FRET-qemu/hw/ppc/pnv_occ.c
Nicholas Piggin d8b1c3eaed ppc/pnv: Fix system symbols in HOMER structure definitions
These definitions were taken from skiboot firmware. I naively thought it
would be nicer to keep the code similar by using the preprocessor, but
it was pointed out that system headers might still use those symbols and
cause something unexpected. Also just nicer to keep the QEMU tree clean.

Cc: "Philippe Mathieu-Daudé" <philmd@linaro.org>
Cc: "Stefan Hajnoczi" <stefanha@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Fixes: 70bc5c2498f46 ("ppc/pnv: Make HOMER memory a RAM region")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2025-03-20 19:58:11 +10:00

924 lines
31 KiB
C

/*
* QEMU PowerPC PowerNV Emulation of a few OCC related registers
*
* Copyright (c) 2015-2017, IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "target/ppc/cpu.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/pnv_occ.h"
#define P8_HOMER_OPAL_DATA_OFFSET 0x1F8000
#define P9_HOMER_OPAL_DATA_OFFSET 0x0E2000
#define OCB_OCI_OCCMISC 0x4020
#define OCB_OCI_OCCMISC_AND 0x4021
#define OCB_OCI_OCCMISC_OR 0x4022
#define OCCMISC_PSI_IRQ PPC_BIT(0)
#define OCCMISC_IRQ_SHMEM PPC_BIT(3)
/* OCC sensors */
#define OCC_SENSOR_DATA_BLOCK_OFFSET 0x0000
#define OCC_SENSOR_DATA_VALID 0x0001
#define OCC_SENSOR_DATA_VERSION 0x0002
#define OCC_SENSOR_DATA_READING_VERSION 0x0004
#define OCC_SENSOR_DATA_NR_SENSORS 0x0008
#define OCC_SENSOR_DATA_NAMES_OFFSET 0x0010
#define OCC_SENSOR_DATA_READING_PING_OFFSET 0x0014
#define OCC_SENSOR_DATA_READING_PONG_OFFSET 0x000c
#define OCC_SENSOR_DATA_NAME_LENGTH 0x000d
#define OCC_SENSOR_NAME_STRUCTURE_TYPE 0x0023
#define OCC_SENSOR_LOC_CORE 0x0022
#define OCC_SENSOR_LOC_GPU 0x0020
#define OCC_SENSOR_TYPE_POWER 0x0003
#define OCC_SENSOR_NAME 0x0005
#define HWMON_SENSORS_MASK 0x001e
static void pnv_occ_set_misc(PnvOCC *occ, uint64_t val)
{
val &= PPC_BITMASK(0, 18); /* Mask out unimplemented bits */
occ->occmisc = val;
/*
* OCCMISC IRQ bit triggers the interrupt on a 0->1 edge, but not clear
* how that is handled in PSI so it is level-triggered here, which is not
* really correct (but skiboot is okay with it).
