FRET-qemu/accel/tcg/cputlb.c
Andrea Fioraldi 21dda465fc
Fast mem and devices snapshots (#16)
* Run docker probe only if docker or podman are available

The docker probe uses "sudo -n" which can cause an e-mail with a security warning
each time when configure is run. Therefore run docker probe only if either docker
or podman are available.

That avoids the problematic "sudo -n" on build environments which have neither
docker nor podman installed.

Fixes: c4575b59155e2e00 ("configure: store container engine in config-host.mak")
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Message-Id: <20221030083510.310584-1-sw@weilnetz.de>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20221117172532.538149-2-alex.bennee@linaro.org>

* tests/avocado/machine_aspeed.py: Reduce noise on the console for SDK tests

The Aspeed SDK images are based on OpenBMC which starts a lot of
services. The output noise on the console can break from time to time
the test waiting for the logging prompt.

Change the U-Boot bootargs variable to add "quiet" to the kernel
command line and reduce the output volume. This also drops the test on
the CPU id which was nice to have but not essential.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20221104075347.370503-1-clg@kaod.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20221117172532.538149-3-alex.bennee@linaro.org>

* tests/docker: allow user to override check target

This is useful when trying to bisect a particular failing test behind
a docker run. For example:

  make docker-test-clang@fedora \
    TARGET_LIST=arm-softmmu \
    TEST_COMMAND="meson test qtest-arm/qos-test" \
    J=9 V=1

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221117172532.538149-4-alex.bennee@linaro.org>

* docs/devel: add a maintainers section to development process

We don't currently have a clear place in the documentation to describe
the roles and responsibilities of a maintainer. Lets create one so we
can. I've moved a few small bits out of other files to try and keep
everything in one place.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221117172532.538149-5-alex.bennee@linaro.org>

* docs/devel: make language a little less code centric

We welcome all sorts of patches.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221117172532.538149-6-alex.bennee@linaro.org>

* docs/devel: simplify the minimal checklist

The bullet points are quite long and contain process tips. Move those
bits of the bullet to the relevant sections and link to them. Use a
table for nicer formatting of the checklist.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221117172532.538149-7-alex.bennee@linaro.org>

* docs/devel: try and improve the language around patch review

It is important that contributors take the review process seriously
and we collaborate in a respectful way while avoiding personal
attacks. Try and make this clear in the language.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221117172532.538149-8-alex.bennee@linaro.org>

* tests/avocado: Raise timeout for boot_linux.py:BootLinuxPPC64.test_pseries_tcg

On my machine, a debug build of QEMU takes about 260 seconds to
complete this test, so with the current timeout value of 180 seconds
it always times out.  Double the timeout value to 360 so the test
definitely has enough time to complete.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20221110142901.3832318-1-peter.maydell@linaro.org>
Message-Id: <20221117172532.538149-9-alex.bennee@linaro.org>

* tests/avocado: introduce alpine virt test for CI

The boot_linux tests download and run a full cloud image boot and
start a full distro. While the ability to test the full boot chain is
worthwhile it is perhaps a little too heavy weight and causes issues
in CI. Fix this by introducing a new alpine linux ISO boot in
machine_aarch64_virt.

This boots a fully loaded -cpu max with all the bells and whistles in
31s on my machine. A full debug build takes around 180s on my machine
so we set a more generous timeout to cover that.

We don't add a test for lesser GIC versions although there is some
coverage for that already in the boot_xen.py tests. If we want to
introduce more comprehensive testing we can do it with a custom kernel
and initrd rather than a full distro boot.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221117172532.538149-10-alex.bennee@linaro.org>

* tests/avocado: skip aarch64 cloud TCG tests in CI

We now have a much lighter weight test in machine_aarch64_virt which
tests the full boot chain in less time. Rename the tests while we are
at it to make it clear it is a Fedora cloud image.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221117172532.538149-11-alex.bennee@linaro.org>

* gitlab: integrate coverage report

This should hopefully give is nice coverage information about what our
tests (or at least the subset we are running) have hit. Ideally we
would want a way to trigger coverage on tests likely to be affected by
the current commit.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221117172532.538149-12-alex.bennee@linaro.org>

* vhost: mask VIRTIO_F_RING_RESET for vhost and vhost-user devices

Commit 69e1c14aa2 ("virtio: core: vq reset feature negotation support")
enabled VIRTIO_F_RING_RESET by default for all virtio devices.

This feature is not currently emulated by QEMU, so for vhost and
vhost-user devices we need to make sure it is supported by the offloaded
device emulation (in-kernel or in another process).
To do this we need to add VIRTIO_F_RING_RESET to the features bitmap
passed to vhost_get_features(). This way it will be masked if the device
does not support it.

This issue was initially discovered with vhost-vsock and vhost-user-vsock,
and then also tested with vhost-user-rng which confirmed the same issue.
They fail when sending features through VHOST_SET_FEATURES ioctl or
VHOST_USER_SET_FEATURES message, since VIRTIO_F_RING_RESET is negotiated
by the guest (Linux >= v6.0), but not supported by the device.

Fixes: 69e1c14aa2 ("virtio: core: vq reset feature negotation support")
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1318
Signed-off-by: Stefano Garzarella <sgarzare@redhat.com>
Message-Id: <20221121101101.29400-1-sgarzare@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Raphael Norwitz <raphael.norwitz@nutanix.com>
Acked-by: Jason Wang <jasowang@redhat.com>

* tests: acpi: whitelist DSDT before moving PRQx to _SB scope

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20221121153613.3972225-2-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* acpi: x86: move RPQx field back to _SB scope

Commit 47a373faa6b2 (acpi: pc/q35: drop ad-hoc PCI-ISA bridge AML routines and let bus ennumeration generate AML)
moved ISA bridge AML generation to respective devices and was using
aml_alias() to provide PRQx fields in _SB. scope. However, it turned
out that SeaBIOS was not able to process Alias opcode when parsing DSDT,
resulting in lack of keyboard during boot (SeaBIOS console, grub, FreeDOS).

While fix for SeaBIOS is posted
  https://mail.coreboot.org/hyperkitty/list/seabios@seabios.org/thread/RGPL7HESH5U5JRLEO6FP77CZVHZK5J65/
fixed SeaBIOS might not make into QEMU-7.2 in time.
Hence this workaround that puts PRQx back into _SB scope
and gets rid of aliases in ISA bridge description, so
DSDT will be parsable by broken SeaBIOS.

That brings back hardcoded references to ISA bridge
  PCI0.S08.P40C/PCI0.SF8.PIRQ
where middle part now is auto generated based on slot it's
plugged in, but it should be fine as bridge initialization
also hardcodes PCI address of the bridge so it can't ever
move. Once QEMU tree has fixed SeaBIOS blob, we should be able
to drop this part and revert back to alias based approach

Reported-by: Volker Rümelin <vr_qemu@t-online.de>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20221121153613.3972225-3-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* tests: acpi: x86: update expected DSDT after moving PRQx fields in _SB scope

Expected DSDT changes,
pc:
  -                Field (P40C, ByteAcc, NoLock, Preserve)
  +                Scope (\_SB)
                   {
  -                    PRQ0,   8,
  -                    PRQ1,   8,
  -                    PRQ2,   8,
  -                    PRQ3,   8
  +                    Field (PCI0.S08.P40C, ByteAcc, NoLock, Preserve)
  +                    {
  +                        PRQ0,   8,
  +                        PRQ1,   8,
  +                        PRQ2,   8,
  +                        PRQ3,   8
  +                    }
                   }

  -                Alias (PRQ0, \_SB.PRQ0)
  -                Alias (PRQ1, \_SB.PRQ1)
  -                Alias (PRQ2, \_SB.PRQ2)
  -                Alias (PRQ3, \_SB.PRQ3)

q35:
  -                Field (PIRQ, ByteAcc, NoLock, Preserve)
  -                {
  -                    PRQA,   8,
  -                    PRQB,   8,
  -                    PRQC,   8,
  -                    PRQD,   8,
  -                    Offset (0x08),
  -                    PRQE,   8,
  -                    PRQF,   8,
  -                    PRQG,   8,
  -                    PRQH,   8
  +                Scope (\_SB)
  +                {
  +                    Field (PCI0.SF8.PIRQ, ByteAcc, NoLock, Preserve)
  +                    {
  +                        PRQA,   8,
  +                        PRQB,   8,
  +                        PRQC,   8,
  +                        PRQD,   8,
  +                        Offset (0x08),
  +                        PRQE,   8,
  +                        PRQF,   8,
  +                        PRQG,   8,
  +                        PRQH,   8
  +                    }
                   }

  -                Alias (PRQA, \_SB.PRQA)
  -                Alias (PRQB, \_SB.PRQB)
  -                Alias (PRQC, \_SB.PRQC)
  -                Alias (PRQD, \_SB.PRQD)
  -                Alias (PRQE, \_SB.PRQE)
  -                Alias (PRQF, \_SB.PRQF)
  -                Alias (PRQG, \_SB.PRQG)
  -                Alias (PRQH, \_SB.PRQH)

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20221121153613.3972225-4-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* MAINTAINERS: add mst to list of biosbits maintainers

Adding Michael's name to the list of bios bits maintainers so that all changes
and fixes into biosbits framework can go through his tree and he is notified.

Suggested-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Ani Sinha <ani@anisinha.ca>
Message-Id: <20221111151138.36988-1-ani@anisinha.ca>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* tests/avocado: configure acpi-bits to use avocado timeout

Instead of using a hardcoded timeout, just rely on Avocado's built-in
test case timeout. This helps avoid timeout issues on machines where 60
seconds is not sufficient.

Signed-off-by: John Snow <jsnow@redhat.com>
Message-Id: <20221115212759.3095751-1-jsnow@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Ani Sinha <ani@anisinha.ca>

* acpi/tests/avocado/bits: keep the work directory when BITS_DEBUG is set in env

Debugging bits issue often involves running the QEMU command line manually
outside of the avocado environment with the generated ISO. Hence, its
inconvenient if the iso gets cleaned up after the test has finished. This change
makes sure that the work directory is kept after the test finishes if the test
is run with BITS_DEBUG=1 in the environment so that the iso is available for use
with the QEMU command line.

CC: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Ani Sinha <ani@anisinha.ca>
Message-Id: <20221117113630.543495-1-ani@anisinha.ca>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* virtio: disable error for out of spec queue-enable

Virtio 1.0 is pretty clear that features have to be
negotiated before enabling VQs. Unfortunately Seabios
ignored this ever since gaining 1.0 support (UEFI is ok).
Comment the error out for now, and add a TODO.

Fixes: 3c37f8b8d1 ("virtio: introduce virtio_queue_enable()")
Cc: "Kangjie Xu" <kangjie.xu@linux.alibaba.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Message-Id: <20221121200339.362452-1-mst@redhat.com>

* hw/loongarch: Add default stdout uart in fdt

Add "chosen" subnode into LoongArch fdt, and set it's
"stdout-path" prop to uart node.

Signed-off-by: Xiaojuan Yang <yangxiaojuan@loongson.cn>
Reviewed-by: Song Gao <gaosong@loongson.cn>
Message-Id: <20221115114923.3372414-1-yangxiaojuan@loongson.cn>
Signed-off-by: Song Gao <gaosong@loongson.cn>

* hw/loongarch: Fix setprop_sized method in fdt rtc node.

Fix setprop_sized method in fdt rtc node.

Signed-off-by: Xiaojuan Yang <yangxiaojuan@loongson.cn>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Song Gao <gaosong@loongson.cn>
Message-Id: <20221116040300.3459818-1-yangxiaojuan@loongson.cn>
Signed-off-by: Song Gao <gaosong@loongson.cn>

* hw/loongarch: Replace the value of uart info with macro

Using macro to replace the value of uart info such as addr, size
in acpi_build method.

Signed-off-by: Xiaojuan Yang <yangxiaojuan@loongson.cn>
Reviewed-by: Song Gao <gaosong@loongson.cn>
Message-Id: <20221115115008.3372489-1-yangxiaojuan@loongson.cn>
Signed-off-by: Song Gao <gaosong@loongson.cn>

* target/arm: Don't do two-stage lookup if stage 2 is disabled

In get_phys_addr_with_struct(), we call get_phys_addr_twostage() if
the CPU supports EL2.  However, we don't check here that stage 2 is
actually enabled.  Instead we only check that inside
get_phys_addr_twostage() to skip stage 2 translation.  This means
that even if stage 2 is disabled we still tell the stage 1 lookup to
do its page table walks via stage 2.

