duplicate code
fn pre_exec(&mut self, _emulator: &Emulator, _input: &S::Input) {
unsafe {
CURRENT_SYSTEMSTATE_VEC.clear();
let p = LAST_API_CALL.with(|x| x.get());
*p = None;
}
}
fn post_exec(&mut self, emulator: &Emulator, _input: &S::Input) {
trigger_collection(emulator, self)
}
}
#[inline]
fn trigger_collection(emulator: &Emulator, h: &QemuSystemStateHelper) {
let listbytes : u32 = u32::try_from(std::mem::size_of::<freertos::List_t>()).unwrap();
let mut systemstate = RawFreeRTOSSystemState::default();
unsafe {
// TODO: investigate why can_do_io is not set sometimes, as this is just a workaround
let c = emulator.cpu_from_index(0);
let can_do_io = (*c.raw_ptr()).can_do_io;
(*c.raw_ptr()).can_do_io = 1;
systemstate.qemu_tick = emu::icount_get_raw();
(*c.raw_ptr()).can_do_io = can_do_io;
}
let mut buf : [u8; 4] = [0,0,0,0];
match h.input_counter {
Some(s) => unsafe { emulator.read_phys_mem(s, &mut buf); },
None => (),
};
systemstate.input_counter = u32::from_le_bytes(buf);
let curr_tcb_addr : freertos::void_ptr = freertos::emu_lookup::lookup(emulator, h.tcb_addr);
if curr_tcb_addr == 0 {
return;
};
systemstate.current_tcb = freertos::emu_lookup::lookup(emulator,curr_tcb_addr);
unsafe {
LAST_API_CALL.with(|x|
match *x.get() {
Some(s) => {
systemstate.last_pc = Some(s.0 as u64);
},
None => (),
}
);
}
// println!("{:?}",std::str::from_utf8(&current_tcb.pcTaskName));
for i in 0..NUM_PRIOS {
let target : u32 = listbytes*u32::try_from(i).unwrap()+h.ready_queues;
systemstate.prio_ready_lists[i] = freertos::emu_lookup::lookup(emulator, target);
// println!("List at {}: {:?}",target, systemstate.prio_ready_lists[i]);
let mut next_index = systemstate.prio_ready_lists[i].pxIndex;
for _j in 0..systemstate.prio_ready_lists[i].uxNumberOfItems {
// always jump over the xListEnd marker
if (target..target+listbytes).contains(&next_index) {
let next_item : freertos::MiniListItem_t = freertos::emu_lookup::lookup(emulator, next_index);
let new_next_index=next_item.pxNext;
systemstate.dumping_ground.insert(next_index,List_MiniItem_struct(next_item));
next_index = new_next_index;
}
let next_item : freertos::ListItem_t = freertos::emu_lookup::lookup(emulator, next_index);
// println!("Item at {}: {:?}",next_index,next_item);
assert_eq!(next_item.pvContainer,target);
let new_next_index=next_item.pxNext;
let next_tcb : TCB_t= freertos::emu_lookup::lookup(emulator,next_item.pvOwner);
// println!("TCB at {}: {:?}",next_item.pvOwner,next_tcb);
systemstate.dumping_ground.insert(next_item.pvOwner,TCB_struct(next_tcb.clone()));
systemstate.dumping_ground.insert(next_index,List_Item_struct(next_item));
next_index=new_next_index;
}
// Handle edge case where the end marker was not included yet
if (target..target+listbytes).contains(&next_index) {
let next_item : freertos::MiniListItem_t = freertos::emu_lookup::lookup(emulator, next_index);
systemstate.dumping_ground.insert(next_index,List_MiniItem_struct(next_item));
}
}
unsafe { CURRENT_SYSTEMSTATE_VEC.push(systemstate); }
}
pub fn exec_syscall_hook<QT, S>(
hooks: &mut QemuHooks<'_, QT, S>,
_state: Option<&mut S>,
_pc: u32,
)
where
S: UsesInput,
QT: QemuHelperTuple<S>,
{
let emulator = hooks.emulator();
let h = hooks.helpers().match_first_type::<QemuSystemStateHelper>().expect("QemuSystemHelper not found in helper tupel");
trigger_collection(emulator, h);
}
thread_local!(static LAST_API_CALL : UnsafeCell<Option<(GuestAddr,GuestAddr)>> = UnsafeCell::new(None));
pub fn gen_jmp_is_syscall<QT, S>(
hooks: &mut QemuHooks<'_, QT, S>,
_state: Option<&mut S>,
src: GuestAddr,
dest: GuestAddr,
) -> Option<u64>
where
S: UsesInput,
QT: QemuHelperTuple<S>,
{
if let Some(h) = hooks.helpers().match_first_type::<QemuSystemStateHelper>() {
if h.app_range.contains(&src) && !h.app_range.contains(&dest) {
// println!("New jmp {:x} {:x}", src, dest);
return Some(1);
}
}
return None;
}
pub fn trace_api_call<QT, S>(
_hooks: &mut QemuHooks<'_, QT, S>,
_state: Option<&mut S>,
src: GuestAddr, dest: GuestAddr, id: u64
)
where
S: UsesInput,
QT: QemuHelperTuple<S>,
{
unsafe {
let p = LAST_API_CALL.with(|x| x.get());
*p = Some((src,dest));
// print!("*");
}
}

View File

@ -0,0 +1,167 @@
//! systemstate referes to the State of a FreeRTOS fuzzing target
use std::collections::hash_map::DefaultHasher;
use libafl::bolts::HasRefCnt;
use libafl::bolts::AsSlice;
use std::hash::Hasher;
use std::hash::Hash;
use hashbrown::HashMap;
use serde::{Deserialize, Serialize};
use freertos::TCB_t;
pub mod freertos;
pub mod helpers;
pub mod observers;
pub mod feedbacks;
pub mod graph;
pub mod schedulers;
// #[cfg(feature = "fuzz_interrupt")]
// pub const IRQ_INPUT_BYTES_NUMBER : u32 = 2; // Offset for interrupt bytes
// #[cfg(not(feature = "fuzz_interrupt"))]