*/
qemu_set_irq(occ->psi_irq, !!(val & OCCMISC_PSI_IRQ));
}
static void pnv_occ_raise_msg_irq(PnvOCC *occ)
{
pnv_occ_set_misc(occ, occ->occmisc | OCCMISC_PSI_IRQ | OCCMISC_IRQ_SHMEM);
}
static uint64_t pnv_occ_power8_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case OCB_OCI_OCCMISC:
val = occ->occmisc;
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
return val;
}
static void pnv_occ_power8_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
switch (offset) {
case OCB_OCI_OCCMISC_AND:
pnv_occ_set_misc(occ, occ->occmisc & val);
break;
case OCB_OCI_OCCMISC_OR:
pnv_occ_set_misc(occ, occ->occmisc | val);
break;
case OCB_OCI_OCCMISC:
pnv_occ_set_misc(occ, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
}
static uint64_t pnv_occ_common_area_read(void *opaque, hwaddr addr,
unsigned width)
{
switch (addr) {
/*
* occ-sensor sanity check that asserts the sensor
* header block
*/
case OCC_SENSOR_DATA_BLOCK_OFFSET:
case OCC_SENSOR_DATA_VALID:
case OCC_SENSOR_DATA_VERSION:
case OCC_SENSOR_DATA_READING_VERSION:
case OCC_SENSOR_DATA_NR_SENSORS:
case OCC_SENSOR_DATA_NAMES_OFFSET:
case OCC_SENSOR_DATA_READING_PING_OFFSET:
case OCC_SENSOR_DATA_READING_PONG_OFFSET:
case OCC_SENSOR_NAME_STRUCTURE_TYPE:
return 1;
case OCC_SENSOR_DATA_NAME_LENGTH:
return 0x30;
case OCC_SENSOR_LOC_CORE:
return 0x0040;
case OCC_SENSOR_TYPE_POWER:
return 0x0080;
case OCC_SENSOR_NAME:
return 0x1000;
case HWMON_SENSORS_MASK:
case OCC_SENSOR_LOC_GPU:
return 0x8e00;
}
return 0;
}
static void pnv_occ_common_area_write(void *opaque, hwaddr addr,
uint64_t val, unsigned width)
{
/* callback function defined to occ common area write */
return;
}
static const MemoryRegionOps pnv_occ_power8_xscom_ops = {
.read = pnv_occ_power8_xscom_read,
.write = pnv_occ_power8_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
const MemoryRegionOps pnv_occ_sram_ops = {
.read = pnv_occ_common_area_read,
.write = pnv_occ_common_area_write,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_occ_power8_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER8)";
poc->opal_shared_memory_offset = P8_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0x02;
poc->xscom_size = PNV_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power8_xscom_ops;
}
static const TypeInfo pnv_occ_power8_type_info = {
.name = TYPE_PNV8_OCC,
.parent = TYPE_PNV_OCC,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_power8_class_init,
};
#define P9_OCB_OCI_OCCMISC 0x6080
#define P9_OCB_OCI_OCCMISC_CLEAR 0x6081
#define P9_OCB_OCI_OCCMISC_OR 0x6082
static uint64_t pnv_occ_power9_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case P9_OCB_OCI_OCCMISC:
val = occ->occmisc;
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
return val;
}
static void pnv_occ_power9_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
switch (offset) {
case P9_OCB_OCI_OCCMISC_CLEAR:
pnv_occ_set_misc(occ, 0);
break;
case P9_OCB_OCI_OCCMISC_OR:
pnv_occ_set_misc(occ, occ->occmisc | val);
break;
case P9_OCB_OCI_OCCMISC:
pnv_occ_set_misc(occ, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
}
static const MemoryRegionOps pnv_occ_power9_xscom_ops = {
.read = pnv_occ_power9_xscom_read,
.write = pnv_occ_power9_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_occ_power9_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER9)";
poc->opal_shared_memory_offset = P9_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0x90;
poc->xscom_size = PNV9_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power9_xscom_ops;
assert(!dc->user_creatable);
}
static const TypeInfo pnv_occ_power9_type_info = {
.name = TYPE_PNV9_OCC,
.parent = TYPE_PNV_OCC,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_power9_class_init,
};
static void pnv_occ_power10_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER10)";
poc->opal_shared_memory_offset = P9_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0xA0;
poc->xscom_size = PNV9_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power9_xscom_ops;
assert(!dc->user_creatable);
}
static const TypeInfo pnv_occ_power10_type_info = {