This works by luck for normal CPU accesses, but it breaks for debug
accesses, which are used by the disassembler and also by semihosting
file reads and writes, because the debug case takes a different code
path inside S1_ptw_translate().

This means that setups that use semihosting for file loads are broken
(a regression since 7.1, introduced in recent ptw refactoring), and
that sometimes disassembly in debug logs reports "unable to read
memory" rather than showing the guest insns.

Fix the bug by hoisting the "is stage 2 enabled?" check up to
get_phys_addr_with_struct(), so that we handle S2 disabled the same
way we do the "no EL2" case, with a simple single stage lookup.

Reported-by: Jens Wiklander <jens.wiklander@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221121212404.1450382-1-peter.maydell@linaro.org

* target/arm: Use signed quantity to represent VMSAv8-64 translation level

The LPA2 extension implements 52-bit virtual addressing for 4k and 16k
translation granules, and for the former, this means an additional level
of translation is needed. This means we start counting at -1 instead of
0 when doing a walk, and so 'level' is now a signed quantity, and should
be typed as such. So turn it from uint32_t into int32_t.

This avoids a level of -1 getting misinterpreted as being >= 3, and
terminating a page table walk prematurely with a bogus output address.

Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Philippe Mathieu-Daudé <f4bug@amsat.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>

* Update VERSION for v7.2.0-rc2

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>

* tests/avocado: Update the URLs of the advent calendar images

The qemu-advent-calendar.org server will be decommissioned soon.
I've mirrored the images that we use for the QEMU CI to gitlab,
so update their URLs to point to the new location.

Message-Id: <20221121102436.78635-1-thuth@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>

* tests/qtest: Decrease the amount of output from the qom-test

The logs in the gitlab-CI have a size constraint, and sometimes
we already hit this limit. The biggest part of the log then seems
to be filled by the qom-test, so we should decrease the size of
the output - which can be done easily by not printing the path
for each property, since the path has already been logged at the
beginning of each node that we handle here.

However, if we omit the path, we should make sure to not recurse
into child nodes in between, so that it is clear to which node
each property belongs. Thus store the children and links in a
temporary list and recurse only at the end of each node, when
all properties have already been printed.

Message-Id: <20221121194240.149268-1-thuth@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>

* tests/avocado: use new rootfs for orangepi test

The old URL wasn't stable. I suspect the current URL will only be
stable for a few months so maybe we need another strategy for hosting
rootfs snapshots?

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20221118113309.1057790-1-alex.bennee@linaro.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>

* Revert "usbredir: avoid queuing hello packet on snapshot restore"

Run state is also in RUN_STATE_PRELAUNCH while "-S" is used.

This reverts commit 0631d4b448454ae8a1ab091c447e3f71ab6e088a

Signed-off-by: Joelle van Dyne <j@getutm.app>
Reviewed-by: Ján Tomko <jtomko@redhat.com>

The original commit broke the usage of usbredir with libvirt, which
starts every domain with "-S".

This workaround is no longer needed because the usbredir behavior
has been fixed in the meantime:
https://gitlab.freedesktop.org/spice/usbredir/-/merge_requests/61

Signed-off-by: Ján Tomko <jtomko@redhat.com>
Message-Id: <1689cec3eadcea87255e390cb236033aca72e168.1669193161.git.jtomko@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* gtk: disable GTK Clipboard with a new meson option

The GTK Clipboard implementation may cause guest hangs.

Therefore implement new configure switch: --enable-gtk-clipboard,

as a meson option disabled by default, which warns in the help
text about the experimental nature of the feature.
Regenerate the meson build options to include it.

The initialization of the clipboard is gtk.c, as well as the
compilation of gtk-clipboard.c are now conditional on this new
option to be set.

Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1150
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Jim Fehlig <jfehlig@suse.com>
Message-Id: <20221121135538.14625-1-cfontana@suse.de>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* hw/usb/hcd-xhci.c: spelling: tranfer

Fixes: effaf5a240e03020f4ae953e10b764622c3e87cc
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Stefan Weil <sw@weilnetz.de>
Message-Id: <20221105114851.306206-1-mjt@msgid.tls.msk.ru>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* ui/gtk: prevent ui lock up when dpy_gl_update called again before current draw event occurs

A warning, "qemu: warning: console: no gl-unblock within" followed by
guest scanout lockup can happen if dpy_gl_update is called in a row
and the second call is made before gd_draw_event scheduled by the first
call is taking place. This is because draw call returns without decrementing
gl_block ref count if the dmabuf was already submitted as shown below.

(gd_gl_area_draw/gd_egl_draw)

        if (dmabuf) {
            if (!dmabuf->draw_submitted) {
                return;
            } else {
                dmabuf->draw_submitted = false;
            }
        }

So it should not schedule any redundant draw event in case draw_submitted is
already set in gd_egl_fluch/gd_gl_area_scanout_flush.

Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Signed-off-by: Dongwon Kim <dongwon.kim@intel.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20221021192315.9110-1-dongwon.kim@intel.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* hw/usb/hcd-xhci: Reset the XHCIState with device_cold_reset()

Currently the hcd-xhci-pci and hcd-xhci-sysbus devices, which are
mostly wrappers around the TYPE_XHCI device, which is a direct
subclass of TYPE_DEVICE.  Since TYPE_DEVICE devices are not on any
qbus and do not get automatically reset, the wrapper devices both
reset the TYPE_XHCI device in their own reset functions.  However,
they do this using device_legacy_reset(), which will reset the device
itself but not any bus it has.

Switch to device_cold_reset(), which avoids using a deprecated
function and also propagates reset along any child buses.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20221014145423.2102706-1-peter.maydell@linaro.org>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* hw/audio/intel-hda: don't reset codecs twice

Currently the intel-hda device has a reset method which manually
resets all the codecs by calling device_legacy_reset() on them.  This
means they get reset twice, once because child devices on a qbus get
reset before the parent device's reset method is called, and then
again because we're manually resetting them.

Drop the manual reset call, and ensure that codecs are still reset
when the guest does a reset via ICH6_GCTL_RESET by using
device_cold_reset() (which resets all the devices on the qbus as well
as the device itself) instead of a direct call to the reset function.

This is a slight ordering change because the (only) codec reset now
happens before the controller registers etc are reset, rather than
once before and then once after, but the codec reset function
hda_audio_reset() doesn't care.

This lets us drop a use of device_legacy_reset(), which is
deprecated.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221014142632.2092404-2-peter.maydell@linaro.org>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* hw/audio/intel-hda: Drop unnecessary prototype

The only use of intel_hda_reset() is after its definition, so we
don't need to separately declare its prototype at the top of the
file; drop the unnecessary line.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221014142632.2092404-3-peter.maydell@linaro.org>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* add syx snapshot extras

* it compiles!

* virtiofsd: Add `sigreturn` to the seccomp whitelist

The virtiofsd currently crashes on s390x. This is because of a
`sigreturn` system call. See audit log below:

type=SECCOMP msg=audit(1669382477.611:459): auid=4294967295 uid=0 gid=0 ses=4294967295 subj=system_u:system_r:virtd_t:s0-s0:c0.c1023 pid=6649 comm="virtiofsd" exe="/usr/libexec/virtiofsd" sig=31 arch=80000016 syscall=119 compat=0 ip=0x3fff15f748a code=0x80000000AUID="unset" UID="root" GID="root" ARCH=s390x SYSCALL=sigreturn

Signed-off-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Reviewed-by: German Maglione <gmaglione@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221125143946.27717-1-mhartmay@linux.ibm.com>

* libvhost-user: Fix wrong type of argument to formatting function (reported by LGTM)

Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Message-Id: <20220422070144.1043697-2-sw@weilnetz.de>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221126152507.283271-2-sw@weilnetz.de>

* libvhost-user: Fix format strings

Signed-off-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20220422070144.1043697-3-sw@weilnetz.de>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221126152507.283271-3-sw@weilnetz.de>

* libvhost-user: Fix two more format strings

This fix is required for 32 bit hosts. The bug was detected by CI
for arm-linux, but is also relevant for i386-linux.

Reported-by: Stefan Hajnoczi <stefanha@gmail.com>
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221126152507.283271-4-sw@weilnetz.de>

* libvhost-user: Add format attribute to local function vu_panic

Signed-off-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20220422070144.1043697-4-sw@weilnetz.de>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221126152507.283271-5-sw@weilnetz.de>

* MAINTAINERS: Add subprojects/libvhost-user to section "vhost"

Signed-off-by: Stefan Weil <sw@weilnetz.de>
[Michael agreed to act as maintainer for libvhost-user via email in
https://lore.kernel.org/qemu-devel/20221123015218-mutt-send-email-mst@kernel.org/.
--Stefan]
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221126152507.283271-6-sw@weilnetz.de>

* Add G_GNUC_PRINTF to function qemu_set_info_str and fix related issues

With the G_GNUC_PRINTF function attribute the compiler detects
two potential insecure format strings:

../../../net/stream.c:248:31: warning: format string is not a string literal (potentially insecure) [-Wformat-security]
    qemu_set_info_str(&s->nc, uri);
                              ^~~
../../../net/stream.c:322:31: warning: format string is not a string literal (potentially insecure) [-Wformat-security]
    qemu_set_info_str(&s->nc, uri);
                              ^~~

There are also two other warnings:

../../../net/socket.c:182:35: warning: zero-length gnu_printf format string [-Wformat-zero-length]
  182 |         qemu_set_info_str(&s->nc, "");
      |                                   ^~
../../../net/stream.c:170:35: warning: zero-length gnu_printf format string [-Wformat-zero-length]
  170 |         qemu_set_info_str(&s->nc, "");

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221126152507.283271-7-sw@weilnetz.de>

* del ramfile

* update seabios source from 1.16.0 to 1.16.1

git shortlog rel-1.16.0..rel-1.16.1
===================================

Gerd Hoffmann (3):
      malloc: use variable for ZoneHigh size
      malloc: use large ZoneHigh when there is enough memory
      virtio-blk: use larger default request size

Igor Mammedov (1):
      acpi: parse Alias object

Volker Rümelin (2):
      pci: refactor the pci_config_*() functions
      reset: force standard PCI configuration access

Xiaofei Lee (1):
      virtio-blk: Fix incorrect type conversion in virtio_blk_op()

Xuan Zhuo (2):
      virtio-mmio: read/write the hi 32 features for mmio
      virtio: finalize features before using device

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* update seabios binaries to 1.16.1

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>

* fix for non i386 archs

* replay: Fix declaration of replay_read_next_clock

Fixes the build with gcc 13:

replay/replay-time.c:34:6: error: conflicting types for  \
  'replay_read_next_clock' due to enum/integer mismatch; \
  have 'void(ReplayClockKind)' [-Werror=enum-int-mismatch]
   34 | void replay_read_next_clock(ReplayClockKind kind)
      |      ^~~~~~~~~~~~~~~~~~~~~~
In file included from ../qemu/replay/replay-time.c:14:
replay/replay-internal.h:139:6: note: previous declaration of \
  'replay_read_next_clock' with type 'void(unsigned int)'
  139 | void replay_read_next_clock(unsigned int kind);
      |      ^~~~~~~~~~~~~~~~~~~~~~

Fixes: 8eda206e090 ("replay: recording and replaying clock ticks")
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Wilfred Mallawa <wilfred.mallawa@wdc.com>
Reviewed-by: Pavel Dovgalyuk <Pavel.Dovgalyuk@ispras.ru>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221129010547.284051-1-richard.henderson@linaro.org>

* hw/display/qxl: Have qxl_log_command Return early if no log_cmd handler

Only 3 command types are logged: no need to call qxl_phys2virt()
for the other types. Using different cases will help to pass
different structure sizes to qxl_phys2virt() in a pair of commits.

Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221128202741.4945-2-philmd@linaro.org>

* hw/display/qxl: Document qxl_phys2virt()

Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221128202741.4945-3-philmd@linaro.org>

* hw/display/qxl: Pass requested buffer size to qxl_phys2virt()

Currently qxl_phys2virt() doesn't check for buffer overrun.
In order to do so in the next commit, pass the buffer size
as argument.