// pub const IRQ_INPUT_BYTES_NUMBER : u32 = 0; // Offset for interrupt bytes
// pub const IRQ_INPUT_OFFSET : u32 = 347780; // Tick offset for app code start
// Constants
const NUM_PRIOS: usize = 5;
//============================= Struct definitions
/// Raw info Dump from Qemu
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct RawFreeRTOSSystemState {
qemu_tick: u64,
current_tcb: TCB_t,
prio_ready_lists: [freertos::List_t; NUM_PRIOS],
dumping_ground: HashMap<u32,freertos::rtos_struct>,
input_counter: u32,
last_pc: Option<u64>,
}
/// List of system state dumps from QemuHelpers
static mut CURRENT_SYSTEMSTATE_VEC: Vec<RawFreeRTOSSystemState> = vec![];
/// A reduced version of freertos::TCB_t
#[derive(Debug, Default, Serialize, Deserialize, Clone, PartialEq)]
pub struct RefinedTCB {
pub task_name: String,
pub priority: u32,
pub base_priority: u32,
mutexes_held: u32,
notify_value: u32,
notify_state: u8,
}
impl Hash for RefinedTCB {
fn hash<H: Hasher>(&self, state: &mut H) {
self.task_name.hash(state);
self.priority.hash(state);
self.mutexes_held.hash(state);
#[cfg(not(feature = "no_hash_state"))]
self.notify_state.hash(state);
// self.notify_value.hash(state);
}
}
impl RefinedTCB {
pub fn from_tcb(input: &TCB_t) -> Self {
unsafe {
let tmp = std::mem::transmute::<[i8; 10],[u8; 10]>(input.pcTaskName);
let name : String = std::str::from_utf8(&tmp).expect("TCB name was not utf8").chars().filter(|x| *x != '\0').collect::<String>();
Self {
task_name: name,
priority: input.uxPriority,
base_priority: input.uxBasePriority,
mutexes_held: input.uxMutexesHeld,
notify_value: input.ulNotifiedValue[0],
notify_state: input.ucNotifyState[0],
}
}
}
pub fn from_tcb_owned(input: TCB_t) -> Self {
unsafe {
let tmp = std::mem::transmute::<[i8; 10],[u8; 10]>(input.pcTaskName);
let name : String = std::str::from_utf8(&tmp).expect("TCB name was not utf8").chars().filter(|x| *x != '\0').collect::<String>();
Self {
task_name: name,
priority: input.uxPriority,
base_priority: input.uxBasePriority,
mutexes_held: input.uxMutexesHeld,
notify_value: input.ulNotifiedValue[0],
notify_state: input.ucNotifyState[0],
}
}
}
}
/// Refined information about the states an execution transitioned between
#[derive(Debug, Default, Serialize, Deserialize, Clone)]
pub struct RefinedFreeRTOSSystemState {
pub start_tick: u64,
pub end_tick: u64,
last_pc: Option<u64>,
input_counter: u32,
pub current_task: RefinedTCB,
ready_list_after: Vec<RefinedTCB>,
}
impl PartialEq for RefinedFreeRTOSSystemState {
fn eq(&self, other: &Self) -> bool {
self.current_task == other.current_task && self.ready_list_after == other.ready_list_after &&
self.last_pc == other.last_pc
}
}
impl Hash for RefinedFreeRTOSSystemState {
fn hash<H: Hasher>(&self, state: &mut H) {
self.current_task.hash(state);
self.ready_list_after.hash(state);
// self.last_pc.hash(state);
}
}
impl RefinedFreeRTOSSystemState {
fn get_time(&self) -> u64 {
self.end_tick-self.start_tick
}
}
// Wrapper around Vec<RefinedFreeRTOSSystemState> to attach as Metadata
#[derive(Debug, Default, Serialize, Deserialize, Clone)]
pub struct FreeRTOSSystemStateMetadata {
pub inner: Vec<RefinedFreeRTOSSystemState>,
trace_length: usize,
indices: Vec<usize>, // Hashed enumeration of States
tcref: isize,
}
impl FreeRTOSSystemStateMetadata {
pub fn new(inner: Vec<RefinedFreeRTOSSystemState>) -> Self{
let tmp = inner.iter().enumerate().map(|x| compute_hash(x) as usize).collect();
Self {trace_length: inner.len(), inner: inner, indices: tmp, tcref: 0}
}
}
pub fn compute_hash<T>(obj: T) -> u64
where
T: Hash
{
let mut s = DefaultHasher::new();
obj.hash(&mut s);
s.finish()
}
impl AsSlice for FreeRTOSSystemStateMetadata {
/// Convert the slice of system-states to a slice of hashes over enumerated states
fn as_slice(&self) -> &[usize] {
self.indices.as_slice()
}
type Entry = usize;
}
impl HasRefCnt for FreeRTOSSystemStateMetadata {
fn refcnt(&self) -> isize {
self.tcref
}
fn refcnt_mut(&mut self) -> &mut isize {
&mut self.tcref
}
}
libafl::impl_serdeany!(FreeRTOSSystemStateMetadata);

View File

@ -0,0 +1,133 @@
// use crate::systemstate::IRQ_INPUT_BYTES_NUMBER;
use libafl::prelude::{ExitKind, AsSlice};
use libafl::{inputs::HasTargetBytes, prelude::UsesInput};
use libafl::bolts::HasLen;
use libafl::bolts::tuples::Named;
use libafl::Error;
use libafl::observers::Observer;
use hashbrown::HashMap;
use serde::{Deserialize, Serialize};
use super::{
CURRENT_SYSTEMSTATE_VEC,
RawFreeRTOSSystemState,
RefinedTCB,
RefinedFreeRTOSSystemState,
freertos::{List_t, TCB_t, rtos_struct, rtos_struct::*},
};
//============================= Observer
/// The Qemusystemstate Observer retrieves the systemstate
/// that will get updated by the target.
