FRET-qemu/hw/ppc/pnv_core.c
Nicholas Piggin fb802acdc8 ppc/spapr: Fix RTAS stopped state
This change takes the CPUPPCState 'quiesced' field added for powernv
hardware CPU core controls (used to stop and start cores), and extends
it to spapr to model the "RTAS stopped" state. This prevents the
schedulers attempting to run stopped CPUs unexpectedly, which can cause
hangs and possibly other unexpected behaviour.

The detail of the problematic situation is this:

A KVM spapr guest boots with all secondary CPUs defined to be in the
"RTAS stopped" state. In this state, the CPU is only responsive to the
start-cpu RTAS call. This behaviour is modeled in QEMU with the
start_powered_off feature, which sets ->halted on secondary CPUs at
boot. ->halted=true looks like an idle / sleep / power-save state which
typically is responsive to asynchronous interrupts, but spapr clears
wake-on-interrupt bits in the LPCR SPR. This more-or-less works.

Commit e8291ec16da8 ("target/ppc: fix timebase register reset state")
recently caused the decrementer to expire sooner at boot, causing a
decrementer exception on secondary CPUs in RTAS stopped state. This
was not a problem on TCG, but KVM limits how a guest can modify LPCR, in
particular it prevents the clearing of wake-on-interrupt bits, and so in
the course of CPU register synchronisation, the LPCR as set by spapr to
model the RTAS stopped state is overwritten with KVM's LPCR value, and
that then causes QEMU's interrupt code to notice the expired decrementer
exception, turn that into an interrupt, and set CPU_INTERRUPT_HARD.

That causes the CPU to be kicked, and the KVM vCPU thread to loop
calling kvm_cpu_exec(). kvm_cpu_exec() calls
kvm_arch_process_async_events(), which on ppc just returns ->halted.
This is still true, so it returns immediately with EXCP_HLT, and the
vCPU never goes to sleep because qemu_wait_io_event() sees
CPU_INTERRUPT_HARD is set. All this while the vCPU holds the bql.  This
causes the boot CPU to eventually lock up when it needs the bql.

So make 'quiesced' represent the "RTAS stopped" state, and have it
explicitly not respond to exceptions (interrupt conditions) rather than
rely on machine register state to model that state. This matches the
powernv quiesced state very well because it essentially turns off the
CPU core via a side-band control unit.

There are still issues with QEMU and KVM idea of LPCR diverging and that
is quite ugly and fragile that should be fixed. spapr should synchronize
its LPCR properly with KVM, and not try to use values that KVM does not
support.

Reported-by: Misbah Anjum N <misanjum@linux.ibm.com>
Tested-by: Misbah Anjum N <misanjum@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2025-03-20 14:48:17 +10:00