For QXLCursor in qxl_render_cursor() -> qxl_cursor() we
verify the size of the chunked data ahead, checking we can
access 'sizeof(QXLCursor) + chunk->data_size' bytes.
Since in the SPICE_CURSOR_TYPE_MONO case the cursor is
assumed to fit in one chunk, no change are required.
In SPICE_CURSOR_TYPE_ALPHA the ahead read is handled in
qxl_unpack_chunks().

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221128202741.4945-4-philmd@linaro.org>

* hw/display/qxl: Avoid buffer overrun in qxl_phys2virt (CVE-2022-4144)

Have qxl_get_check_slot_offset() return false if the requested
buffer size does not fit within the slot memory region.

Similarly qxl_phys2virt() now returns NULL in such case, and
qxl_dirty_one_surface() aborts.

This avoids buffer overrun in the host pointer returned by
memory_region_get_ram_ptr().

Fixes: CVE-2022-4144 (out-of-bounds read)
Reported-by: Wenxu Yin (@awxylitol)
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1336
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221128202741.4945-5-philmd@linaro.org>

* hw/display/qxl: Assert memory slot fits in preallocated MemoryRegion

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221128202741.4945-6-philmd@linaro.org>

* block-backend: avoid bdrv_unregister_buf() NULL pointer deref

bdrv_*() APIs expect a valid BlockDriverState. Calling them with bs=NULL
leads to undefined behavior.

Jonathan Cameron reported this following NULL pointer dereference when a
VM with a virtio-blk device and a memory-backend-file object is
terminated:
1. qemu_cleanup() closes all drives, setting blk->root to NULL
2. qemu_cleanup() calls user_creatable_cleanup(), which results in a RAM
   block notifier callback because the memory-backend-file is destroyed.
3. blk_unregister_buf() is called by virtio-blk's BlockRamRegistrar
   notifier callback and undefined behavior occurs.

Fixes: baf422684d73 ("virtio-blk: use BDRV_REQ_REGISTERED_BUF optimization hint")
Co-authored-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221121211923.1993171-1-stefanha@redhat.com>

* target/arm: Set TCGCPUOps.restore_state_to_opc for v7m

This setting got missed, breaking v7m.

Fixes: 56c6c98df85c ("target/arm: Convert to tcg_ops restore_state_to_opc")
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1347
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Evgeny Ermakov <evgeny.v.ermakov@gmail.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221129204146.550394-1-richard.henderson@linaro.org>

* Update VERSION for v7.2.0-rc3

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>

* hooks are now post mem access

* tests/qtests: override "force-legacy" for gpio virtio-mmio tests

The GPIO device is a VIRTIO_F_VERSION_1 devices but running with a
legacy MMIO interface we miss out that feature bit causing confusion.
For the GPIO test force the mmio bus to support non-legacy so we can
properly test it.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1333
Message-Id: <20221130112439.2527228-2-alex.bennee@linaro.org>
Acked-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* vhost: enable vrings in vhost_dev_start() for vhost-user devices

Commit 02b61f38d3 ("hw/virtio: incorporate backend features in features")
properly negotiates VHOST_USER_F_PROTOCOL_FEATURES with the vhost-user
backend, but we forgot to enable vrings as specified in
docs/interop/vhost-user.rst:

    If ``VHOST_USER_F_PROTOCOL_FEATURES`` has not been negotiated, the
    ring starts directly in the enabled state.

    If ``VHOST_USER_F_PROTOCOL_FEATURES`` has been negotiated, the ring is
    initialized in a disabled state and is enabled by
    ``VHOST_USER_SET_VRING_ENABLE`` with parameter 1.

Some vhost-user front-ends already did this by calling
vhost_ops.vhost_set_vring_enable() directly:
- backends/cryptodev-vhost.c
- hw/net/virtio-net.c
- hw/virtio/vhost-user-gpio.c

But most didn't do that, so we would leave the vrings disabled and some
backends would not work. We observed this issue with the rust version of
virtiofsd [1], which uses the event loop [2] provided by the
vhost-user-backend crate where requests are not processed if vring is
not enabled.

Let's fix this issue by enabling the vrings in vhost_dev_start() for
vhost-user front-ends that don't already do this directly. Same thing
also in vhost_dev_stop() where we disable vrings.

[1] https://gitlab.com/virtio-fs/virtiofsd
[2] https://github.com/rust-vmm/vhost/blob/240fc2966/crates/vhost-user-backend/src/event_loop.rs#L217

Fixes: 02b61f38d3 ("hw/virtio: incorporate backend features in features")
Reported-by: German Maglione <gmaglione@redhat.com>
Tested-by: German Maglione <gmaglione@redhat.com>
Signed-off-by: Stefano Garzarella <sgarzare@redhat.com>
Acked-by: Raphael Norwitz <raphael.norwitz@nutanix.com>
Message-Id: <20221123131630.52020-1-sgarzare@redhat.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Message-Id: <20221130112439.2527228-3-alex.bennee@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* hw/virtio: add started_vu status field to vhost-user-gpio

As per the fix to vhost-user-blk in f5b22d06fb (vhost: recheck dev
state in the vhost_migration_log routine) we really should track the
connection and starting separately.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Message-Id: <20221130112439.2527228-4-alex.bennee@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* hw/virtio: generalise CHR_EVENT_CLOSED handling

..and use for both virtio-user-blk and virtio-user-gpio. This avoids
the circular close by deferring shutdown due to disconnection until a
later point. virtio-user-blk already had this mechanism in place so
generalise it as a vhost-user helper function and use for both blk and
gpio devices.

While we are at it we also fix up vhost-user-gpio to re-establish the
event handler after close down so we can reconnect later.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Raphael Norwitz <raphael.norwitz@nutanix.com>
Message-Id: <20221130112439.2527228-5-alex.bennee@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* include/hw: VM state takes precedence in virtio_device_should_start

The VM status should always preempt the device status for these
checks. This ensures the device is in the correct state when we
suspend the VM prior to migrations. This restores the checks to the
order they where in before the refactoring moved things around.

While we are at it lets improve our documentation of the various
fields involved and document the two functions.

Fixes: 9f6bcfd99f (hw/virtio: move vm_running check to virtio_device_started)
Fixes: 259d69c00b (hw/virtio: introduce virtio_device_should_start)
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Message-Id: <20221130112439.2527228-6-alex.bennee@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

* hw/nvme: fix aio cancel in format

There are several bugs in the async cancel code for the Format command.

Firstly, cancelling a format operation neglects to set iocb->ret as well
as clearing the iocb->aiocb after cancelling the underlying aiocb which
causes the aio callback to ignore the cancellation. Trivial fix.

Secondly, and worse, because the request is queued up for posting to the
CQ in a bottom half, if the cancellation is due to the submission queue
being deleted (which calls blk_aio_cancel), the req structure is
deallocated in nvme_del_sq prior to the bottom half being schedulued.

Fix this by simply removing the bottom half, there is no reason to defer
it anyway.

Fixes: 3bcf26d3d619 ("hw/nvme: reimplement format nvm to allow cancellation")
Reported-by: Jonathan Derrick <jonathan.derrick@linux.dev>
Reviewed-by: Keith Busch <kbusch@kernel.org>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>

* hw/nvme: fix aio cancel in flush

Make sure that iocb->aiocb is NULL'ed when cancelling.

Fix a potential use-after-free by removing the bottom half and enqueuing
the completion directly.

Fixes: 38f4ac65ac88 ("hw/nvme: reimplement flush to allow cancellation")
Reviewed-by: Keith Busch <kbusch@kernel.org>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>

* hw/nvme: fix aio cancel in zone reset

If the zone reset operation is cancelled but the block unmap operation
completes normally, the callback will continue resetting the next zone
since it neglects to check iocb->ret which will have been set to
-ECANCELED. Make sure that this is checked and bail out if an error is
present.

Secondly, fix a potential use-after-free by removing the bottom half and
enqueuing the completion directly.

Fixes: 63d96e4ffd71 ("hw/nvme: reimplement zone reset to allow cancellation")
Reviewed-by: Keith Busch <kbusch@kernel.org>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>

* hw/nvme: fix aio cancel in dsm

When the DSM operation is cancelled asynchronously, we set iocb->ret to
-ECANCELED. However, the callback function only checks the return value
of the completed aio, which may have completed succesfully prior to the
cancellation and thus the callback ends up continuing the dsm operation
instead of bailing out. Fix this.

Secondly, fix a potential use-after-free by removing the bottom half and
enqueuing the completion directly.

Fixes: d7d1474fd85d ("hw/nvme: reimplement dsm to allow cancellation")
Reviewed-by: Keith Busch <kbusch@kernel.org>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>

* hw/nvme: remove copy bh scheduling

Fix a potential use-after-free by removing the bottom half and enqueuing
the completion directly.

Fixes: 796d20681d9b ("hw/nvme: reimplement the copy command to allow aio cancellation")
Reviewed-by: Keith Busch <kbusch@kernel.org>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>

* target/i386: allow MMX instructions with CR4.OSFXSR=0

MMX state is saved/restored by FSAVE/FRSTOR so the instructions are
not illegal opcodes even if CR4.OSFXSR=0.  Make sure that validate_vex
takes into account the prefix and only checks HF_OSFXSR_MASK in the
presence of an SSE instruction.

Fixes: 20581aadec5e ("target/i386: validate VEX prefixes via the instructions' exception classes", 2022-10-18)
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1350
Reported-by: Helge Konetzka (@hejko on gitlab.com)
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

* target/i386: Always completely initialize TranslateFault

In get_physical_address, the canonical address check failed to
set TranslateFault.stage2, which resulted in an uninitialized
read from the struct when reporting the fault in x86_cpu_tlb_fill.

Adjust all error paths to use structure assignment so that the
entire struct is always initialized.

Reported-by: Daniel Hoffman <dhoff749@gmail.com>
Fixes: 9bbcf372193a ("target/i386: Reorg GET_HPHYS")
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221201074522.178498-1-richard.henderson@linaro.org>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1324
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

* hw/loongarch/virt: Add cfi01 pflash device

Add cfi01 pflash device for LoongArch virt machine

Signed-off-by: Xiaojuan Yang <yangxiaojuan@loongson.cn>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221130100647.398565-1-yangxiaojuan@loongson.cn>
Signed-off-by: Song Gao <gaosong@loongson.cn>

* Sync pc on breakpoints

* tests/qtest/migration-test: Fix unlink error and memory leaks

When running the migration test compiled with Clang from Fedora 37
and sanitizers enabled, there is an error complaining about unlink():

 ../tests/qtest/migration-test.c:1072:12: runtime error: null pointer
  passed as argument 1, which is declared to never be null
 /usr/include/unistd.h:858:48: note: nonnull attribute specified here
 SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior
  ../tests/qtest/migration-test.c:1072:12 in
 (test program exited with status code 1)
 TAP parsing error: Too few tests run (expected 33, got 20)

The data->clientcert and data->clientkey pointers can indeed be unset
in some tests, so we have to check them before calling unlink() with
those.

While we're at it, I also noticed that the code is only freeing
some but not all of the allocated strings in this function, and
indeed, valgrind is also complaining about memory leaks here.
So let's call g_free() on all allocated strings to avoid leaking
memory here.

Message-Id: <20221125083054.117504-1-thuth@redhat.com>
Tested-by: Bin Meng <bmeng@tinylab.org>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>

* target/s390x/tcg: Fix and improve the SACF instruction

The SET ADDRESS SPACE CONTROL FAST instruction is not privileged, it can be
used from problem space, too. Just the switching to the home address space
is privileged and should still generate a privilege exception. This bug is
e.g. causing programs like Java that use the "getcpu" vdso kernel function
to crash (see https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=990417#26 ).

While we're at it, also check if DAT is not enabled. In that case the
instruction is supposed to generate a special operation exception.

Resolves: https://gitlab.com/qemu-project/qemu/-/issues/655
Message-Id: <20221201184443.136355-1-thuth@redhat.com>
Reviewed-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>

* hw/display/next-fb: Fix comment typo

Signed-off-by: Evgeny Ermakov <evgeny.v.ermakov@gmail.com>
Message-Id: <20221125160849.23711-1-evgeny.v.ermakov@gmail.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>

* fix dev snapshots

* working syx snaps

* Revert "hw/loongarch/virt: Add cfi01 pflash device"

This reverts commit 14dccc8ea6ece7ee63273144fb55e4770a05e0fd.