#[derive(Serialize, Deserialize, Debug, Default)]
#[allow(clippy::unsafe_derive_deserialize)]
pub struct QemuSystemStateObserver
{
pub last_run: Vec<RefinedFreeRTOSSystemState>,
pub last_input: Vec<u8>,
name: String,
}
impl<S> Observer<S> for QemuSystemStateObserver
where
S: UsesInput,
S::Input : HasTargetBytes,
{
#[inline]
fn pre_exec(&mut self, _state: &mut S, _input: &S::Input) -> Result<(), Error> {
unsafe {CURRENT_SYSTEMSTATE_VEC.clear(); }
Ok(())
}
#[inline]
fn post_exec(&mut self, _state: &mut S, _input: &S::Input, _exit_kind: &ExitKind) -> Result<(), Error> {
unsafe {self.last_run = refine_system_states(&mut CURRENT_SYSTEMSTATE_VEC);}
self.last_input=_input.target_bytes().as_slice().to_owned();
Ok(())
}
}
impl Named for QemuSystemStateObserver
{
#[inline]
fn name(&self) -> &str {
self.name.as_str()
}
}
impl HasLen for QemuSystemStateObserver
{
#[inline]
fn len(&self) -> usize {
self.last_run.len()
}
}
impl QemuSystemStateObserver {
pub fn new() -> Self {
Self{last_run: vec![], last_input: vec![], name: "systemstate".to_string()}
}
}
//============================= Parsing helpers
/// Parse a List_t containing TCB_t into Vec<TCB_t> from cache. Consumes the elements from cache
fn tcb_list_to_vec_cached(list: List_t, dump: &mut HashMap<u32,rtos_struct>) -> Vec<TCB_t>
{
let mut ret : Vec<TCB_t> = Vec::new();
if list.uxNumberOfItems == 0 {return ret;}
let last_list_item = match dump.remove(&list.pxIndex).expect("List_t entry was not in Hashmap") {
List_Item_struct(li) => li,
List_MiniItem_struct(mli) => match dump.remove(&mli.pxNext).expect("MiniListItem pointer invaild") {
List_Item_struct(li) => li,
_ => panic!("MiniListItem of a non empty List does not point to ListItem"),
},
_ => panic!("List_t entry was not a ListItem"),
};
let mut next_index = last_list_item.pxNext;
let last_tcb = match dump.remove(&last_list_item.pvOwner).expect("ListItem Owner not in Hashmap") {
TCB_struct(t) => t,
_ => panic!("List content does not equal type"),
};
for _ in 0..list.uxNumberOfItems-1 {
let next_list_item = match dump.remove(&next_index).expect("List_t entry was not in Hashmap") {
List_Item_struct(li) => li,
List_MiniItem_struct(mli) => match dump.remove(&mli.pxNext).expect("MiniListItem pointer invaild") {
List_Item_struct(li) => li,
_ => panic!("MiniListItem of a non empty List does not point to ListItem"),
},
_ => panic!("List_t entry was not a ListItem"),
};
match dump.remove(&next_list_item.pvOwner).expect("ListItem Owner not in Hashmap") {
TCB_struct(t) => {ret.push(t)},
_ => panic!("List content does not equal type"),
}
next_index=next_list_item.pxNext;
}
ret.push(last_tcb);
ret
}
/// Drains a List of raw SystemStates to produce a refined trace
fn refine_system_states(input: &mut Vec<RawFreeRTOSSystemState>) -> Vec<RefinedFreeRTOSSystemState> {
let mut ret = Vec::<RefinedFreeRTOSSystemState>::new();
let mut start_tick : u64 = 0;
for mut i in input.drain(..) {
let mut collector = Vec::<RefinedTCB>::new();
for j in i.prio_ready_lists.into_iter().rev() {
let mut tmp = tcb_list_to_vec_cached(j,&mut i.dumping_ground).iter().map(|x| RefinedTCB::from_tcb(x)).collect();
collector.append(&mut tmp);
}
ret.push(RefinedFreeRTOSSystemState {
current_task: RefinedTCB::from_tcb_owned(i.current_tcb),
start_tick: start_tick,
end_tick: i.qemu_tick,
ready_list_after: collector,
input_counter: i.input_counter,//+IRQ_INPUT_BYTES_NUMBER,
last_pc: i.last_pc,
});
start_tick=i.qemu_tick;
}
return ret;
}

View File

@ -0,0 +1,267 @@
//! The Minimizer schedulers are a family of corpus schedulers that feed the fuzzer
//! with testcases only from a subset of the total corpus.