758 lines
21 KiB
C

/*
* QEMU PowerPC PowerNV CPU Core model
*
* Copyright (c) 2016, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "system/reset.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "target/ppc/cpu.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_core.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/xics.h"
#include "hw/qdev-properties.h"
#include "helper_regs.h"
static const char *pnv_core_cpu_typename(PnvCore *pc)
{
const char *core_type = object_class_get_name(object_get_class(OBJECT(pc)));
int len = strlen(core_type) - strlen(PNV_CORE_TYPE_SUFFIX);
char *s = g_strdup_printf(POWERPC_CPU_TYPE_NAME("%.*s"), len, core_type);
const char *cpu_type = object_class_get_name(object_class_by_name(s));
g_free(s);
return cpu_type;
}
static void pnv_core_cpu_reset(PnvCore *pc, PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
cpu_reset(cs);
/*
* the skiboot firmware elects a primary thread to initialize the
* system and it can be any.
*/
env->gpr[3] = PNV_FDT_ADDR;
env->nip = 0x10;
env->msr |= MSR_HVB; /* Hypervisor mode */
env->spr[SPR_HRMOR] = pc->hrmor;
if (pc->big_core) {
/* Clear "small core" bit on Power9/10 (this is set in default PVR) */
env->spr[SPR_PVR] &= ~PPC_BIT(51);
}
hreg_compute_hflags(env);
ppc_maybe_interrupt(env);
cpu_ppc_tb_reset(env);
pcc->intc_reset(pc->chip, cpu);
}
/*
* These values are read by the PowerNV HW monitors under Linux
*/
#define PNV_XSCOM_EX_DTS_RESULT0 0x50000
#define PNV_XSCOM_EX_DTS_RESULT1 0x50001
static uint64_t pnv_core_power8_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = 0;
/* The result should be 38 C */
switch (offset) {
case PNV_XSCOM_EX_DTS_RESULT0:
val = 0x26f024f023f0000ull;
break;
case PNV_XSCOM_EX_DTS_RESULT1:
val = 0x24f000000000000ull;
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_core_power8_xscom_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int width)
{
uint32_t offset = addr >> 3;
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
static const MemoryRegionOps pnv_core_power8_xscom_ops = {
.read = pnv_core_power8_xscom_read,
.write = pnv_core_power8_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
/*
* POWER9 core controls
*/
#define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP 0xf010d
#define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR 0xf010a
#define PNV9_XSCOM_EC_CORE_THREAD_STATE 0x10ab3
static uint64_t pnv_core_power9_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = 0;
/* The result should be 38 C */
switch (offset) {
case PNV_XSCOM_EX_DTS_RESULT0:
val = 0x26f024f023f0000ull;
break;
case PNV_XSCOM_EX_DTS_RESULT1:
val = 0x24f000000000000ull;
break;
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
val = 0x0;
break;
case PNV9_XSCOM_EC_CORE_THREAD_STATE:
val = 0;
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_core_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int width)
{
uint32_t offset = addr >> 3;
switch (offset) {
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_core_power9_xscom_ops = {
.read = pnv_core_power9_xscom_read,
.write = pnv_core_power9_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
/*
* POWER10 core controls
*/
#define PNV10_XSCOM_EC_CORE_THREAD_STATE 0x412
#define PNV10_XSCOM_EC_CORE_THREAD_INFO 0x413
#define PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS 0x449
#define PNV10_XSCOM_EC_CORE_RAS_STATUS 0x454
static uint64_t pnv_core_power10_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
PnvCore *pc = PNV_CORE(opaque);
int nr_threads = CPU_CORE(pc)->nr_threads;
int i;
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case PNV10_XSCOM_EC_CORE_THREAD_STATE:
for (i = 0; i < nr_threads; i++) {
PowerPCCPU *cpu = pc->threads[i];