Signed-off-by: Song Gao <gaosong@loongson.cn>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20221205113007.683505-1-gaosong@loongson.cn>

* Update VERSION for v7.2.0-rc4

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>

Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Ani Sinha <ani@anisinha.ca>
Signed-off-by: John Snow <jsnow@redhat.com>
Signed-off-by: Xiaojuan Yang <yangxiaojuan@loongson.cn>
Signed-off-by: Song Gao <gaosong@loongson.cn>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Ján Tomko <jtomko@redhat.com>
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Signed-off-by: Dongwon Kim <dongwon.kim@intel.com>
Signed-off-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Evgeny Ermakov <evgeny.v.ermakov@gmail.com>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-authored-by: Stefan Weil <sw@weilnetz.de>
Co-authored-by: Cédric Le Goater <clg@kaod.org>
Co-authored-by: Alex Bennée <alex.bennee@linaro.org>
Co-authored-by: Peter Maydell <peter.maydell@linaro.org>
Co-authored-by: Stefano Garzarella <sgarzare@redhat.com>
Co-authored-by: Igor Mammedov <imammedo@redhat.com>
Co-authored-by: Ani Sinha <ani@anisinha.ca>
Co-authored-by: John Snow <jsnow@redhat.com>
Co-authored-by: Michael S. Tsirkin <mst@redhat.com>
Co-authored-by: Xiaojuan Yang <yangxiaojuan@loongson.cn>
Co-authored-by: Stefan Hajnoczi <stefanha@redhat.com>
Co-authored-by: Ard Biesheuvel <ardb@kernel.org>
Co-authored-by: Thomas Huth <thuth@redhat.com>
Co-authored-by: Joelle van Dyne <j@getutm.app>
Co-authored-by: Claudio Fontana <cfontana@suse.de>
Co-authored-by: Michael Tokarev <mjt@tls.msk.ru>
Co-authored-by: Dongwon Kim <dongwon.kim@intel.com>
Co-authored-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Co-authored-by: Stefan Weil via <qemu-devel@nongnu.org>
Co-authored-by: Gerd Hoffmann <kraxel@redhat.com>
Co-authored-by: Richard Henderson <richard.henderson@linaro.org>
Co-authored-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Co-authored-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Co-authored-by: Evgeny Ermakov <evgeny.v.ermakov@gmail.com>
Co-authored-by: Klaus Jensen <k.jensen@samsung.com>
Co-authored-by: Paolo Bonzini <pbonzini@redhat.com>
Co-authored-by: Song Gao <gaosong@loongson.cn>
2022-12-08 10:32:18 +01:00