use core::{marker::PhantomData};
use std::{cmp::{max, min}, mem::swap, borrow::BorrowMut};
use serde::{Deserialize, Serialize};
use libafl::{
bolts::{rands::Rand, serdeany::SerdeAny, AsSlice, HasRefCnt},
corpus::{Corpus, Testcase},
inputs::UsesInput,
schedulers::{Scheduler, TestcaseScore, minimizer::DEFAULT_SKIP_NON_FAVORED_PROB },
state::{HasCorpus, HasMetadata, HasRand, UsesState, State},
Error, SerdeAny, prelude::HasLen,
};
use crate::worst::MaxTimeFavFactor;
use super::FreeRTOSSystemStateMetadata;
/// A state metadata holding a map of favoreds testcases for each map entry
#[derive(Debug, Serialize, Deserialize, SerdeAny, Default)]
pub struct LongestTracesMetadata {
/// map index -> corpus index
pub max_trace_length: usize,
}
impl LongestTracesMetadata {
fn new(l : usize) -> Self {
Self {max_trace_length: l}
}
}
/// The [`MinimizerScheduler`] employs a genetic algorithm to compute a subset of the
/// corpus that exercise all the requested features (e.g. all the coverage seen so far)
/// prioritizing [`Testcase`]`s` using [`TestcaseScore`]
#[derive(Debug, Clone)]
pub struct LongestTraceScheduler<CS> {
base: CS,
skip_non_favored_prob: u64,
}
impl<CS> UsesState for LongestTraceScheduler<CS>
where
CS: UsesState,
{
type State = CS::State;
}
impl<CS> Scheduler for LongestTraceScheduler<CS>
where
CS: Scheduler,
CS::State: HasCorpus + HasMetadata + HasRand,
{
/// Add an entry to the corpus and return its index
fn on_add(&self, state: &mut CS::State, idx: usize) -> Result<(), Error> {
let l = state.corpus()
.get(idx)?
.borrow()
.metadata()
.get::<FreeRTOSSystemStateMetadata>().map_or(0, |x| x.trace_length);
self.get_update_trace_length(state,l);
self.base.on_add(state, idx)
}
/// Replaces the testcase at the given idx
fn on_replace(
&self,
state: &mut CS::State,
idx: usize,
testcase: &Testcase<<CS::State as UsesInput>::Input>,
) -> Result<(), Error> {
let l = state.corpus()
.get(idx)?
.borrow()
.metadata()
.get::<FreeRTOSSystemStateMetadata>().map_or(0, |x| x.trace_length);
self.get_update_trace_length(state, l);
self.base.on_replace(state, idx, testcase)
}
/// Removes an entry from the corpus, returning M if M was present.
fn on_remove(
&self,
state: &mut CS::State,
idx: usize,
testcase: &Option<Testcase<<CS::State as UsesInput>::Input>>,
) -> Result<(), Error> {
self.base.on_remove(state, idx, testcase)?;
Ok(())
}
/// Gets the next entry
fn next(&self, state: &mut CS::State) -> Result<usize, Error> {
let mut idx = self.base.next(state)?;
while {
let l = state.corpus()
.get(idx)?
.borrow()
.metadata()
.get::<FreeRTOSSystemStateMetadata>().map_or(0, |x| x.trace_length);
let m = self.get_update_trace_length(state,l);
state.rand_mut().below(m) > l as u64
} && state.rand_mut().below(100) < self.skip_non_favored_prob
{
idx = self.base.next(state)?;
}
Ok(idx)
}
}
impl<CS> LongestTraceScheduler<CS>
where
CS: Scheduler,
CS::State: HasCorpus + HasMetadata + HasRand,
{
pub fn get_update_trace_length(&self, state: &mut CS::State, par: usize) -> u64 {
// Create a new top rated meta if not existing
if let Some(td) = state.metadata_mut().get_mut::<LongestTracesMetadata>() {
let m = max(td.max_trace_length, par);
td.max_trace_length = m;
m as u64
} else {
state.add_metadata(LongestTracesMetadata::new(par));
par as u64
}
}
pub fn new(base: CS) -> Self {
Self {
base,
skip_non_favored_prob: DEFAULT_SKIP_NON_FAVORED_PROB,
}
}
}
//==========================================================================================
/// A state metadata holding a map of favoreds testcases for each map entry
#[derive(Debug, Serialize, Deserialize, SerdeAny, Default)]
pub struct GeneticMetadata {
pub current_gen: Vec<(usize, f64)>,
pub current_cursor: usize,
pub next_gen: Vec<(usize, f64)>,
pub gen: usize
}
impl GeneticMetadata {
fn new(current_gen: Vec<(usize, f64)>, next_gen: Vec<(usize, f64)>) -> Self {
Self {current_gen, current_cursor: 0, next_gen, gen: 0}
}
}
#[derive(Debug, Clone)]
pub struct GenerationScheduler<S> {
phantom: PhantomData<S>,
gen_size: usize,
}
impl<S> UsesState for GenerationScheduler<S>
where
S: UsesInput,
{
type State = S;
}
impl<S> Scheduler for GenerationScheduler<S>
where
S: HasCorpus + HasMetadata,
S::Input: HasLen,
{
/// get first element in current gen,
/// if current_gen is empty, swap lists, sort by FavFactor, take top k and return first
fn next(&self, state: &mut Self::State) -> Result<usize, Error> {
let mut to_remove : Vec<(usize, f64)> = vec![];
let mut to_return : usize = 0;
let c = state.corpus().count();
let gm = state.metadata_mut().get_mut::<GeneticMetadata>().expect("Corpus Scheduler empty");
// println!("index: {} curr: {:?} next: {:?} gen: {} corp: {}", gm.current_cursor, gm.current_gen.len(), gm.next_gen.len(), gm.gen,