.name = TYPE_PNV10_OCC,
.parent = TYPE_PNV_OCC,
.class_init = pnv_occ_power10_class_init,
};
static bool occ_init_homer_memory(PnvOCC *occ, Error **errp);
static bool occ_model_tick(PnvOCC *occ);
/* Relatively arbitrary */
#define OCC_POLL_MS 100
static void occ_state_machine_timer(void *opaque)
{
PnvOCC *occ = opaque;
uint64_t next = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + OCC_POLL_MS;
if (occ_model_tick(occ)) {
timer_mod(&occ->state_machine_timer, next);
}
}
static void pnv_occ_realize(DeviceState *dev, Error **errp)
{
PnvOCC *occ = PNV_OCC(dev);
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
assert(homer);
if (!occ_init_homer_memory(occ, errp)) {
return;
}
occ->occmisc = 0;
/* XScom region for OCC registers */
pnv_xscom_region_init(&occ->xscom_regs, OBJECT(dev), poc->xscom_ops,
occ, "xscom-occ", poc->xscom_size);
/* OCC common area mmio region for OCC SRAM registers */
memory_region_init_io(&occ->sram_regs, OBJECT(dev), &pnv_occ_sram_ops,
occ, "occ-common-area",
PNV_OCC_SENSOR_DATA_BLOCK_SIZE);
qdev_init_gpio_out(dev, &occ->psi_irq, 1);
timer_init_ms(&occ->state_machine_timer, QEMU_CLOCK_VIRTUAL,
occ_state_machine_timer, occ);
timer_mod(&occ->state_machine_timer, OCC_POLL_MS);
}
static const Property pnv_occ_properties[] = {
DEFINE_PROP_LINK("homer", PnvOCC, homer, TYPE_PNV_HOMER, PnvHomer *),
};
static void pnv_occ_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pnv_occ_realize;
device_class_set_props(dc, pnv_occ_properties);
dc->user_creatable = false;
}
static const TypeInfo pnv_occ_type_info = {
.name = TYPE_PNV_OCC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_class_init,
.class_size = sizeof(PnvOCCClass),
.abstract = true,
};
static void pnv_occ_register_types(void)
{
type_register_static(&pnv_occ_type_info);
type_register_static(&pnv_occ_power8_type_info);
type_register_static(&pnv_occ_power9_type_info);
type_register_static(&pnv_occ_power10_type_info);
}
type_init(pnv_occ_register_types);
/*
* From skiboot/hw/occ.c with following changes:
* - tab to space conversion
* - Type conversions u8->uint8_t s8->int8_t __be16->uint16_t etc
* - __packed -> QEMU_PACKED
*/
/* OCC Communication Area for PStates */
#define OPAL_DYNAMIC_DATA_OFFSET 0x0B80
/* relative to HOMER_OPAL_DATA_OFFSET */
#define MAX_PSTATES 256
#define MAX_P8_CORES 12
#define MAX_P9_CORES 24
#define MAX_P10_CORES 32
#define MAX_OPAL_CMD_DATA_LENGTH 4090
#define MAX_OCC_RSP_DATA_LENGTH 8698
#define P8_PIR_CORE_MASK 0xFFF8
#define P9_PIR_QUAD_MASK 0xFFF0
#define P10_PIR_CHIP_MASK 0x0000
#define FREQ_MAX_IN_DOMAIN 0
#define FREQ_MOST_RECENTLY_SET 1
/**
* OCC-OPAL Shared Memory Region
*
* Reference document :
* https://github.com/open-power/docs/blob/master/occ/OCC_OpenPwr_FW_Interfaces.pdf
*
* Supported layout versions:
* - 0x01, 0x02 : P8
* https://github.com/open-power/occ/blob/master_p8/src/occ/proc/proc_pstate.h
*
* - 0x90 : P9
* https://github.com/open-power/occ/blob/master/src/occ_405/proc/proc_pstate.h
* In 0x90 the data is separated into :-
* -- Static Data (struct occ_pstate_table): Data is written once by OCC
* -- Dynamic Data (struct occ_dynamic_data): Data is updated at runtime
*
* struct occ_pstate_table - Pstate table layout
* @valid: Indicates if data is valid
* @version: Layout version [Major/Minor]
* @v2.throttle: Reason for limiting the max pstate
* @v9.occ_role: OCC role (Master/Slave)
* @v#.pstate_min: Minimum pstate ever allowed
* @v#.pstate_nom: Nominal pstate
* @v#.pstate_turbo: Maximum turbo pstate
* @v#.pstate_ultra_turbo: Maximum ultra turbo pstate and the maximum
* pstate ever allowed
* @v#.pstates: Pstate-id and frequency list from Pmax to Pmin
* @v#.pstates.id: Pstate-id
* @v#.pstates.flags: Pstate-flag(reserved)
* @v2.pstates.vdd: Voltage Identifier
* @v2.pstates.vcs: Voltage Identifier
* @v#.pstates.freq_khz: Frequency in KHz
* @v#.core_max[1..N]: Max pstate with N active cores
* @spare/reserved/pad: Unused data
*/
struct occ_pstate_table {
uint8_t valid;
uint8_t version;
union QEMU_PACKED {
struct QEMU_PACKED { /* Version 0x01 and 0x02 */