CPUState *cs = CPU(cpu);
if (cs->halted) {
val |= PPC_BIT(56 + i);
}
}
if (pc->lpar_per_core) {
val |= PPC_BIT(62);
}
break;
case PNV10_XSCOM_EC_CORE_THREAD_INFO:
break;
case PNV10_XSCOM_EC_CORE_RAS_STATUS:
for (i = 0; i < nr_threads; i++) {
PowerPCCPU *cpu = pc->threads[i];
CPUPPCState *env = &cpu->env;
if (env->quiesced) {
val |= PPC_BIT(0 + 8 * i) | PPC_BIT(1 + 8 * i);
}
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_core_power10_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int width)
{
PnvCore *pc = PNV_CORE(opaque);
int nr_threads = CPU_CORE(pc)->nr_threads;
int i;
uint32_t offset = addr >> 3;
switch (offset) {
case PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS:
for (i = 0; i < nr_threads; i++) {
PowerPCCPU *cpu = pc->threads[i];
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
if (val & PPC_BIT(7 + 8 * i)) { /* stop */
val &= ~PPC_BIT(7 + 8 * i);
env->quiesced = true;
ppc_maybe_interrupt(env);
cpu_pause(cs);
}
if (val & PPC_BIT(6 + 8 * i)) { /* start */
val &= ~PPC_BIT(6 + 8 * i);
env->quiesced = false;
ppc_maybe_interrupt(env);
cpu_resume(cs);
}
if (val & PPC_BIT(4 + 8 * i)) { /* sreset */
val &= ~PPC_BIT(4 + 8 * i);
env->quiesced = false;
ppc_maybe_interrupt(env);
pnv_cpu_do_nmi_resume(cs);
}
if (val & PPC_BIT(3 + 8 * i)) { /* clear maint */
env->quiesced = false;
ppc_maybe_interrupt(env);
/*
* Hardware has very particular cases for where clear maint
* must be used and where start must be used to resume a
* thread. These are not modelled exactly, just treat
* this and start the same.
*/
val &= ~PPC_BIT(3 + 8 * i);
cpu_resume(cs);
}
}
if (val) {
qemu_log_mask(LOG_UNIMP, "%s: unimp bits in DIRECT_CONTROLS "
"0x%016" PRIx64 "\n", __func__, val);
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_core_power10_xscom_ops = {
.read = pnv_core_power10_xscom_read,
.write = pnv_core_power10_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_core_cpu_realize(PnvCore *pc, PowerPCCPU *cpu, Error **errp,
int thread_index)
{
CPUPPCState *env = &cpu->env;
int core_hwid;
ppc_spr_t *pir_spr = &env->spr_cb[SPR_PIR];
ppc_spr_t *tir_spr = &env->spr_cb[SPR_TIR];
uint32_t pir, tir;
Error *local_err = NULL;
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
if (!qdev_realize(DEVICE(cpu), NULL, errp)) {
return;
}
pcc->intc_create(pc->chip, cpu, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
core_hwid = object_property_get_uint(OBJECT(pc), "hwid", &error_abort);
pcc->get_pir_tir(pc->chip, core_hwid, thread_index, &pir, &tir);
pir_spr->default_value = pir;
tir_spr->default_value = tir;
env->chip_index = pc->chip->chip_id;
if (pc->big_core) {
/* 2 "small cores" get the same core index for SMT operations */
env->core_index = core_hwid >> 1;
} else {
env->core_index = core_hwid;
}
if (pc->lpar_per_core) {
cpu_ppc_set_1lpar(cpu);
}
/* Set time-base frequency to 512 MHz */
cpu_ppc_tb_init(env, PNV_TIMEBASE_FREQ);
}
static void pnv_core_reset(void *dev)
{
CPUCore *cc = CPU_CORE(dev);
PnvCore *pc = PNV_CORE(dev);
int i;
for (i = 0; i < cc->nr_threads; i++) {
pnv_core_cpu_reset(pc, pc->threads[i]);
}
}
static void pnv_core_realize(DeviceState *dev, Error **errp)
{
PnvCore *pc = PNV_CORE(OBJECT(dev));
PnvCoreClass *pcc = PNV_CORE_GET_CLASS(pc);
CPUCore *cc = CPU_CORE(OBJECT(dev));
const char *typename = pnv_core_cpu_typename(pc);
Error *local_err = NULL;
void *obj;
int i, j;
char name[32];
assert(pc->chip);
pc->threads = g_new(PowerPCCPU *, cc->nr_threads);
for (i = 0; i < cc->nr_threads; i++) {
PowerPCCPU *cpu;
PnvCPUState *pnv_cpu;
obj = object_new(typename);
cpu = POWERPC_CPU(obj);
pc->threads[i] = POWERPC_CPU(obj);
if (cc->nr_threads > 1) {
cpu->env.has_smt_siblings = true;
}