// c);
match gm.current_gen.get(gm.current_cursor) {
Some(c) => {
gm.current_cursor+=1;
// println!("normal next: {}", (*c).0);
return Ok((*c).0)
},
None => {
swap(&mut to_remove, &mut gm.current_gen);
swap(&mut gm.next_gen, &mut gm.current_gen);
gm.current_gen.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
// gm.current_gen.reverse();
if gm.current_gen.len() == 0 {panic!("Corpus is empty");}
let d : Vec<(usize, f64)> = gm.current_gen.drain(min(gm.current_gen.len(), self.gen_size)..).collect();
to_remove.extend(d);
// move all indices to the left, since all other indices will be deleted
gm.current_gen.sort_by(|a,b| a.0.cmp(&(*b).0)); // in order of the corpus index
for i in 0..gm.current_gen.len() {
gm.current_gen[i] = (i, gm.current_gen[i].1);
}
to_return = gm.current_gen.get(0).unwrap().0;
gm.current_cursor=1;
gm.gen+=1;
}
};
// removing these elements will move all indices left by to_remove.len()
to_remove.sort_by(|x,y| x.0.cmp(&(*y).0));
to_remove.reverse();
for i in to_remove {
state.corpus_mut().remove(i.0).unwrap();
}
// println!("switch next: {to_return}");
return Ok(to_return);
}
/// Add the new input to the next generation
fn on_add(
&self,
state: &mut Self::State,
idx: usize
) -> Result<(), Error> {
// println!("On Add {idx}");
let mut tc = state.corpus_mut().get(idx).unwrap().borrow_mut().clone();
let ff = MaxTimeFavFactor::compute(&mut tc, state).unwrap();
if let Some(gm) = state.metadata_mut().get_mut::<GeneticMetadata>() {
gm.next_gen.push((idx,ff));
} else {
state.add_metadata(GeneticMetadata::new(vec![], vec![(idx,ff)]));
}
Ok(())
}
fn on_replace(
&self,
_state: &mut Self::State,
_idx: usize,
_prev: &Testcase<<Self::State as UsesInput>::Input>
) -> Result<(), Error> {
// println!("On Replace {_idx}");
Ok(())
}
fn on_remove(
&self,
state: &mut Self::State,
idx: usize,
_testcase: &Option<Testcase<<Self::State as UsesInput>::Input>>
) -> Result<(), Error> {
// println!("On Remove {idx}");
if let Some(gm) = state.metadata_mut().get_mut::<GeneticMetadata>() {
gm.next_gen = gm.next_gen.drain(..).into_iter().filter(|x| (*x).0 != idx).collect::<Vec<(usize, f64)>>();
gm.current_gen = gm.current_gen.drain(..).into_iter().filter(|x| (*x).0 != idx).collect::<Vec<(usize, f64)>>();
} else {
state.add_metadata(GeneticMetadata::new(vec![], vec![]));
}
Ok(())
}
}
impl<S> GenerationScheduler<S>
{
pub fn new() -> Self {
Self {
phantom: PhantomData,
gen_size: 100,
}
}
}

381
fuzzers/FRET/src/worst.rs Normal file
View File

@ -0,0 +1,381 @@
use core::fmt::Debug;
use core::cmp::Ordering::{Greater,Less,Equal};
use libafl::inputs::BytesInput;
use libafl::inputs::HasTargetBytes;
use libafl::feedbacks::MapIndexesMetadata;
use libafl::corpus::Testcase;
use libafl::prelude::{UsesInput, AsSlice};
use core::marker::PhantomData;
use libafl::schedulers::{MinimizerScheduler, TestcaseScore};
use std::path::PathBuf;
use std::fs;
use hashbrown::{HashMap};
use libafl::observers::ObserversTuple;
use libafl::executors::ExitKind;
use libafl::events::EventFirer;
use libafl::state::{HasClientPerfMonitor, HasCorpus, UsesState};
use libafl::inputs::Input;
use libafl::feedbacks::Feedback;
use libafl::state::HasMetadata;
use libafl_qemu::edges::QemuEdgesMapMetadata;
use libafl::observers::MapObserver;
use serde::{Deserialize, Serialize};
use std::cmp;
use libafl::{
bolts::{
tuples::Named,
HasLen,
},
observers::Observer,
Error,
};
use crate::clock::QemuClockObserver;
use crate::systemstate::FreeRTOSSystemStateMetadata;
//=========================== Scheduler
pub type TimeMaximizerCorpusScheduler<CS> =
MinimizerScheduler<CS, MaxTimeFavFactor<<CS as UsesState>::State>, MapIndexesMetadata>;
/// Multiply the testcase size with the execution time.
/// This favors small and quick testcases.
#[derive(Debug, Clone)]
pub struct MaxTimeFavFactor<S>
where
S: HasCorpus + HasMetadata,
S::Input: HasLen,
{
phantom: PhantomData<S>,
}
impl<S> TestcaseScore<S> for MaxTimeFavFactor<S>
where
S: HasCorpus + HasMetadata,
S::Input: HasLen,
{
fn compute(entry: &mut Testcase<<S as UsesInput>::Input>, state: &S) -> Result<f64, Error> {
// TODO maybe enforce entry.exec_time().is_some()
let et = entry.exec_time().expect("testcase.exec_time is needed for scheduler");
let tns : i64 = et.as_nanos().try_into().expect("failed to convert time");
Ok(-tns as f64)
}
}
pub type LenTimeMaximizerCorpusScheduler<CS> =
MinimizerScheduler<CS, MaxExecsLenFavFactor<<CS as UsesState>::State>, MapIndexesMetadata>;
pub type TimeStateMaximizerCorpusScheduler<CS> =
MinimizerScheduler<CS, MaxTimeFavFactor<<CS as UsesState>::State>, FreeRTOSSystemStateMetadata>;
/// Multiply the testcase size with the execution time.
/// This favors small and quick testcases.