uint8_t throttle;
int8_t pstate_min;
int8_t pstate_nom;
int8_t pstate_turbo;
int8_t pstate_ultra_turbo;
uint8_t spare;
uint64_t reserved;
struct QEMU_PACKED {
int8_t id;
uint8_t flags;
uint8_t vdd;
uint8_t vcs;
uint32_t freq_khz;
} pstates[MAX_PSTATES];
int8_t core_max[MAX_P8_CORES];
uint8_t pad[100];
} v2;
struct QEMU_PACKED { /* Version 0x90 */
uint8_t occ_role;
uint8_t pstate_min;
uint8_t pstate_nom;
uint8_t pstate_turbo;
uint8_t pstate_ultra_turbo;
uint8_t spare;
uint64_t reserved1;
uint64_t reserved2;
struct QEMU_PACKED {
uint8_t id;
uint8_t flags;
uint16_t reserved;
uint32_t freq_khz;
} pstates[MAX_PSTATES];
uint8_t core_max[MAX_P9_CORES];
uint8_t pad[56];
} v9;
struct QEMU_PACKED { /* Version 0xA0 */
uint8_t occ_role;
uint8_t pstate_min;
uint8_t pstate_fixed_freq;
uint8_t pstate_base;
uint8_t pstate_ultra_turbo;
uint8_t pstate_fmax;
uint8_t minor;
uint8_t pstate_bottom_throttle;
uint8_t spare;
uint8_t spare1;
uint32_t reserved_32;
uint64_t reserved_64;
struct QEMU_PACKED {
uint8_t id;
uint8_t valid;
uint16_t reserved;
uint32_t freq_khz;
} pstates[MAX_PSTATES];
uint8_t core_max[MAX_P10_CORES];
uint8_t pad[48];
} v10;
};
} QEMU_PACKED;
/**
* OPAL-OCC Command Response Interface
*
* OPAL-OCC Command Buffer
*
* ---------------------------------------------------------------------
* | OPAL | Cmd | OPAL | | Cmd Data | Cmd Data | OPAL |
* | Cmd | Request | OCC | Reserved | Length | Length | Cmd |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Command Data up to max of Cmd Data Length 4090 bytes |
* | |
* ---------------------------------------------------------------------
*
* OPAL Command Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* |Cmd | | | | | | | |
* |Ready | | | | | | | |
* -----------------------------------------------------------------
*
* struct opal_command_buffer - Defines the layout of OPAL command buffer
* @flag: Provides general status of the command
* @request_id: Token to identify request
* @cmd: Command sent
* @data_size: Command data length
* @data: Command specific data
* @spare: Unused byte
*/
struct opal_command_buffer {
uint8_t flag;
uint8_t request_id;
uint8_t cmd;
uint8_t spare;
uint16_t data_size;
uint8_t data[MAX_OPAL_CMD_DATA_LENGTH];
} QEMU_PACKED;
/**
* OPAL-OCC Response Buffer
*
* ---------------------------------------------------------------------
* | OCC | Cmd | OPAL | Response | Rsp Data | Rsp Data | OPAL |
* | Rsp | Request | OCC | Status | Length | Length | Rsp |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Response Data up to max of Rsp Data Length 8698 bytes |
* | |
* ---------------------------------------------------------------------
*
* OCC Response Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* | | | | | | |OCC in | Rsp |
* | | | | | | |progress|Ready |
* -----------------------------------------------------------------
*
* struct occ_response_buffer - Defines the layout of OCC response buffer
* @flag: Provides general status of the response
* @request_id: Token to identify request
* @cmd: Command requested
* @status: Indicates success/failure status of
* the command
* @data_size: Response data length
* @data: Response specific data
*/
struct occ_response_buffer {
uint8_t flag;
uint8_t request_id;
uint8_t cmd;
uint8_t status;
uint16_t data_size;
uint8_t data[MAX_OCC_RSP_DATA_LENGTH];
} QEMU_PACKED;
/**
* OCC-OPAL Shared Memory Interface Dynamic Data Vx90
*
* struct occ_dynamic_data - Contains runtime attributes
* @occ_state: Current state of OCC
* @major_version: Major version number
* @minor_version: Minor version number (backwards compatible)
* Version 1 indicates GPU presence populated
* @gpus_present: Bitmask of GPUs present (on systems where GPU
* presence is detected through APSS)
* @cpu_throttle: Reason for limiting the max pstate
* @mem_throttle: Reason for throttling memory
* @quick_pwr_drop: Indicates if QPD is asserted
* @pwr_shifting_ratio: Indicates the current percentage of power to
* take away from the CPU vs GPU when shifting
* power to maintain a power cap. Value of 100
* means take all power from CPU.