snprintf(name, sizeof(name), "thread[%d]", i);
object_property_add_child(OBJECT(pc), name, obj);
cpu->machine_data = g_new0(PnvCPUState, 1);
pnv_cpu = pnv_cpu_state(cpu);
pnv_cpu->pnv_core = pc;
object_unref(obj);
}
for (j = 0; j < cc->nr_threads; j++) {
pnv_core_cpu_realize(pc, pc->threads[j], &local_err, j);
if (local_err) {
goto err;
}
}
snprintf(name, sizeof(name), "xscom-core.%d", cc->core_id);
pnv_xscom_region_init(&pc->xscom_regs, OBJECT(dev), pcc->xscom_ops,
pc, name, pcc->xscom_size);
qemu_register_reset(pnv_core_reset, pc);
return;
err:
while (--i >= 0) {
obj = OBJECT(pc->threads[i]);
object_unparent(obj);
}
g_free(pc->threads);
error_propagate(errp, local_err);
}
static void pnv_core_cpu_unrealize(PnvCore *pc, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
pcc->intc_destroy(pc->chip, cpu);
cpu_remove_sync(CPU(cpu));
cpu->machine_data = NULL;
g_free(pnv_cpu);
object_unparent(OBJECT(cpu));
}
static void pnv_core_unrealize(DeviceState *dev)
{
PnvCore *pc = PNV_CORE(dev);
CPUCore *cc = CPU_CORE(dev);
int i;
qemu_unregister_reset(pnv_core_reset, pc);
for (i = 0; i < cc->nr_threads; i++) {
pnv_core_cpu_unrealize(pc, pc->threads[i]);
}
g_free(pc->threads);
}
static const Property pnv_core_properties[] = {
DEFINE_PROP_UINT32("hwid", PnvCore, hwid, 0),
DEFINE_PROP_UINT64("hrmor", PnvCore, hrmor, 0),
DEFINE_PROP_BOOL("big-core", PnvCore, big_core, false),
DEFINE_PROP_BOOL("quirk-tb-big-core", PnvCore, tod_state.big_core_quirk,
false),
DEFINE_PROP_BOOL("lpar-per-core", PnvCore, lpar_per_core, false),
DEFINE_PROP_LINK("chip", PnvCore, chip, TYPE_PNV_CHIP, PnvChip *),
};
static void pnv_core_power8_class_init(ObjectClass *oc, void *data)
{
PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
pcc->xscom_ops = &pnv_core_power8_xscom_ops;
pcc->xscom_size = PNV_XSCOM_EX_SIZE;
}
static void pnv_core_power9_class_init(ObjectClass *oc, void *data)
{
PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
pcc->xscom_ops = &pnv_core_power9_xscom_ops;
pcc->xscom_size = PNV_XSCOM_EX_SIZE;
}
static void pnv_core_power10_class_init(ObjectClass *oc, void *data)
{
PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
pcc->xscom_ops = &pnv_core_power10_xscom_ops;
pcc->xscom_size = PNV10_XSCOM_EC_SIZE;
}
static void pnv_core_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = pnv_core_realize;
dc->unrealize = pnv_core_unrealize;
device_class_set_props(dc, pnv_core_properties);
dc->user_creatable = false;
}
#define DEFINE_PNV_CORE_TYPE(family, cpu_model) \
{ \
.parent = TYPE_PNV_CORE, \
.name = PNV_CORE_TYPE_NAME(cpu_model), \
.class_init = pnv_core_##family##_class_init, \
}
static const TypeInfo pnv_core_infos[] = {
{
.name = TYPE_PNV_CORE,
.parent = TYPE_CPU_CORE,
.instance_size = sizeof(PnvCore),
.class_size = sizeof(PnvCoreClass),
.class_init = pnv_core_class_init,
.abstract = true,
},
DEFINE_PNV_CORE_TYPE(power8, "power8e_v2.1"),
DEFINE_PNV_CORE_TYPE(power8, "power8_v2.0"),
DEFINE_PNV_CORE_TYPE(power8, "power8nvl_v1.0"),
DEFINE_PNV_CORE_TYPE(power9, "power9_v2.2"),
DEFINE_PNV_CORE_TYPE(power10, "power10_v2.0"),
};
DEFINE_TYPES(pnv_core_infos)
/*
* POWER9 Quads
*/
#define P9X_EX_NCU_SPEC_BAR 0x11010
static uint64_t pnv_quad_power9_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = -1;
switch (offset) {
case P9X_EX_NCU_SPEC_BAR:
case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
val = 0;
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_quad_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int width)
{
uint32_t offset = addr >> 3;
switch (offset) {
case P9X_EX_NCU_SPEC_BAR:
case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_quad_power9_xscom_ops = {
.read = pnv_quad_power9_xscom_read,