#[derive(Debug, Clone)]
pub struct MaxExecsLenFavFactor<S>
where
S: HasCorpus + HasMetadata,
S::Input: HasLen,
{
phantom: PhantomData<S>,
}
impl<S> TestcaseScore<S> for MaxExecsLenFavFactor<S>
where
S: HasCorpus + HasMetadata,
S::Input: HasLen,
{
fn compute(entry: &mut Testcase<S::Input>, state: &S) -> Result<f64, Error> {
let execs_per_hour = (3600.0/entry.exec_time().expect("testcase.exec_time is needed for scheduler").as_secs_f64());
let execs_times_length_per_hour = execs_per_hour*entry.cached_len()? as f64;
Ok(execs_times_length_per_hour)
}
}
//===================================================================
/// A Feedback reporting if the Input consists of strictly decreasing bytes.
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct SortedFeedback {
}
impl<S> Feedback<S> for SortedFeedback
where
S: UsesInput + HasClientPerfMonitor,
S::Input: HasTargetBytes,
{
#[allow(clippy::wrong_self_convention)]
fn is_interesting<EM, OT>(
&mut self,
_state: &mut S,
_manager: &mut EM,
_input: &S::Input,
observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
let t = _input.target_bytes();
let tmp = t.as_slice();
if tmp.len()<32 {return Ok(false);}
let tmp = Vec::<u8>::from(&tmp[0..32]);
// tmp.reverse();
if tmp.is_sorted_by(|a,b| match a.partial_cmp(b).unwrap_or(Less) {
Less => Some(Greater),
Equal => Some(Greater),
Greater => Some(Less),
}) {return Ok(true)};
return Ok(false);
}
}
impl Named for SortedFeedback {
#[inline]
fn name(&self) -> &str {
"Sorted"
}
}
impl SortedFeedback {
/// Creates a new [`HitFeedback`]
#[must_use]
pub fn new() -> Self {
Self {}
}
}
impl Default for SortedFeedback {
fn default() -> Self {
Self::new()
}
}
//===================================================================
/// A Feedback which expects a certain minimum execution time
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct ExecTimeReachedFeedback
{
target_time: u64,
}
impl<S> Feedback<S> for ExecTimeReachedFeedback
where
S: UsesInput + HasClientPerfMonitor,
{
#[allow(clippy::wrong_self_convention)]
fn is_interesting<EM, OT>(
&mut self,
_state: &mut S,
_manager: &mut EM,
_input: &S::Input,
observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
let observer = observers.match_name::<QemuClockObserver>("clock")
.expect("QemuClockObserver not found");
Ok(observer.last_runtime() >= self.target_time)
}
}
impl Named for ExecTimeReachedFeedback
{
#[inline]
fn name(&self) -> &str {
"ExecTimeReachedFeedback"
}
}
impl ExecTimeReachedFeedback
where
{
/// Creates a new [`ExecTimeReachedFeedback`]
#[must_use]
pub fn new(target_time : u64) -> Self {
Self {target_time: target_time}
}
}
pub static mut EXEC_TIME_COLLECTION : Vec<u32> = Vec::new();
/// A Noop Feedback which records a list of all execution times
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct ExecTimeCollectorFeedback
{
}
impl<S> Feedback<S> for ExecTimeCollectorFeedback
where
S: UsesInput + HasClientPerfMonitor,
{
#[allow(clippy::wrong_self_convention)]
fn is_interesting<EM, OT>(
&mut self,
_state: &mut S,
_manager: &mut EM,
_input: &S::Input,
observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
let observer = observers.match_name::<QemuClockObserver>("clock")
.expect("QemuClockObserver not found");
unsafe { EXEC_TIME_COLLECTION.push(observer.last_runtime().try_into().unwrap()); }
Ok(false)
}
}
impl Named for ExecTimeCollectorFeedback
{
#[inline]
fn name(&self) -> &str {
"ExecTimeCollectorFeedback"
}
}
impl ExecTimeCollectorFeedback
where
{
/// Creates a new [`ExecTimeCollectorFeedback`]
#[must_use]
pub fn new() -> Self {
Self {}
}
}
/// Shared Metadata for a SysStateFeedback
#[derive(Serialize, Deserialize, Clone, Debug, Default)]
pub struct ExecTimeCollectorFeedbackState
{
collection: Vec<u32>,
}
impl Named for ExecTimeCollectorFeedbackState
{
#[inline]
fn name(&self) -> &str {
"ExecTimeCollectorFeedbackState"
}
}
//===================================================================
/// A Feedback which expects a certain minimum execution time
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct ExecTimeIncFeedback
{
longest_time: u64,
last_is_longest: bool
}
impl<S> Feedback<S> for ExecTimeIncFeedback
where
S: UsesInput + HasClientPerfMonitor,
{
#[allow(clippy::wrong_self_convention)]
fn is_interesting<EM, OT>(
&mut self,
_state: &mut S,
_manager: &mut EM,
_input: &S::Input,
observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
let observer = observers.match_name::<QemuClockObserver>("clocktime")
.expect("QemuClockObserver not found");
if observer.last_runtime() > self.longest_time {
self.longest_time = observer.last_runtime();
self.last_is_longest = true;
Ok(true)
} else {
self.last_is_longest = false;
Ok(false)
}
}
fn append_metadata(
&mut self,
_state: &mut S,
testcase: &mut Testcase<<S as UsesInput>::Input>,
) -> Result<(), Error> {
#[cfg(feature = "feed_afl")]
if self.last_is_longest {
let mim : Option<&mut MapIndexesMetadata>= testcase.metadata_mut().get_mut();
// pretend that the longest input alone excercises some non-existing edge, to keep it relevant
mim.unwrap().list.push(usize::MAX);
};
Ok(())
}
}
impl Named for ExecTimeIncFeedback
{
#[inline]
fn name(&self) -> &str {
"ExecTimeReachedFeedback"
}
}
impl ExecTimeIncFeedback
where
{
/// Creates a new [`ExecTimeReachedFeedback`]
#[must_use]
pub fn new() -> Self {
Self {longest_time: 0, last_is_longest: false}
}
}
/// A Noop Feedback which records a list of all execution times
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct AlwaysTrueFeedback
{
}
impl<S> Feedback<S> for AlwaysTrueFeedback
where
S: UsesInput + HasClientPerfMonitor,
{
#[allow(clippy::wrong_self_convention)]
fn is_interesting<EM, OT>(
&mut self,
_state: &mut S,
_manager: &mut EM,
_input: &S::Input,
_observers: &OT,
_exit_kind: &ExitKind,
) -> Result<bool, Error>
where
EM: EventFirer<State = S>,
OT: ObserversTuple<S>,
{
Ok(true)
}
}
impl Named for AlwaysTrueFeedback
{
#[inline]
fn name(&self) -> &str {
"AlwaysTrueFeedback"
}
}
impl AlwaysTrueFeedback
where
{
/// Creates a new [`ExecTimeCollectorFeedback`]
#[must_use]
pub fn new() -> Self {
Self {
}
}
}

View File

@ -229,6 +229,82 @@ where
Ok(ret) Ok(ret)
} }
/// Fuzz for n iterations.