* @pwr_cap_type: Indicates type of power cap in effect
* @hard_min_pwr_cap: Hard minimum system power cap in Watts.
* Guaranteed unless hardware failure
* @max_pwr_cap: Maximum allowed system power cap in Watts
* @cur_pwr_cap: Current system power cap
* @soft_min_pwr_cap: Soft powercap minimum. OCC may or may not be
* able to maintain this
* @spare/reserved: Unused data
* @cmd: Opal Command Buffer
* @rsp: OCC Response Buffer
*/
struct occ_dynamic_data {
uint8_t occ_state;
uint8_t major_version;
uint8_t minor_version;
uint8_t gpus_present;
union QEMU_PACKED {
struct QEMU_PACKED { /* Version 0x90 */
uint8_t spare1;
} v9;
struct QEMU_PACKED { /* Version 0xA0 */
uint8_t wof_enabled;
} v10;
};
uint8_t cpu_throttle;
uint8_t mem_throttle;
uint8_t quick_pwr_drop;
uint8_t pwr_shifting_ratio;
uint8_t pwr_cap_type;
uint16_t hard_min_pwr_cap;
uint16_t max_pwr_cap;
uint16_t cur_pwr_cap;
uint16_t soft_min_pwr_cap;
uint8_t pad[110];
struct opal_command_buffer cmd;
struct occ_response_buffer rsp;
} QEMU_PACKED;
enum occ_response_status {
OCC_RSP_SUCCESS = 0x00,
OCC_RSP_INVALID_COMMAND = 0x11,
OCC_RSP_INVALID_CMD_DATA_LENGTH = 0x12,
OCC_RSP_INVALID_DATA = 0x13,
OCC_RSP_INTERNAL_ERROR = 0x15,
};
#define OCC_ROLE_SLAVE 0x00
#define OCC_ROLE_MASTER 0x01
#define OCC_FLAG_RSP_READY 0x01
#define OCC_FLAG_CMD_IN_PROGRESS 0x02
#define OPAL_FLAG_CMD_READY 0x80
#define PCAP_MAX_POWER_W 100
#define PCAP_SOFT_MIN_POWER_W 20
#define PCAP_HARD_MIN_POWER_W 10
static bool occ_write_static_data(PnvOCC *occ,
struct occ_pstate_table *static_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
MemTxResult ret;
ret = address_space_write(&address_space_memory, static_addr,
MEMTXATTRS_UNSPECIFIED, static_data,
sizeof(*static_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot write OCC-OPAL static data");
return false;
}
return true;
}
static bool occ_read_dynamic_data(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
hwaddr dynamic_addr = static_addr + OPAL_DYNAMIC_DATA_OFFSET;
MemTxResult ret;
ret = address_space_read(&address_space_memory, dynamic_addr,
MEMTXATTRS_UNSPECIFIED, dynamic_data,
sizeof(*dynamic_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot read OCC-OPAL dynamic data");
return false;
}
return true;
}
static bool occ_write_dynamic_data(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
hwaddr dynamic_addr = static_addr + OPAL_DYNAMIC_DATA_OFFSET;
MemTxResult ret;
ret = address_space_write(&address_space_memory, dynamic_addr,
MEMTXATTRS_UNSPECIFIED, dynamic_data,
sizeof(*dynamic_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot write OCC-OPAL dynamic data");
return false;
}
return true;
}
static bool occ_opal_send_response(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data,
enum occ_response_status status,
uint8_t *data, uint16_t datalen)
{
struct opal_command_buffer *cmd = &dynamic_data->cmd;
struct occ_response_buffer *rsp = &dynamic_data->rsp;