2657 lines
86 KiB
C

/*
* Common CPU TLB handling
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "hw/core/tcg-cpu-ops.h"
#include "exec/exec-all.h"
#include "exec/memory.h"
#include "exec/cpu_ldst.h"
#include "exec/cputlb.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "tcg/tcg.h"
#include "qemu/error-report.h"
#include "exec/log.h"
#include "exec/helper-proto.h"
#include "qemu/atomic.h"
#include "qemu/atomic128.h"
#include "exec/translate-all.h"
#include "trace/trace-root.h"
#include "tb-hash.h"
#include "internal.h"
#ifdef CONFIG_PLUGIN
#include "qemu/plugin-memory.h"
#endif
#include "tcg/tcg-ldst.h"
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
/* #define DEBUG_TLB */
/* #define DEBUG_TLB_LOG */
#ifdef DEBUG_TLB
# define DEBUG_TLB_GATE 1
# ifdef DEBUG_TLB_LOG
# define DEBUG_TLB_LOG_GATE 1
# else
# define DEBUG_TLB_LOG_GATE 0
# endif
#else
# define DEBUG_TLB_GATE 0
# define DEBUG_TLB_LOG_GATE 0
#endif
#define tlb_debug(fmt, ...) do { \
if (DEBUG_TLB_LOG_GATE) { \
qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
## __VA_ARGS__); \
} else if (DEBUG_TLB_GATE) { \
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
} \
} while (0)
#define assert_cpu_is_self(cpu) do { \
if (DEBUG_TLB_GATE) { \
g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
} \
} while (0)
/* run_on_cpu_data.target_ptr should always be big enough for a
* target_ulong even on 32 bit builds */
QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
*/
QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
{
return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
}
static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
{
return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
}
static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
size_t max_entries)
{
desc->window_begin_ns = ns;
desc->window_max_entries = max_entries;
}
static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
{
int i, i0 = tb_jmp_cache_hash_page(page_addr);
CPUJumpCache *jc = cpu->tb_jmp_cache;
for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
qatomic_set(&jc->array[i0 + i].tb, NULL);
}
}
/**
* tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
* @desc: The CPUTLBDesc portion of the TLB
* @fast: The CPUTLBDescFast portion of the same TLB
*
* Called with tlb_lock_held.
*
* We have two main constraints when resizing a TLB: (1) we only resize it
* on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
* the array or unnecessarily flushing it), which means we do not control how
* frequently the resizing can occur; (2) we don't have access to the guest's
* future scheduling decisions, and therefore have to decide the magnitude of
* the resize based on past observations.
*
* In general, a memory-hungry process can benefit greatly from an appropriately
* sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
* we just have to make the TLB as large as possible; while an oversized TLB
* results in minimal TLB miss rates, it also takes longer to be flushed
* (flushes can be _very_ frequent), and the reduced locality can also hurt
* performance.
*
* To achieve near-optimal performance for all kinds of workloads, we:
*
* 1. Aggressively increase the size of the TLB when the use rate of the
* TLB being flushed is high, since it is likely that in the near future this
* memory-hungry process will execute again, and its memory hungriness will
* probably be similar.
*
* 2. Slowly reduce the size of the TLB as the use rate declines over a
* reasonably large time window. The rationale is that if in such a time window
* we have not observed a high TLB use rate, it is likely that we won't observe
* it in the near future. In that case, once a time window expires we downsize
* the TLB to match the maximum use rate observed in the window.
*
* 3. Try to keep the maximum use rate in a time window in the 30-70% range,
* since in that range performance is likely near-optimal. Recall that the TLB
* is direct mapped, so we want the use rate to be low (or at least not too
* high), since otherwise we are likely to have a significant amount of
* conflict misses.
*/
static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
int64_t now)
{
size_t old_size = tlb_n_entries(fast);
size_t rate;
size_t new_size = old_size;
int64_t window_len_ms = 100;
int64_t window_len_ns = window_len_ms * 1000 * 1000;
bool window_expired = now > desc->window_begin_ns + window_len_ns;
if (desc->n_used_entries > desc->window_max_entries) {
desc->window_max_entries = desc->n_used_entries;
}
rate = desc->window_max_entries * 100 / old_size;
if (rate > 70) {
new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
} else if (rate < 30 && window_expired) {
size_t ceil = pow2ceil(desc->window_max_entries);
size_t expected_rate = desc->window_max_entries * 100 / ceil;
/*
* Avoid undersizing when the max number of entries seen is just below
* a pow2. For instance, if max_entries == 1025, the expected use rate
* would be 1025/2048==50%. However, if max_entries == 1023, we'd get
* 1023/1024==99.9% use rate, so we'd likely end up doubling the size
* later. Thus, make sure that the expected use rate remains below 70%.
* (and since we double the size, that means the lowest rate we'd
* expect to get is 35%, which is still in the 30-70% range where
* we consider that the size is appropriate.)
*/
if (expected_rate > 70) {
ceil *= 2;
}
new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
}
if (new_size == old_size) {
if (window_expired) {
tlb_window_reset(desc, now, desc->n_used_entries);
}
return;
}
g_free(fast->table);
g_free(desc->fulltlb);
tlb_window_reset(desc, now, 0);
/* desc->n_used_entries is cleared by the caller */
fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
fast->table = g_try_new(CPUTLBEntry, new_size);
desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
/*
* If the allocations fail, try smaller sizes. We just freed some
* memory, so going back to half of new_size has a good chance of working.
* Increased memory pressure elsewhere in the system might cause the
* allocations to fail though, so we progressively reduce the allocation
* size, aborting if we cannot even allocate the smallest TLB we support.
*/
while (fast->table == NULL || desc->fulltlb == NULL) {
if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
error_report("%s: %s", __func__, strerror(errno));
abort();
}
new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
g_free(fast->table);
g_free(desc->fulltlb);
fast->table = g_try_new(CPUTLBEntry, new_size);
desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
}
}
static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
{
desc->n_used_entries = 0;
desc->large_page_addr = -1;
desc->large_page_mask = -1;
desc->vindex = 0;
memset(fast->table, -1, sizeof_tlb(fast));
memset(desc->vtable, -1, sizeof(desc->vtable));
}
static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
int64_t now)
{
CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
tlb_mmu_resize_locked(desc, fast, now);
tlb_mmu_flush_locked(desc, fast);
}
static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
{
size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
tlb_window_reset(desc, now, 0);
desc->n_used_entries = 0;
fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
fast->table = g_new(CPUTLBEntry, n_entries);
desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
tlb_mmu_flush_locked(desc, fast);
}
static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
{
env_tlb(env)->d[mmu_idx].n_used_entries++;
}
static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
{
env_tlb(env)->d[mmu_idx].n_used_entries--;
}
void tlb_init(CPUState *cpu)
{
CPUArchState *env = cpu->env_ptr;
int64_t now = get_clock_realtime();
int i;
qemu_spin_init(&env_tlb(env)->c.lock);
/* All tlbs are initialized flushed. */
env_tlb(env)->c.dirty = 0;
for (i = 0; i < NB_MMU_MODES; i++) {
tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
}
}
void tlb_destroy(CPUState *cpu)
{
CPUArchState *env = cpu->env_ptr;
int i;
qemu_spin_destroy(&env_tlb(env)->c.lock);
for (i = 0; i < NB_MMU_MODES; i++) {
CPUTLBDesc *desc = &env_tlb(env)->d[i];
CPUTLBDescFast *fast = &env_tlb(env)->f[i];
g_free(fast->table);
g_free(desc->fulltlb);
}
}
/* flush_all_helper: run fn across all cpus
*
* If the wait flag is set then the src cpu's helper will be queued as
* "safe" work and the loop exited creating a synchronisation point
* where all queued work will be finished before execution starts
* again.
*/
static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
run_on_cpu_data d)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (cpu != src) {
async_run_on_cpu(cpu, fn, d);
}
}
}
void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
{
CPUState *cpu;
size_t full = 0, part = 0, elide = 0;
CPU_FOREACH(cpu) {
CPUArchState *env = cpu->env_ptr;
full += qatomic_read(&env_tlb(env)->c.full_flush_count);
part += qatomic_read(&env_tlb(env)->c.part_flush_count);
elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
}
*pfull = full;
*ppart = part;
*pelide = elide;
}
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
{
CPUArchState *env = cpu->env_ptr;
uint16_t asked = data.host_int;
uint16_t all_dirty, work, to_clean;
int64_t now = get_clock_realtime();
assert_cpu_is_self(cpu);
tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
qemu_spin_lock(&env_tlb(env)->c.lock);
all_dirty = env_tlb(env)->c.dirty;
to_clean = asked & all_dirty;
all_dirty &= ~to_clean;
env_tlb(env)->c.dirty = all_dirty;
for (work = to_clean; work != 0; work &= work - 1) {
int mmu_idx = ctz32(work);
tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
}
qemu_spin_unlock(&env_tlb(env)->c.lock);
tcg_flush_jmp_cache(cpu);
if (to_clean == ALL_MMUIDX_BITS) {
qatomic_set(&env_tlb(env)->c.full_flush_count,
env_tlb(env)->c.full_flush_count + 1);
} else {
qatomic_set(&env_tlb(env)->c.part_flush_count,
env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
if (to_clean != asked) {
qatomic_set(&env_tlb(env)->c.elide_flush_count,
env_tlb(env)->c.elide_flush_count +
ctpop16(asked & ~to_clean));
}
}
}
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
{
tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
if (cpu->created && !qemu_cpu_is_self(cpu)) {
async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
RUN_ON_CPU_HOST_INT(idxmap));
} else {
tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
}
}
void tlb_flush(CPUState *cpu)
{
tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
}
void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
{
const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
}
void tlb_flush_all_cpus(CPUState *src_cpu)
{
tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
}
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
{
const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
}
void tlb_flush_all_cpus_synced(CPUState *src_cpu)
{
tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
}
static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
target_ulong page, target_ulong mask)
{
page &= mask;
mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
return (page == (tlb_entry->addr_read & mask) ||
page == (tlb_addr_write(tlb_entry) & mask) ||
page == (tlb_entry->addr_code & mask));
}
static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
target_ulong page)
{
return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
}
/**
* tlb_entry_is_empty - return true if the entry is not in use
* @te: pointer to CPUTLBEntry
*/
static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
{
return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
}
/* Called with tlb_c.lock held */
static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
target_ulong page,
target_ulong mask)
{
if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
memset(tlb_entry, -1, sizeof(*tlb_entry));
return true;
}
return false;
}
static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
target_ulong page)
{
return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
}
/* Called with tlb_c.lock held */
static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
target_ulong page,
target_ulong mask)
{
CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
int k;
assert_cpu_is_self(env_cpu(env));
for (k = 0; k < CPU_VTLB_SIZE; k++) {
if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
tlb_n_used_entries_dec(env, mmu_idx);
}
}
}
static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
target_ulong page)
{
tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
}
static void tlb_flush_page_locked(CPUArchState *env, int midx,
target_ulong page)
{
target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
/* Check if we need to flush due to large pages. */
if ((page & lp_mask) == lp_addr) {
tlb_debug("forcing full flush midx %d ("
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
midx, lp_addr, lp_mask);
tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
} else {
if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
tlb_n_used_entries_dec(env, midx);
}
tlb_flush_vtlb_page_locked(env, midx, page);
}
}
/**
* tlb_flush_page_by_mmuidx_async_0:
* @cpu: cpu on which to flush
* @addr: page of virtual address to flush
* @idxmap: set of mmu_idx to flush
*
* Helper for tlb_flush_page_by_mmuidx and friends, flush one page
* at @addr from the tlbs indicated by @idxmap from @cpu.
*/
static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
target_ulong addr,
uint16_t idxmap)
{
CPUArchState *env = cpu->env_ptr;
int mmu_idx;
assert_cpu_is_self(cpu);
tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
qemu_spin_lock(&env_tlb(env)->c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
if ((idxmap >> mmu_idx) & 1) {
tlb_flush_page_locked(env, mmu_idx, addr);
}
}
qemu_spin_unlock(&env_tlb(env)->c.lock);
/*
* Discard jump cache entries for any tb which might potentially
* overlap the flushed page, which includes the previous.
*/
tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
tb_jmp_cache_clear_page(cpu, addr);
}
/**
* tlb_flush_page_by_mmuidx_async_1:
* @cpu: cpu on which to flush
* @data: encoded addr + idxmap
*
* Helper for tlb_flush_page_by_mmuidx and friends, called through
* async_run_on_cpu. The idxmap parameter is encoded in the page
* offset of the target_ptr field. This limits the set of mmu_idx
* that can be passed via this method.
*/
static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
run_on_cpu_data data)
{
target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
}
typedef struct {
target_ulong addr;
uint16_t idxmap;
} TLBFlushPageByMMUIdxData;
/**
* tlb_flush_page_by_mmuidx_async_2:
* @cpu: cpu on which to flush
* @data: allocated addr + idxmap
*
* Helper for tlb_flush_page_by_mmuidx and friends, called through
* async_run_on_cpu. The addr+idxmap parameters are stored in a
* TLBFlushPageByMMUIdxData structure that has been allocated
* specifically for this helper. Free the structure when done.
*/
static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
run_on_cpu_data data)
{
TLBFlushPageByMMUIdxData *d = data.host_ptr;
tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
g_free(d);
}
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
{
tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
/* This should already be page aligned */
addr &= TARGET_PAGE_MASK;
if (qemu_cpu_is_self(cpu)) {
tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
} else if (idxmap < TARGET_PAGE_SIZE) {
/*
* Most targets have only a few mmu_idx. In the case where
* we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
* allocating memory for this operation.
*/
async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
} else {
TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
/* Otherwise allocate a structure, freed by the worker. */
d->addr = addr;
d->idxmap = idxmap;
async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
void tlb_flush_page(CPUState *cpu, target_ulong addr)
{
tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
}
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
uint16_t idxmap)
{
tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
/* This should already be page aligned */