.write = pnv_quad_power9_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
/*
* POWER10 Quads
*/
static uint64_t pnv_quad_power10_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = -1;
switch (offset) {
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_quad_power10_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int width)
{
uint32_t offset = addr >> 3;
switch (offset) {
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_quad_power10_xscom_ops = {
.read = pnv_quad_power10_xscom_read,
.write = pnv_quad_power10_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
#define P10_QME_SPWU_HYP 0x83c
#define P10_QME_SSH_HYP 0x82c
static uint64_t pnv_qme_power10_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
PnvQuad *eq = PNV_QUAD(opaque);
uint32_t offset = addr >> 3;
uint64_t val = -1;
/*
* Forth nibble selects the core within a quad, mask it to process read
* for any core.
*/
switch (offset & ~PPC_BITMASK32(16, 19)) {
case P10_QME_SSH_HYP:
val = 0;
if (eq->special_wakeup_done) {
val |= PPC_BIT(1); /* SPWU DONE */
val |= PPC_BIT(4); /* SSH SPWU DONE */
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_qme_power10_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int width)
{
PnvQuad *eq = PNV_QUAD(opaque);
uint32_t offset = addr >> 3;
bool set;
int i;
switch (offset & ~PPC_BITMASK32(16, 19)) {
case P10_QME_SPWU_HYP:
set = !!(val & PPC_BIT(0));
eq->special_wakeup_done = set;
for (i = 0; i < 4; i++) {
/* These bits select cores in the quad */
if (offset & PPC_BIT32(16 + i)) {
eq->special_wakeup[i] = set;
}
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_qme_power10_xscom_ops = {
.read = pnv_qme_power10_xscom_read,
.write = pnv_qme_power10_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_quad_power9_realize(DeviceState *dev, Error **errp)
{
PnvQuad *eq = PNV_QUAD(dev);
PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
char name[32];
snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
pqc->xscom_ops,
eq, name,
pqc->xscom_size);
}
static void pnv_quad_power10_realize(DeviceState *dev, Error **errp)
{
PnvQuad *eq = PNV_QUAD(dev);
PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
char name[32];
snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
pqc->xscom_ops,
eq, name,
pqc->xscom_size);
snprintf(name, sizeof(name), "xscom-qme.%d", eq->quad_id);
pnv_xscom_region_init(&eq->xscom_qme_regs, OBJECT(dev),
pqc->xscom_qme_ops,
eq, name,
pqc->xscom_qme_size);
}
static const Property pnv_quad_properties[] = {
DEFINE_PROP_UINT32("quad-id", PnvQuad, quad_id, 0),
};
static void pnv_quad_power9_class_init(ObjectClass *oc, void *data)
{
PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = pnv_quad_power9_realize;
pqc->xscom_ops = &pnv_quad_power9_xscom_ops;
pqc->xscom_size = PNV9_XSCOM_EQ_SIZE;
}
static void pnv_quad_power10_class_init(ObjectClass *oc, void *data)
{
PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = pnv_quad_power10_realize;
pqc->xscom_ops = &pnv_quad_power10_xscom_ops;
pqc->xscom_size = PNV10_XSCOM_EQ_SIZE;
pqc->xscom_qme_ops = &pnv_qme_power10_xscom_ops;
pqc->xscom_qme_size = PNV10_XSCOM_QME_SIZE;
}
static void pnv_quad_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_props(dc, pnv_quad_properties);
dc->user_creatable = false;
}
static const TypeInfo pnv_quad_infos[] = {
{
.name = TYPE_PNV_QUAD,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvQuad),
.class_size = sizeof(PnvQuadClass),
.class_init = pnv_quad_class_init,
.abstract = true,
},
{
.parent = TYPE_PNV_QUAD,
.name = PNV_QUAD_TYPE_NAME("power9"),
.class_init = pnv_quad_power9_class_init,
},
{
.parent = TYPE_PNV_QUAD,
.name = PNV_QUAD_TYPE_NAME("power10"),
.class_init = pnv_quad_power10_class_init,
},
};
DEFINE_TYPES(pnv_quad_infos);