rsp->request_id = cmd->request_id;
rsp->cmd = cmd->cmd;
rsp->status = status;
rsp->data_size = cpu_to_be16(datalen);
if (datalen) {
memcpy(rsp->data, data, datalen);
}
if (!occ_write_dynamic_data(occ, dynamic_data, NULL)) {
return false;
}
/* Would be a memory barrier here */
rsp->flag = OCC_FLAG_RSP_READY;
cmd->flag = 0;
if (!occ_write_dynamic_data(occ, dynamic_data, NULL)) {
return false;
}
pnv_occ_raise_msg_irq(occ);
return true;
}
/* Returns error status */
static bool occ_opal_process_command(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data)
{
struct opal_command_buffer *cmd = &dynamic_data->cmd;
struct occ_response_buffer *rsp = &dynamic_data->rsp;
if (rsp->flag == 0) {
/* Spend one "tick" in the in-progress state */
rsp->flag = OCC_FLAG_CMD_IN_PROGRESS;
return occ_write_dynamic_data(occ, dynamic_data, NULL);
} else if (rsp->flag != OCC_FLAG_CMD_IN_PROGRESS) {
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_INTERNAL_ERROR,
NULL, 0);
}
switch (cmd->cmd) {
case 0xD1: { /* SET_POWER_CAP */
uint16_t data;
if (be16_to_cpu(cmd->data_size) != 2) {
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_INVALID_CMD_DATA_LENGTH,
(uint8_t *)&dynamic_data->cur_pwr_cap,
2);
}
data = be16_to_cpu(*(uint16_t *)cmd->data);
if (data == 0) { /* clear power cap */
dynamic_data->pwr_cap_type = 0x00; /* none */
data = PCAP_MAX_POWER_W;
} else {
dynamic_data->pwr_cap_type = 0x02; /* user set in-band */
if (data < PCAP_HARD_MIN_POWER_W) {
data = PCAP_HARD_MIN_POWER_W;
} else if (data > PCAP_MAX_POWER_W) {
data = PCAP_MAX_POWER_W;
}
}
dynamic_data->cur_pwr_cap = cpu_to_be16(data);
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_SUCCESS,
(uint8_t *)&dynamic_data->cur_pwr_cap, 2);
}
default:
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_INVALID_COMMAND,
NULL, 0);
}
g_assert_not_reached();
}
static bool occ_model_tick(PnvOCC *occ)
{
struct occ_dynamic_data dynamic_data;
if (!occ_read_dynamic_data(occ, &dynamic_data, NULL)) {
/* Can't move OCC state field to safe because we can't map it! */
qemu_log("OCC: failed to read HOMER data, shutting down OCC\n");
return false;
}
if (dynamic_data.cmd.flag == OPAL_FLAG_CMD_READY) {
if (!occ_opal_process_command(occ, &dynamic_data)) {
qemu_log("OCC: failed to write HOMER data, shutting down OCC\n");
return false;
}
}
return true;
}
static bool occ_init_homer_memory(PnvOCC *occ, Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
PnvChip *chip = homer->chip;
struct occ_pstate_table static_data;
struct occ_dynamic_data dynamic_data;
int i;
memset(&static_data, 0, sizeof(static_data));
static_data.valid = 1;
static_data.version = poc->opal_shared_memory_version;
switch (poc->opal_shared_memory_version) {
case 0x02:
static_data.v2.throttle = 0;
static_data.v2.pstate_min = -2;
static_data.v2.pstate_nom = -1;
static_data.v2.pstate_turbo = -1;
static_data.v2.pstate_ultra_turbo = 0;