/// Returns the index of the last fuzzed corpus item.
/// (Note: An iteration represents a complete run of every stage.
/// therefore the number n is not always equal to the number of the actual harness executions,
/// because each stage could run the harness for multiple times)
///
/// If you use this fn in a restarting scenario to only run for `n` iterations,
/// before exiting, make sure you call `event_mgr.on_restart(&mut state)?;`.
/// This way, the state will be available in the next, respawned, iteration.
fn fuzz_loop_for_duration(
&mut self,
stages: &mut ST,
executor: &mut E,
state: &mut EM::State,
manager: &mut EM,
time: Duration
) -> Result<usize, Error> {
if time==Duration::ZERO {
return Err(Error::illegal_argument(
"Cannot fuzz for 0 duration!".to_string(),
));
}
let mut ret = 0;
let mut last = current_time();
let monitor_timeout = STATS_TIMEOUT_DEFAULT;
let starttime = std::time::Instant::now();
while std::time::Instant::now().duration_since(starttime) < time {
ret = self.fuzz_one(stages, executor, state, manager)?;
last = manager.maybe_report_progress(state, last, monitor_timeout)?;
}
// If we would assume the fuzzer loop will always exit after this, we could do this here:
// manager.on_restart(state)?;
// But as the state may grow to a few megabytes,
// for now we won' and the user has to do it (unless we find a way to do this on `Drop`).
Ok(ret)
}
/// Fuzz for n iterations.
/// Returns the index of the last fuzzed corpus item.
/// (Note: An iteration represents a complete run of every stage.
/// therefore the number n is not always equal to the number of the actual harness executions,
/// because each stage could run the harness for multiple times)
///
/// If you use this fn in a restarting scenario to only run for `n` iterations,
/// before exiting, make sure you call `event_mgr.on_restart(&mut state)?;`.
/// This way, the state will be available in the next, respawned, iteration.
fn fuzz_loop_until(
&mut self,
stages: &mut ST,
executor: &mut E,
state: &mut EM::State,
manager: &mut EM,
time: std::time::Instant
) -> Result<usize, Error> {
let mut ret = 0;
let mut last = current_time();
let monitor_timeout = STATS_TIMEOUT_DEFAULT;
while std::time::Instant::now() < time {
ret = self.fuzz_one(stages, executor, state, manager)?;
last = manager.maybe_report_progress(state, last, monitor_timeout)?;
}
// If we would assume the fuzzer loop will always exit after this, we could do this here:
// manager.on_restart(state)?;
// But as the state may grow to a few megabytes,
// for now we won' and the user has to do it (unless we find a way to do this on `Drop`).