addr &= TARGET_PAGE_MASK;
/*
* Allocate memory to hold addr+idxmap only when needed.
* See tlb_flush_page_by_mmuidx for details.
*/
if (idxmap < TARGET_PAGE_SIZE) {
flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
} else {
CPUState *dst_cpu;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
TLBFlushPageByMMUIdxData *d
= g_new(TLBFlushPageByMMUIdxData, 1);
d->addr = addr;
d->idxmap = idxmap;
async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
}
tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
}
void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
{
tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
}
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
target_ulong addr,
uint16_t idxmap)
{
tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
/* This should already be page aligned */
addr &= TARGET_PAGE_MASK;
/*
* Allocate memory to hold addr+idxmap only when needed.
* See tlb_flush_page_by_mmuidx for details.
*/
if (idxmap < TARGET_PAGE_SIZE) {
flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
RUN_ON_CPU_TARGET_PTR(addr | idxmap));
} else {
CPUState *dst_cpu;
TLBFlushPageByMMUIdxData *d;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
d = g_new(TLBFlushPageByMMUIdxData, 1);
d->addr = addr;
d->idxmap = idxmap;
async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
d = g_new(TLBFlushPageByMMUIdxData, 1);
d->addr = addr;
d->idxmap = idxmap;
async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
RUN_ON_CPU_HOST_PTR(d));
}
}
void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
{
tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
}
static void tlb_flush_range_locked(CPUArchState *env, int midx,
target_ulong addr, target_ulong len,
unsigned bits)
{
CPUTLBDesc *d = &env_tlb(env)->d[midx];
CPUTLBDescFast *f = &env_tlb(env)->f[midx];
target_ulong mask = MAKE_64BIT_MASK(0, bits);
/*
* If @bits is smaller than the tlb size, there may be multiple entries
* within the TLB; otherwise all addresses that match under @mask hit
* the same TLB entry.
* TODO: Perhaps allow bits to be a few bits less than the size.
* For now, just flush the entire TLB.
*
* If @len is larger than the tlb size, then it will take longer to
* test all of the entries in the TLB than it will to flush it all.
*/
if (mask < f->mask || len > f->mask) {
tlb_debug("forcing full flush midx %d ("
TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
midx, addr, mask, len);
tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
return;
}
/*
* Check if we need to flush due to large pages.
* Because large_page_mask contains all 1's from the msb,
* we only need to test the end of the range.
*/
if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
tlb_debug("forcing full flush midx %d ("
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
midx, d->large_page_addr, d->large_page_mask);
tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
return;
}
for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
target_ulong page = addr + i;
CPUTLBEntry *entry = tlb_entry(env, midx, page);
if (tlb_flush_entry_mask_locked(entry, page, mask)) {
tlb_n_used_entries_dec(env, midx);
}
tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
}
}
typedef struct {
target_ulong addr;
target_ulong len;
uint16_t idxmap;
uint16_t bits;
} TLBFlushRangeData;
static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
TLBFlushRangeData d)
{
CPUArchState *env = cpu->env_ptr;
int mmu_idx;
assert_cpu_is_self(cpu);
tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
d.addr, d.bits, d.len, d.idxmap);
qemu_spin_lock(&env_tlb(env)->c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
if ((d.idxmap >> mmu_idx) & 1) {
tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
}
}
qemu_spin_unlock(&env_tlb(env)->c.lock);
/*
* If the length is larger than the jump cache size, then it will take
* longer to clear each entry individually than it will to clear it all.
*/
if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
tcg_flush_jmp_cache(cpu);
return;
}
/*
* Discard jump cache entries for any tb which might potentially
* overlap the flushed pages, which includes the previous.
*/
d.addr -= TARGET_PAGE_SIZE;
for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
tb_jmp_cache_clear_page(cpu, d.addr);
d.addr += TARGET_PAGE_SIZE;
}
}
static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
run_on_cpu_data data)
{
TLBFlushRangeData *d = data.host_ptr;
tlb_flush_range_by_mmuidx_async_0(cpu, *d);
g_free(d);
}
void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
target_ulong len, uint16_t idxmap,
unsigned bits)
{
TLBFlushRangeData d;
/*
* If all bits are significant, and len is small,
* this devolves to tlb_flush_page.
*/
if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
return;
}
/* If no page bits are significant, this devolves to tlb_flush. */
if (bits < TARGET_PAGE_BITS) {
tlb_flush_by_mmuidx(cpu, idxmap);
return;
}
/* This should already be page aligned */
d.addr = addr & TARGET_PAGE_MASK;
d.len = len;
d.idxmap = idxmap;
d.bits = bits;
if (qemu_cpu_is_self(cpu)) {
tlb_flush_range_by_mmuidx_async_0(cpu, d);
} else {
/* Otherwise allocate a structure, freed by the worker. */
TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
}
void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
uint16_t idxmap, unsigned bits)
{
tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
}
void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
target_ulong addr, target_ulong len,
uint16_t idxmap, unsigned bits)
{
TLBFlushRangeData d;
CPUState *dst_cpu;
/*
* If all bits are significant, and len is small,
* this devolves to tlb_flush_page.
*/
if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
return;
}
/* If no page bits are significant, this devolves to tlb_flush. */
if (bits < TARGET_PAGE_BITS) {
tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
return;
}
/* This should already be page aligned */
d.addr = addr & TARGET_PAGE_MASK;
d.len = len;
d.idxmap = idxmap;
d.bits = bits;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
async_run_on_cpu(dst_cpu,
tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
}
tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
}
void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
target_ulong addr,
uint16_t idxmap, unsigned bits)
{
tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
idxmap, bits);
}
void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
target_ulong addr,
target_ulong len,
uint16_t idxmap,
unsigned bits)
{
TLBFlushRangeData d, *p;
CPUState *dst_cpu;
/*
* If all bits are significant, and len is small,
* this devolves to tlb_flush_page.
*/
if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
return;
}
/* If no page bits are significant, this devolves to tlb_flush. */
if (bits < TARGET_PAGE_BITS) {
tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
return;
}
/* This should already be page aligned */
d.addr = addr & TARGET_PAGE_MASK;
d.len = len;
d.idxmap = idxmap;
d.bits = bits;
/* Allocate a separate data block for each destination cpu. */
CPU_FOREACH(dst_cpu) {
if (dst_cpu != src_cpu) {
p = g_memdup(&d, sizeof(d));
async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
}
p = g_memdup(&d, sizeof(d));
async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
RUN_ON_CPU_HOST_PTR(p));
}
void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
target_ulong addr,
uint16_t idxmap,
unsigned bits)
{
tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
idxmap, bits);
}
/* update the TLBs so that writes to code in the virtual page 'addr'
can be detected */
void tlb_protect_code(ram_addr_t ram_addr)
{
cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
TARGET_PAGE_SIZE,
DIRTY_MEMORY_CODE);
}
/* update the TLB so that writes in physical page 'phys_addr' are no longer
tested for self modifying code */
void tlb_unprotect_code(ram_addr_t ram_addr)
{
cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
}
/*
* Dirty write flag handling
*
* When the TCG code writes to a location it looks up the address in
* the TLB and uses that data to compute the final address. If any of
* the lower bits of the address are set then the slow path is forced.
* There are a number of reasons to do this but for normal RAM the
* most usual is detecting writes to code regions which may invalidate
* generated code.
*
* Other vCPUs might be reading their TLBs during guest execution, so we update
* te->addr_write with qatomic_set. We don't need to worry about this for
* oversized guests as MTTCG is disabled for them.
*
* Called with tlb_c.lock held.
*/
static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
uintptr_t start, uintptr_t length)
{
uintptr_t addr = tlb_entry->addr_write;
if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
addr &= TARGET_PAGE_MASK;
addr += tlb_entry->addend;
if ((addr - start) < length) {
#if TCG_OVERSIZED_GUEST
tlb_entry->addr_write |= TLB_NOTDIRTY;
#else
qatomic_set(&tlb_entry->addr_write,
tlb_entry->addr_write | TLB_NOTDIRTY);
#endif
}
}
}
/*
* Called with tlb_c.lock held.
* Called only from the vCPU context, i.e. the TLB's owner thread.
*/
static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
{
*d = *s;
}
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
* the target vCPU).
* We must take tlb_c.lock to avoid racing with another vCPU update. The only
* thing actually updated is the target TLB entry ->addr_write flags.
*/
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
{
CPUArchState *env;
int mmu_idx;
env = cpu->env_ptr;
qemu_spin_lock(&env_tlb(env)->c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
unsigned int i;
unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
for (i = 0; i < n; i++) {
tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
start1, length);
}
for (i = 0; i < CPU_VTLB_SIZE; i++) {
tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
start1, length);
}
}
qemu_spin_unlock(&env_tlb(env)->c.lock);
}
/* Called with tlb_c.lock held */
static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
target_ulong vaddr)
{
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
tlb_entry->addr_write = vaddr;
}
}
/* update the TLB corresponding to virtual page vaddr
so that it is no longer dirty */
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
{
CPUArchState *env = cpu->env_ptr;
int mmu_idx;
assert_cpu_is_self(cpu);
vaddr &= TARGET_PAGE_MASK;
qemu_spin_lock(&env_tlb(env)->c.lock);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
}
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
int k;
for (k = 0; k < CPU_VTLB_SIZE; k++) {
tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
}
}
qemu_spin_unlock(&env_tlb(env)->c.lock);
}
/* Our TLB does not support large pages, so remember the area covered by
large pages and trigger a full TLB flush if these are invalidated. */
static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
target_ulong vaddr, target_ulong size)
{
target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
target_ulong lp_mask = ~(size - 1);
if (lp_addr == (target_ulong)-1) {
/* No previous large page. */
lp_addr = vaddr;
} else {
/* Extend the existing region to include the new page.
This is a compromise between unnecessary flushes and
the cost of maintaining a full variable size TLB. */
lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
while (((lp_addr ^ vaddr) & lp_mask) != 0) {
lp_mask <<= 1;
}
}
env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
}
/*
* Add a new TLB entry. At most one entry for a given virtual address
* is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
* supplied size is only used by tlb_flush_page.
*
* Called from TCG-generated code, which is under an RCU read-side
* critical section.
*/
void tlb_set_page_full(CPUState *cpu, int mmu_idx,
target_ulong vaddr, CPUTLBEntryFull *full)
{
CPUArchState *env = cpu->env_ptr;
CPUTLB *tlb = env_tlb(env);
CPUTLBDesc *desc = &tlb->d[mmu_idx];
MemoryRegionSection *section;
unsigned int index;
target_ulong address;
target_ulong write_address;
uintptr_t addend;
CPUTLBEntry *te, tn;
hwaddr iotlb, xlat, sz, paddr_page;
target_ulong vaddr_page;
int asidx, wp_flags, prot;
bool is_ram, is_romd;
assert_cpu_is_self(cpu);
if (full->lg_page_size <= TARGET_PAGE_BITS) {
sz = TARGET_PAGE_SIZE;
} else {
sz = (hwaddr)1 << full->lg_page_size;
tlb_add_large_page(env, mmu_idx, vaddr, sz);
}
vaddr_page = vaddr & TARGET_PAGE_MASK;
paddr_page = full->phys_addr & TARGET_PAGE_MASK;
prot = full->prot;
asidx = cpu_asidx_from_attrs(cpu, full->attrs);
section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
&xlat, &sz, full->attrs, &prot);
assert(sz >= TARGET_PAGE_SIZE);
tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
" prot=%x idx=%d\n",
vaddr, full->phys_addr, prot, mmu_idx);
address = vaddr_page;
if (full->lg_page_size < TARGET_PAGE_BITS) {
/* Repeat the MMU check and TLB fill on every access. */
address |= TLB_INVALID_MASK;
}
if (full->attrs.byte_swap) {
address |= TLB_BSWAP;
}
is_ram = memory_region_is_ram(section->mr);
is_romd = memory_region_is_romd(section->mr);
if (is_ram || is_romd) {
/* RAM and ROMD both have associated host memory. */
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
} else {
/* I/O does not; force the host address to NULL. */
addend = 0;
}
write_address = address;
if (is_ram) {
iotlb = memory_region_get_ram_addr(section->mr) + xlat;
/*
* Computing is_clean is expensive; avoid all that unless
* the page is actually writable.
*/
if (prot & PAGE_WRITE) {
if (section->readonly) {
write_address |= TLB_DISCARD_WRITE;
} else if (cpu_physical_memory_is_clean(iotlb)) {
write_address |= TLB_NOTDIRTY;
}
}
} else {
/* I/O or ROMD */
iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
/*
* Writes to romd devices must go through MMIO to enable write.
* Reads to romd devices go through the ram_ptr found above,
* but of course reads to I/O must go through MMIO.
*/
write_address |= TLB_MMIO;
if (!is_romd) {
address = write_address;
}
}
wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
TARGET_PAGE_SIZE);
index = tlb_index(env, mmu_idx, vaddr_page);
te = tlb_entry(env, mmu_idx, vaddr_page);
/*
* Hold the TLB lock for the rest of the function. We could acquire/release
* the lock several times in the function, but it is faster to amortize the
* acquisition cost by acquiring it just once. Note that this leads to
* a longer critical section, but this is not a concern since the TLB lock
* is unlikely to be contended.
*/
qemu_spin_lock(&tlb->c.lock);
/* Note that the tlb is no longer clean. */
tlb->c.dirty |= 1 << mmu_idx;
/* Make sure there's no cached translation for the new page. */
tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
/*
* Only evict the old entry to the victim tlb if it's for a
* different page; otherwise just overwrite the stale data.
*/
if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
CPUTLBEntry *tv = &desc->vtable[vidx];
/* Evict the old entry into the victim tlb. */
copy_tlb_helper_locked(tv, te);
desc->vfulltlb[vidx] = desc->fulltlb[index];
tlb_n_used_entries_dec(env, mmu_idx);
}
/* refill the tlb */
/*
* At this point iotlb contains a physical section number in the lower
* TARGET_PAGE_BITS, and either
* + the ram_addr_t of the page base of the target RAM (RAM)
* + the offset within section->mr of the page base (I/O, ROMD)
* We subtract the vaddr_page (which is page aligned and thus won't
* disturb the low bits) to give an offset which can be added to the
* (non-page-aligned) vaddr of the eventual memory access to get
* the MemoryRegion offset for the access. Note that the vaddr we
* subtract here is that of the page base, and not the same as the
* vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
*/
desc->fulltlb[index] = *full;
desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
desc->fulltlb[index].phys_addr = paddr_page;
desc->fulltlb[index].prot = prot;
/* Now calculate the new entry */
tn.addend = addend - vaddr_page;
if (prot & PAGE_READ) {
tn.addr_read = address;
if (wp_flags & BP_MEM_READ) {
tn.addr_read |= TLB_WATCHPOINT;
}
} else {
tn.addr_read = -1;
}
if (prot & PAGE_EXEC) {
tn.addr_code = address;
} else {
tn.addr_code = -1;
}