static_data.v2.pstates[0].id = 0;
static_data.v2.pstates[1].freq_khz = cpu_to_be32(4000000);
static_data.v2.pstates[1].id = -1;
static_data.v2.pstates[1].freq_khz = cpu_to_be32(3000000);
static_data.v2.pstates[2].id = -2;
static_data.v2.pstates[2].freq_khz = cpu_to_be32(2000000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v2.core_max[i] = 1;
}
break;
case 0x90:
if (chip->chip_id == 0) {
static_data.v9.occ_role = OCC_ROLE_MASTER;
} else {
static_data.v9.occ_role = OCC_ROLE_SLAVE;
}
static_data.v9.pstate_min = 2;
static_data.v9.pstate_nom = 1;
static_data.v9.pstate_turbo = 1;
static_data.v9.pstate_ultra_turbo = 0;
static_data.v9.pstates[0].id = 0;
static_data.v9.pstates[0].freq_khz = cpu_to_be32(4000000);
static_data.v9.pstates[1].id = 1;
static_data.v9.pstates[1].freq_khz = cpu_to_be32(3000000);
static_data.v9.pstates[2].id = 2;
static_data.v9.pstates[2].freq_khz = cpu_to_be32(2000000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v9.core_max[i] = 1;
}
break;
case 0xA0:
if (chip->chip_id == 0) {
static_data.v10.occ_role = OCC_ROLE_MASTER;
} else {
static_data.v10.occ_role = OCC_ROLE_SLAVE;
}
static_data.v10.pstate_min = 4;
static_data.v10.pstate_fixed_freq = 3;
static_data.v10.pstate_base = 2;
static_data.v10.pstate_ultra_turbo = 0;
static_data.v10.pstate_fmax = 1;
static_data.v10.minor = 0x01;
static_data.v10.pstates[0].valid = 1;
static_data.v10.pstates[0].id = 0;
static_data.v10.pstates[0].freq_khz = cpu_to_be32(4200000);
static_data.v10.pstates[1].valid = 1;
static_data.v10.pstates[1].id = 1;
static_data.v10.pstates[1].freq_khz = cpu_to_be32(4000000);
static_data.v10.pstates[2].valid = 1;
static_data.v10.pstates[2].id = 2;
static_data.v10.pstates[2].freq_khz = cpu_to_be32(3800000);
static_data.v10.pstates[3].valid = 1;
static_data.v10.pstates[3].id = 3;
static_data.v10.pstates[3].freq_khz = cpu_to_be32(3000000);
static_data.v10.pstates[4].valid = 1;
static_data.v10.pstates[4].id = 4;
static_data.v10.pstates[4].freq_khz = cpu_to_be32(2000000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v10.core_max[i] = 1;
}
break;
default:
g_assert_not_reached();
}
if (!occ_write_static_data(occ, &static_data, errp)) {
return false;
}
memset(&dynamic_data, 0, sizeof(dynamic_data));
dynamic_data.occ_state = 0x3; /* active */
dynamic_data.major_version = 0x0;
dynamic_data.hard_min_pwr_cap = cpu_to_be16(PCAP_HARD_MIN_POWER_W);
dynamic_data.max_pwr_cap = cpu_to_be16(PCAP_MAX_POWER_W);
dynamic_data.cur_pwr_cap = cpu_to_be16(PCAP_MAX_POWER_W);
dynamic_data.soft_min_pwr_cap = cpu_to_be16(PCAP_SOFT_MIN_POWER_W);
switch (poc->opal_shared_memory_version) {
case 0xA0:
dynamic_data.minor_version = 0x1;
dynamic_data.v10.wof_enabled = 0x1;
break;
case 0x90:
dynamic_data.minor_version = 0x1;
break;
case 0x02:
dynamic_data.minor_version = 0x0;
break;
default:
g_assert_not_reached();
}
if (!occ_write_dynamic_data(occ, &dynamic_data, errp)) {
return false;
}
return true;
}