Ok(ret)
}
} }
/// The corpus this input should be added to /// The corpus this input should be added to

View File

@ -283,6 +283,9 @@ extern "C" {
fn libafl_save_qemu_snapshot(name: *const u8, sync: bool); fn libafl_save_qemu_snapshot(name: *const u8, sync: bool);
fn libafl_load_qemu_snapshot(name: *const u8, sync: bool); fn libafl_load_qemu_snapshot(name: *const u8, sync: bool);
pub fn icount_get_raw() -> u64;
fn libafl_start_int_timer();
} }
#[cfg(emulation_mode = "systemmode")] #[cfg(emulation_mode = "systemmode")]
@ -311,6 +314,9 @@ extern "C" {
fn libafl_qemu_set_breakpoint(addr: u64) -> i32; fn libafl_qemu_set_breakpoint(addr: u64) -> i32;
fn libafl_qemu_remove_breakpoint(addr: u64) -> i32; fn libafl_qemu_remove_breakpoint(addr: u64) -> i32;
pub fn libafl_qemu_set_native_breakpoint(addr: u32);
pub fn libafl_qemu_remove_native_breakpoint(addr: u32);
fn libafl_flush_jit(); fn libafl_flush_jit();
fn libafl_qemu_trigger_breakpoint(cpu: CPUStatePtr); fn libafl_qemu_trigger_breakpoint(cpu: CPUStatePtr);
@ -397,6 +403,15 @@ extern "C" {
data: *const (), data: *const (),
); );
fn libafl_qemu_gdb_reply(buf: *const u8, len: usize); fn libafl_qemu_gdb_reply(buf: *const u8, len: usize);
// void libafl_add_jmp_hook(uint64_t (*gen)(target_ulong src, target_ulong dst, uint64_t data),
// void (*exec)(target_ulong src, target_ulong dst, uint64_t id, uint64_t data),
// uint64_t data);
fn libafl_add_jmp_hook(
gen: Option<extern "C" fn(GuestAddr, GuestAddr, u64) -> u64>,
exec: Option<extern "C" fn(GuestAddr, GuestAddr, u64, u64)>,
data: u64,
);
} }
#[cfg(emulation_mode = "usermode")] #[cfg(emulation_mode = "usermode")]
@ -870,6 +885,7 @@ impl Emulator {
libafl_qemu_run(); libafl_qemu_run();
#[cfg(emulation_mode = "systemmode")] #[cfg(emulation_mode = "systemmode")]
{ {
libafl_start_int_timer();
vm_start(); vm_start();
qemu_main_loop(); qemu_main_loop();
} }
@ -1052,6 +1068,15 @@ impl Emulator {
} }
} }
pub fn add_jmp_hooks(
&self,
gen: Option<extern "C" fn(GuestAddr, GuestAddr, u64) -> u64>,
exec: Option<extern "C" fn(GuestAddr, GuestAddr, u64, u64)>,
data: u64,
) {
unsafe { libafl_add_jmp_hook(gen, exec, data) }
}
#[cfg(emulation_mode = "systemmode")] #[cfg(emulation_mode = "systemmode")]
pub fn save_snapshot(&self, name: &str, sync: bool) { pub fn save_snapshot(&self, name: &str, sync: bool) {
let s = CString::new(name).expect("Invalid snapshot name"); let s = CString::new(name).expect("Invalid snapshot name");

View File

@ -655,6 +655,78 @@ where
} }
} }
static mut JMP_HOOKS: Vec<(Hook, Hook)> = vec![];
extern "C" fn gen_jmp_hook_wrapper<QT, S>(src: GuestAddr, dst: GuestAddr, index: u64) -> u64
where
S: UsesInput,
QT: QemuHelperTuple<S>,
{
unsafe {
let hooks = get_qemu_hooks::<QT, S>();
let (gen, _) = &mut JMP_HOOKS[index as usize];
match gen {
Hook::Function(ptr) => {
let func: fn(
&mut QemuHooks<'_, QT, S>,
Option<&mut S>,
GuestAddr,
GuestAddr,
) -> Option<u64> = transmute(*ptr);
(func)(hooks, inprocess_get_state::<S>(), src, dst).map_or(SKIP_EXEC_HOOK, |id| id)
}
Hook::Closure(ptr) => {
let func: &mut Box<
dyn FnMut(
&mut QemuHooks<'_, QT, S>,
Option<&mut S>,
GuestAddr,
GuestAddr,
) -> Option<u64>,
> = transmute(ptr);
(func)(hooks, inprocess_get_state::<S>(), src, dst).map_or(SKIP_EXEC_HOOK, |id| id)
}
_ => 0,
}
}
}
extern "C" fn exec_jmp_hook_wrapper<QT, S>(src: GuestAddr, dst: GuestAddr, id: u64, index: u64)
where
S: UsesInput,
QT: QemuHelperTuple<S>,
{
unsafe {
let hooks = get_qemu_hooks::<QT, S>();
let (_, exec) = &mut JMP_HOOKS[index as usize];
match exec {
Hook::Function(ptr) => {
let func: fn(
&mut QemuHooks<'_, QT, S>,
Option<&mut S>,
GuestAddr,
GuestAddr,
u64,
) = transmute(*ptr);
(func)(hooks, inprocess_get_state::<S>(), src, dst, id);
}
Hook::Closure(ptr) => {
let func: &mut Box<
dyn FnMut(
&mut QemuHooks<'_, QT, S>,
Option<&mut S>,
GuestAddr,
GuestAddr,
u64,
),
> = transmute(ptr);
(func)(hooks, inprocess_get_state::<S>(), src, dst, id);
}
_ => (),
}
}
}
static mut HOOKS_IS_INITIALIZED: bool = false; static mut HOOKS_IS_INITIALIZED: bool = false;
pub struct QemuHooks<'a, QT, S> pub struct QemuHooks<'a, QT, S>
@ -1556,4 +1628,37 @@ where
self.emulator self.emulator
.set_post_syscall_hook(syscall_after_hooks_wrapper::<QT, S>); .set_post_syscall_hook(syscall_after_hooks_wrapper::<QT, S>);
} }
pub fn jmps(
&self,
generation_hook: Option<
fn(&mut Self, Option<&mut S>, src: GuestAddr, dest: GuestAddr) -> Option<u64>,
>,
execution_hook: Option<fn(&mut Self, Option<&mut S>, src: GuestAddr, dest: GuestAddr, id: u64)>,
) {
unsafe {
let index = JMP_HOOKS.len();
self.emulator.add_jmp_hooks(
if generation_hook.is_none() {
None
} else {
Some(gen_jmp_hook_wrapper::<QT, S>)
},
if execution_hook.is_none() {
None
} else {
Some(exec_jmp_hook_wrapper::<QT, S>)
},
index as u64,
);
JMP_HOOKS.push((
generation_hook.map_or(Hook::Empty, |hook| {
Hook::Function(hook as *const libc::c_void)
}),
execution_hook.map_or(Hook::Empty, |hook| {
Hook::Function(hook as *const libc::c_void)
}),
));
}
}
} }