tn.addr_write = -1;
if (prot & PAGE_WRITE) {
tn.addr_write = write_address;
if (prot & PAGE_WRITE_INV) {
tn.addr_write |= TLB_INVALID_MASK;
}
if (wp_flags & BP_MEM_WRITE) {
tn.addr_write |= TLB_WATCHPOINT;
}
}
copy_tlb_helper_locked(te, &tn);
tlb_n_used_entries_inc(env, mmu_idx);
qemu_spin_unlock(&tlb->c.lock);
}
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
hwaddr paddr, MemTxAttrs attrs, int prot,
int mmu_idx, target_ulong size)
{
CPUTLBEntryFull full = {
.phys_addr = paddr,
.attrs = attrs,
.prot = prot,
.lg_page_size = ctz64(size)
};
assert(is_power_of_2(size));
tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
}
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
hwaddr paddr, int prot,
int mmu_idx, target_ulong size)
{
tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
prot, mmu_idx, size);
}
/*
* Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
* caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
* be discarded and looked up again (e.g. via tlb_entry()).
*/
static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
bool ok;
/*
* This is not a probe, so only valid return is success; failure
* should result in exception + longjmp to the cpu loop.
*/
ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
access_type, mmu_idx, false, retaddr);
assert(ok);
}
static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
mmu_idx, retaddr);
}
static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response,
uintptr_t retaddr)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
if (!cpu->ignore_memory_transaction_failures &&
cc->tcg_ops->do_transaction_failed) {
cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
access_type, mmu_idx, attrs,
response, retaddr);
}
}
static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
int mmu_idx, target_ulong addr, uintptr_t retaddr,
MMUAccessType access_type, MemOp op)
{
CPUState *cpu = env_cpu(env);
hwaddr mr_offset;
MemoryRegionSection *section;
MemoryRegion *mr;
uint64_t val;
bool locked = false;
MemTxResult r;
section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
mr = section->mr;
mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
cpu->mem_io_pc = retaddr;
if (!cpu->can_do_io) {
cpu_io_recompile(cpu, retaddr);
}
if (!qemu_mutex_iothread_locked()) {
qemu_mutex_lock_iothread();
locked = true;
}
r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
if (r != MEMTX_OK) {
hwaddr physaddr = mr_offset +
section->offset_within_address_space -
section->offset_within_region;
cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
mmu_idx, full->attrs, r, retaddr);
}
if (locked) {
qemu_mutex_unlock_iothread();
}
return val;
}
/*
* Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
* This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
* because of the side effect of io_writex changing memory layout.
*/
static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
hwaddr mr_offset)
{
#ifdef CONFIG_PLUGIN
SavedIOTLB *saved = &cs->saved_iotlb;
saved->section = section;
saved->mr_offset = mr_offset;
#endif
}
static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
int mmu_idx, uint64_t val, target_ulong addr,
uintptr_t retaddr, MemOp op)
{
CPUState *cpu = env_cpu(env);
hwaddr mr_offset;
MemoryRegionSection *section;
MemoryRegion *mr;
bool locked = false;
MemTxResult r;
section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
mr = section->mr;
mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
if (!cpu->can_do_io) {
cpu_io_recompile(cpu, retaddr);
}
cpu->mem_io_pc = retaddr;
/*
* The memory_region_dispatch may trigger a flush/resize
* so for plugins we save the iotlb_data just in case.
*/
save_iotlb_data(cpu, section, mr_offset);
if (!qemu_mutex_iothread_locked()) {
qemu_mutex_lock_iothread();
locked = true;
}
r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
if (r != MEMTX_OK) {
hwaddr physaddr = mr_offset +
section->offset_within_address_space -
section->offset_within_region;
cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
MMU_DATA_STORE, mmu_idx, full->attrs, r,
retaddr);
}
if (locked) {
qemu_mutex_unlock_iothread();
}
}
static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
{
#if TCG_OVERSIZED_GUEST
return *(target_ulong *)((uintptr_t)entry + ofs);
#else
/* ofs might correspond to .addr_write, so use qatomic_read */
return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
#endif
}
/* Return true if ADDR is present in the victim tlb, and has been copied
back to the main tlb. */
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
size_t elt_ofs, target_ulong page)
{
size_t vidx;
assert_cpu_is_self(env_cpu(env));
for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
target_ulong cmp;
/* elt_ofs might correspond to .addr_write, so use qatomic_read */
#if TCG_OVERSIZED_GUEST
cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
#else
cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
#endif
if (cmp == page) {
/* Found entry in victim tlb, swap tlb and iotlb. */
CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
qemu_spin_lock(&env_tlb(env)->c.lock);
copy_tlb_helper_locked(&tmptlb, tlb);
copy_tlb_helper_locked(tlb, vtlb);
copy_tlb_helper_locked(vtlb, &tmptlb);
qemu_spin_unlock(&env_tlb(env)->c.lock);
CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
CPUTLBEntryFull tmpf;
tmpf = *f1; *f1 = *f2; *f2 = tmpf;
return true;
}
}
return false;
}
/* Macro to call the above, with local variables from the use context. */
#define VICTIM_TLB_HIT(TY, ADDR) \
victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
(ADDR) & TARGET_PAGE_MASK)
static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
CPUTLBEntryFull *full, uintptr_t retaddr)
{
ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
struct page_collection *pages
= page_collection_lock(ram_addr, ram_addr + size);
tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
page_collection_unlock(pages);
}
/*
* Set both VGA and migration bits for simplicity and to remove
* the notdirty callback faster.
*/
cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
/* We remove the notdirty callback only if the code has been flushed. */
if (!cpu_physical_memory_is_clean(ram_addr)) {
trace_memory_notdirty_set_dirty(mem_vaddr);
tlb_set_dirty(cpu, mem_vaddr);
}
}
static int probe_access_internal(CPUArchState *env, target_ulong addr,
int fault_size, MMUAccessType access_type,
int mmu_idx, bool nonfault,
void **phost, CPUTLBEntryFull **pfull,
uintptr_t retaddr)
{
uintptr_t index = tlb_index(env, mmu_idx, addr);
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
target_ulong tlb_addr, page_addr;
size_t elt_ofs;
int flags;
switch (access_type) {
case MMU_DATA_LOAD:
elt_ofs = offsetof(CPUTLBEntry, addr_read);
break;
case MMU_DATA_STORE:
elt_ofs = offsetof(CPUTLBEntry, addr_write);
break;
case MMU_INST_FETCH:
elt_ofs = offsetof(CPUTLBEntry, addr_code);
break;
default:
g_assert_not_reached();
}
tlb_addr = tlb_read_ofs(entry, elt_ofs);
flags = TLB_FLAGS_MASK;
page_addr = addr & TARGET_PAGE_MASK;
if (!tlb_hit_page(tlb_addr, page_addr)) {
if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
CPUState *cs = env_cpu(env);
if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
mmu_idx, nonfault, retaddr)) {
/* Non-faulting page table read failed. */
*phost = NULL;
*pfull = NULL;
return TLB_INVALID_MASK;
}
/* TLB resize via tlb_fill may have moved the entry. */
index = tlb_index(env, mmu_idx, addr);
entry = tlb_entry(env, mmu_idx, addr);
/*
* With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
* to force the next access through tlb_fill. We've just
* called tlb_fill, so we know that this entry *is* valid.
*/
flags &= ~TLB_INVALID_MASK;
}
tlb_addr = tlb_read_ofs(entry, elt_ofs);
}
flags &= tlb_addr;
*pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
/* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
*phost = NULL;
return TLB_MMIO;
}
/* Everything else is RAM. */
*phost = (void *)((uintptr_t)addr + entry->addend);
return flags;
}
int probe_access_full(CPUArchState *env, target_ulong addr,
MMUAccessType access_type, int mmu_idx,
bool nonfault, void **phost, CPUTLBEntryFull **pfull,
uintptr_t retaddr)
{
int flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
nonfault, phost, pfull, retaddr);
/* Handle clean RAM pages. */
if (unlikely(flags & TLB_NOTDIRTY)) {
notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
flags &= ~TLB_NOTDIRTY;
}
return flags;
}
int probe_access_flags(CPUArchState *env, target_ulong addr,
MMUAccessType access_type, int mmu_idx,
bool nonfault, void **phost, uintptr_t retaddr)
{
CPUTLBEntryFull *full;
return probe_access_full(env, addr, access_type, mmu_idx,
nonfault, phost, &full, retaddr);
}
void *probe_access(CPUArchState *env, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
CPUTLBEntryFull *full;
void *host;
int flags;
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
false, &host, &full, retaddr);
/* Per the interface, size == 0 merely faults the access. */
if (size == 0) {
return NULL;
}
if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
/* Handle watchpoints. */
if (flags & TLB_WATCHPOINT) {
int wp_access = (access_type == MMU_DATA_STORE
? BP_MEM_WRITE : BP_MEM_READ);
cpu_check_watchpoint(env_cpu(env), addr, size,
full->attrs, wp_access, retaddr);
}
/* Handle clean RAM pages. */
if (flags & TLB_NOTDIRTY) {
notdirty_write(env_cpu(env), addr, 1, full, retaddr);
}
}
return host;
}
void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
MMUAccessType access_type, int mmu_idx)
{
CPUTLBEntryFull *full;
void *host;
int flags;
flags = probe_access_internal(env, addr, 0, access_type,
mmu_idx, true, &host, &full, 0);
/* No combination of flags are expected by the caller. */
return flags ? NULL : host;
}
/*
* Return a ram_addr_t for the virtual address for execution.
*
* Return -1 if we can't translate and execute from an entire page
* of RAM. This will force us to execute by loading and translating
* one insn at a time, without caching.
*
* NOTE: This function will trigger an exception if the page is
* not executable.
*/
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
void **hostp)
{
CPUTLBEntryFull *full;
void *p;
(void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
cpu_mmu_index(env, true), false, &p, &full, 0);
if (p == NULL) {
return -1;
}
if (hostp) {
*hostp = p;
}
return qemu_ram_addr_from_host_nofail(p);
}
#ifdef CONFIG_PLUGIN
/*
* Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
* This should be a hot path as we will have just looked this path up
* in the softmmu lookup code (or helper). We don't handle re-fills or
* checking the victim table. This is purely informational.
*
* This almost never fails as the memory access being instrumented
* should have just filled the TLB. The one corner case is io_writex
* which can cause TLB flushes and potential resizing of the TLBs
* losing the information we need. In those cases we need to recover
* data from a copy of the CPUTLBEntryFull. As long as this always occurs
* from the same thread (which a mem callback will be) this is safe.
*/
bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
bool is_store, struct qemu_plugin_hwaddr *data)
{
CPUArchState *env = cpu->env_ptr;
CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
uintptr_t index = tlb_index(env, mmu_idx, addr);
target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
if (likely(tlb_hit(tlb_addr, addr))) {
/* We must have an iotlb entry for MMIO */
if (tlb_addr & TLB_MMIO) {
CPUTLBEntryFull *full;
full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
data->is_io = true;
data->v.io.section =
iotlb_to_section(cpu, full->xlat_section, full->attrs);
data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
} else {
data->is_io = false;
data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
}
return true;
} else {
SavedIOTLB *saved = &cpu->saved_iotlb;
data->is_io = true;
data->v.io.section = saved->section;
data->v.io.offset = saved->mr_offset;
return true;
}
}
#endif
/*
* Probe for an atomic operation. Do not allow unaligned operations,
* or io operations to proceed. Return the host address.
*
* @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
*/
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
MemOpIdx oi, int size, int prot,
uintptr_t retaddr)
{
uintptr_t mmu_idx = get_mmuidx(oi);
MemOp mop = get_memop(oi);
int a_bits = get_alignment_bits(mop);
uintptr_t index;
CPUTLBEntry *tlbe;
target_ulong tlb_addr;
void *hostaddr;
tcg_debug_assert(mmu_idx < NB_MMU_MODES);
/* Adjust the given return address. */
retaddr -= GETPC_ADJ;
/* Enforce guest required alignment. */
if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
/* ??? Maybe indicate atomic op to cpu_unaligned_access */
cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* Enforce qemu required alignment. */
if (unlikely(addr & (size - 1))) {
/* We get here if guest alignment was not requested,
or was not enforced by cpu_unaligned_access above.
We might widen the access and emulate, but for now
mark an exception and exit the cpu loop. */
goto stop_the_world;
}
index = tlb_index(env, mmu_idx, addr);
tlbe = tlb_entry(env, mmu_idx, addr);
/* Check TLB entry and enforce page permissions. */
if (prot & PAGE_WRITE) {
tlb_addr = tlb_addr_write(tlbe);
if (!tlb_hit(tlb_addr, addr)) {
if (!VICTIM_TLB_HIT(addr_write, addr)) {
tlb_fill(env_cpu(env), addr, size,
MMU_DATA_STORE, mmu_idx, retaddr);
index = tlb_index(env, mmu_idx, addr);
tlbe = tlb_entry(env, mmu_idx, addr);
}
tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
}
/* Let the guest notice RMW on a write-only page. */
if ((prot & PAGE_READ) &&
unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
tlb_fill(env_cpu(env), addr, size,
MMU_DATA_LOAD, mmu_idx, retaddr);
/*
* Since we don't support reads and writes to different addresses,
* and we do have the proper page loaded for write, this shouldn't
* ever return. But just in case, handle via stop-the-world.
*/
goto stop_the_world;
}
} else /* if (prot & PAGE_READ) */ {
tlb_addr = tlbe->addr_read;
if (!tlb_hit(tlb_addr, addr)) {
if (!VICTIM_TLB_HIT(addr_write, addr)) {
tlb_fill(env_cpu(env), addr, size,
MMU_DATA_LOAD, mmu_idx, retaddr);
index = tlb_index(env, mmu_idx, addr);
tlbe = tlb_entry(env, mmu_idx, addr);
}
tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
}
}
/* Notice an IO access or a needs-MMU-lookup access */
if (unlikely(tlb_addr & TLB_MMIO)) {
/* There's really nothing that can be done to
support this apart from stop-the-world. */
goto stop_the_world;
}
hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
notdirty_write(env_cpu(env), addr, size,
&env_tlb(env)->d[mmu_idx].fulltlb[index], retaddr);
}
return hostaddr;
stop_the_world:
cpu_loop_exit_atomic(env_cpu(env), retaddr);
}
/*
* Verify that we have passed the correct MemOp to the correct function.
*
* In the case of the helper_*_mmu functions, we will have done this by
* using the MemOp to look up the helper during code generation.
*
* In the case of the cpu_*_mmu functions, this is up to the caller.
* We could present one function to target code, and dispatch based on
* the MemOp, but so far we have worked hard to avoid an indirect function
* call along the memory path.
*/
static void validate_memop(MemOpIdx oi, MemOp expected)
{
#ifdef CONFIG_DEBUG_TCG
MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
assert(have == expected);
#endif
}
/*
* Load Helpers
*
* We support two different access types. SOFTMMU_CODE_ACCESS is
* specifically for reading instructions from system memory. It is
* called by the translation loop and in some helpers where the code
* is disassembled. It shouldn't be called directly by guest code.
*/
typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr);
static inline uint64_t QEMU_ALWAYS_INLINE
load_memop(const void *haddr, MemOp op)
{
switch (op) {
case MO_UB:
return ldub_p(haddr);
case MO_BEUW:
return lduw_be_p(haddr);
case MO_LEUW:
return lduw_le_p(haddr);
case MO_BEUL:
return (uint32_t)ldl_be_p(haddr);
case MO_LEUL:
return (uint32_t)ldl_le_p(haddr);
case MO_BEUQ:
return ldq_be_p(haddr);
case MO_LEUQ:
return ldq_le_p(haddr);
default:
qemu_build_not_reached();
}
}
static inline uint64_t QEMU_ALWAYS_INLINE
load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
uintptr_t retaddr, MemOp op, bool code_read,
FullLoadHelper *full_load)
{
const size_t tlb_off = code_read ?
offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
const MMUAccessType access_type =
code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
const unsigned a_bits = get_alignment_bits(get_memop(oi));
const size_t size = memop_size(op);
uintptr_t mmu_idx = get_mmuidx(oi);
uintptr_t index;
CPUTLBEntry *entry;
target_ulong tlb_addr;
void *haddr;
uint64_t res;
tcg_debug_assert(mmu_idx < NB_MMU_MODES);
/* Handle CPU specific unaligned behaviour */
if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(env_cpu(env), addr, access_type,
mmu_idx, retaddr);
}
index = tlb_index(env, mmu_idx, addr);
entry = tlb_entry(env, mmu_idx, addr);
tlb_addr = code_read ? entry->addr_code : entry->addr_read;
/* If the TLB entry is for a different page, reload and try again. */
if (!tlb_hit(tlb_addr, addr)) {
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
addr & TARGET_PAGE_MASK)) {
tlb_fill(env_cpu(env), addr, size,
access_type, mmu_idx, retaddr);
index = tlb_index(env, mmu_idx, addr);
entry = tlb_entry(env, mmu_idx, addr);
}
tlb_addr = code_read ? entry->addr_code : entry->addr_read;
tlb_addr &= ~TLB_INVALID_MASK;
}
/* Handle anything that isn't just a straight memory access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUTLBEntryFull *full;
bool need_swap;
/* For anything that is unaligned, recurse through full_load. */
if ((addr & (size - 1)) != 0) {
goto do_unaligned_access;
}
full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
/* Handle watchpoints. */
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
/* On watchpoint hit, this will longjmp out. */
cpu_check_watchpoint(env_cpu(env), addr, size,
full->attrs, BP_MEM_READ, retaddr);
}
need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
/* Handle I/O access. */
if (likely(tlb_addr & TLB_MMIO)) {
return io_readx(env, full, mmu_idx, addr, retaddr,
access_type, op ^ (need_swap * MO_BSWAP));
}
haddr = (void *)((uintptr_t)addr + entry->addend);
/*
* Keep these two load_memop separate to ensure that the compiler
* is able to fold the entire function to a single instruction.
* There is a build-time assert inside to remind you of this. ;-)
*/
if (unlikely(need_swap)) {
return load_memop(haddr, op ^ MO_BSWAP);
}
return load_memop(haddr, op);
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (size > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
>= TARGET_PAGE_SIZE)) {
target_ulong addr1, addr2;
uint64_t r1, r2;
unsigned shift;
do_unaligned_access:
addr1 = addr & ~((target_ulong)size - 1);
addr2 = addr1 + size;
r1 = full_load(env, addr1, oi, retaddr);
r2 = full_load(env, addr2, oi, retaddr);
shift = (addr & (size - 1)) * 8;
if (memop_big_endian(op)) {
/* Big-endian combine. */
res = (r1 << shift) | (r2 >> ((size * 8) - shift));
} else {
/* Little-endian combine. */
res = (r1 >> shift) | (r2 << ((size * 8) - shift));
}
return res & MAKE_64BIT_MASK(0, size * 8);
}
haddr = (void *)((uintptr_t)addr + entry->addend);
return load_memop(haddr, op);
}
/*
* For the benefit of TCG generated code, we want to avoid the
* complication of ABI-specific return type promotion and always
* return a value extended to the register size of the host. This is
* tcg_target_long, except in the case of a 32-bit host and 64-bit
* data, and for that we always have uint64_t.
*
* We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
*/
static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_UB);
return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
}
tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return full_ldub_mmu(env, addr, oi, retaddr);
}
static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_LEUW);
return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
full_le_lduw_mmu);
}
tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return full_le_lduw_mmu(env, addr, oi, retaddr);
}
static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_BEUW);
return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
full_be_lduw_mmu);
}
tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return full_be_lduw_mmu(env, addr, oi, retaddr);
}
static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_LEUL);
return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
full_le_ldul_mmu);
}
tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return full_le_ldul_mmu(env, addr, oi, retaddr);
}
static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_BEUL);
return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
full_be_ldul_mmu);
}
tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return full_be_ldul_mmu(env, addr, oi, retaddr);
}
uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_LEUQ);
return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
helper_le_ldq_mmu);
}
uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_BEUQ);
return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
helper_be_ldq_mmu);
}
/*
* Provide signed versions of the load routines as well. We can of course
* avoid this for 64-bit data, or for 32-bit data on 32-bit host.
*/
tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
}
tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
}
tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
}
tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
}
tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
}
/*
* Load helpers for cpu_ldst.h.
*/
static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t retaddr,
FullLoadHelper *full_load)
{
uint64_t ret;
ret = full_load(env, addr, oi, retaddr);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
{
return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
}
uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
}
uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
}
uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu);
}
uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
}
uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
}
uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
}
/*
* Store Helpers
*/
static inline void QEMU_ALWAYS_INLINE
store_memop(void *haddr, uint64_t val, MemOp op)
{
switch (op) {
case MO_UB:
stb_p(haddr, val);
break;
case MO_BEUW:
stw_be_p(haddr, val);
break;
case MO_LEUW:
stw_le_p(haddr, val);
break;
case MO_BEUL:
stl_be_p(haddr, val);
break;
case MO_LEUL:
stl_le_p(haddr, val);
break;
case MO_BEUQ:
stq_be_p(haddr, val);
break;
case MO_LEUQ:
stq_le_p(haddr, val);
break;
default:
qemu_build_not_reached();
}
}
static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr);
static void __attribute__((noinline))
store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
bool big_endian)
{
const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
uintptr_t index, index2;
CPUTLBEntry *entry, *entry2;
target_ulong page1, page2, tlb_addr, tlb_addr2;
MemOpIdx oi;
size_t size2;
int i;
/*
* Ensure the second page is in the TLB. Note that the first page
* is already guaranteed to be filled, and that the second page
* cannot evict the first. An exception to this rule is PAGE_WRITE_INV
* handling: the first page could have evicted itself.
*/
page1 = addr & TARGET_PAGE_MASK;
page2 = (addr + size) & TARGET_PAGE_MASK;
size2 = (addr + size) & ~TARGET_PAGE_MASK;
index2 = tlb_index(env, mmu_idx, page2);
entry2 = tlb_entry(env, mmu_idx, page2);
tlb_addr2 = tlb_addr_write(entry2);
if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) {
if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
mmu_idx, retaddr);
index2 = tlb_index(env, mmu_idx, page2);
entry2 = tlb_entry(env, mmu_idx, page2);
}
tlb_addr2 = tlb_addr_write(entry2);
}
index = tlb_index(env, mmu_idx, addr);
entry = tlb_entry(env, mmu_idx, addr);
tlb_addr = tlb_addr_write(entry);
/*
* Handle watchpoints. Since this may trap, all checks
* must happen before any store.
*/
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
cpu_check_watchpoint(env_cpu(env), addr, size - size2,
env_tlb(env)->d[mmu_idx].fulltlb[index].attrs,
BP_MEM_WRITE, retaddr);
}
if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
cpu_check_watchpoint(env_cpu(env), page2, size2,
env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs,
BP_MEM_WRITE, retaddr);
}
/*
* XXX: not efficient, but simple.
* This loop must go in the forward direction to avoid issues
* with self-modifying code in Windows 64-bit.
*/
oi = make_memop_idx(MO_UB, mmu_idx);
if (big_endian) {
for (i = 0; i < size; ++i) {
/* Big-endian extract. */
uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
full_stb_mmu(env, addr + i, val8, oi, retaddr);
}
} else {
for (i = 0; i < size; ++i) {
/* Little-endian extract. */
uint8_t val8 = val >> (i * 8);
full_stb_mmu(env, addr + i, val8, oi, retaddr);
}
}
}
//// --- Begin LibAFL code ---
void syx_snapshot_dirty_list_add_hostaddr(void* host_addr);
//// --- End LibAFL code ---
static inline void QEMU_ALWAYS_INLINE
store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr, MemOp op)
{
const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
const unsigned a_bits = get_alignment_bits(get_memop(oi));
const size_t size = memop_size(op);
uintptr_t mmu_idx = get_mmuidx(oi);
uintptr_t index;
CPUTLBEntry *entry;
target_ulong tlb_addr;
void *haddr;
tcg_debug_assert(mmu_idx < NB_MMU_MODES);
/* Handle CPU specific unaligned behaviour */
if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
index = tlb_index(env, mmu_idx, addr);
entry = tlb_entry(env, mmu_idx, addr);
tlb_addr = tlb_addr_write(entry);
/* If the TLB entry is for a different page, reload and try again. */
if (!tlb_hit(tlb_addr, addr)) {
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
addr & TARGET_PAGE_MASK)) {
tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
mmu_idx, retaddr);
index = tlb_index(env, mmu_idx, addr);
entry = tlb_entry(env, mmu_idx, addr);
}
tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
}
/* Handle anything that isn't just a straight memory access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUTLBEntryFull *full;
bool need_swap;
/* For anything that is unaligned, recurse through byte stores. */
if ((addr & (size - 1)) != 0) {
goto do_unaligned_access;
}
full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
/* Handle watchpoints. */
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
/* On watchpoint hit, this will longjmp out. */
cpu_check_watchpoint(env_cpu(env), addr, size,
full->attrs, BP_MEM_WRITE, retaddr);
}
need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
/* Handle I/O access. */
if (tlb_addr & TLB_MMIO) {
io_writex(env, full, mmu_idx, val, addr, retaddr,
op ^ (need_swap * MO_BSWAP));
return;
}
/* Ignore writes to ROM. */
if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
return;
}
/* Handle clean RAM pages. */
if (tlb_addr & TLB_NOTDIRTY) {
notdirty_write(env_cpu(env), addr, size, full, retaddr);
}
haddr = (void *)((uintptr_t)addr + entry->addend);
//// --- Begin LibAFL code ---
syx_snapshot_dirty_list_add_hostaddr(haddr);
//// --- End LibAFL code ---
/*
* Keep these two store_memop separate to ensure that the compiler
* is able to fold the entire function to a single instruction.
* There is a build-time assert inside to remind you of this. ;-)
*/
if (unlikely(need_swap)) {
store_memop(haddr, val, op ^ MO_BSWAP);
} else {
store_memop(haddr, val, op);
}
return;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (size > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
>= TARGET_PAGE_SIZE)) {
do_unaligned_access:
store_helper_unaligned(env, addr, val, retaddr, size,
mmu_idx, memop_big_endian(op));
return;
}
haddr = (void *)((uintptr_t)addr + entry->addend);
//// --- Begin LibAFL code ---
syx_snapshot_dirty_list_add_hostaddr(haddr);
//// --- End LibAFL code ---
store_memop(haddr, val, op);
}
static void __attribute__((noinline))
full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_UB);
store_helper(env, addr, val, oi, retaddr, MO_UB);
}
void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
MemOpIdx oi, uintptr_t retaddr)
{
full_stb_mmu(env, addr, val, oi, retaddr);
}
static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_LEUW);
store_helper(env, addr, val, oi, retaddr, MO_LEUW);
}
void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
MemOpIdx oi, uintptr_t retaddr)
{
full_le_stw_mmu(env, addr, val, oi, retaddr);
}
static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_BEUW);
store_helper(env, addr, val, oi, retaddr, MO_BEUW);
}
void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
MemOpIdx oi, uintptr_t retaddr)
{
full_be_stw_mmu(env, addr, val, oi, retaddr);
}
static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_LEUL);
store_helper(env, addr, val, oi, retaddr, MO_LEUL);
}
void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
MemOpIdx oi, uintptr_t retaddr)
{
full_le_stl_mmu(env, addr, val, oi, retaddr);
}
static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_BEUL);
store_helper(env, addr, val, oi, retaddr, MO_BEUL);
}
void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
MemOpIdx oi, uintptr_t retaddr)
{
full_be_stl_mmu(env, addr, val, oi, retaddr);
}
void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_LEUQ);
store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
}
void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
validate_memop(oi, MO_BEUQ);
store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
}
/*
* Store Helpers for cpu_ldst.h
*/
typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
uint64_t val, MemOpIdx oi, uintptr_t retaddr);
static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
uint64_t val, MemOpIdx oi, uintptr_t ra,
FullStoreHelper *full_store)
{
full_store(env, addr, val, oi, ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
MemOpIdx oi, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
}
void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
MemOpIdx oi, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
}
void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
MemOpIdx oi, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
}
void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
}
void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
MemOpIdx oi, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
}
void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
MemOpIdx oi, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
}
void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
MemOpIdx oi, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
}
#include "ldst_common.c.inc"
/*
* First set of functions passes in OI and RETADDR.
* This makes them callable from other helpers.
*/
#define ATOMIC_NAME(X) \
glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
#define ATOMIC_MMU_CLEANUP
#include "atomic_common.c.inc"
#define DATA_SIZE 1
#include "atomic_template.h"
#define DATA_SIZE 2
#include "atomic_template.h"
#define DATA_SIZE 4
#include "atomic_template.h"
#ifdef CONFIG_ATOMIC64
#define DATA_SIZE 8
#include "atomic_template.h"
#endif
#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
#define DATA_SIZE 16
#include "atomic_template.h"
#endif
/* Code access functions. */
static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
}
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
{
MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
return full_ldub_code(env, addr, oi, 0);
}
static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
}
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
{
MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
return full_lduw_code(env, addr, oi, 0);
}
static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
}
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
{
MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
return full_ldl_code(env, addr, oi, 0);
}
static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t retaddr)
{
return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
}
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
{
MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
return full_ldq_code(env, addr, oi, 0);
}