sklearn/doc/developers/maintainer.rst

459 lines
19 KiB
ReStructuredText
Raw Permalink Normal View History

2024-08-05 09:32:03 +02:00
Maintainer/Core-Developer Information
======================================
Releasing
---------
This section is about preparing a major release, incrementing the minor
version, or a bug fix release incrementing the patch version. Our convention is
that we release one or more release candidates (0.RRrcN) before releasing the
final distributions. We follow the `PEP101
<https://www.python.org/dev/peps/pep-0101/>`_ to indicate release candidates,
post, and minor releases.
Before a release
................
1. Update authors table:
Create a `classic token on GitHub <https://github.com/settings/tokens/new>`_
with the ``read:org`` following permission.
Run the following script, entering the token in:
.. prompt:: bash $
cd build_tools; make authors; cd ..
and commit. This is only needed if the authors have changed since the last
release. This step is sometimes done independent of the release. This
updates the maintainer list and is not the contributor list for the release.
2. Confirm any blockers tagged for the milestone are resolved, and that other
issues tagged for the milestone can be postponed.
3. Ensure the change log and commits correspond (within reason!), and that the
change log is reasonably well curated. Some tools for these tasks include:
- ``maint_tools/sort_whats_new.py`` can put what's new entries into
sections. It's not perfect, and requires manual checking of the changes.
If the what's new list is well curated, it may not be necessary.
- The ``maint_tools/whats_missing.sh`` script may be used to identify pull
requests that were merged but likely missing from What's New.
4. Make sure the deprecations, FIXME and TODOs tagged for the release have
been taken care of.
**Permissions**
The release manager must be a *maintainer* of the ``scikit-learn/scikit-learn``
repository to be able to publish on ``pypi.org`` and ``test.pypi.org``
(via a manual trigger of a dedicated Github Actions workflow).
The release manager does not need extra permissions on ``pypi.org`` to publish a
release in particular.
The release manager must be a *maintainer* of the ``conda-forge/scikit-learn-feedstock``
repository. This can be changed by editing the ``recipe/meta.yaml`` file in the
first release pull-request.
.. _preparing_a_release_pr:
Preparing a release PR
......................
Major version release
~~~~~~~~~~~~~~~~~~~~~
Prior to branching please do not forget to prepare a Release Highlights page as
a runnable example and check that its HTML rendering looks correct. These
release highlights should be linked from the ``doc/whats_new/v0.99.rst`` file
for the new version of scikit-learn.
Releasing the first RC of e.g. version `0.99.0` involves creating the release
branch `0.99.X` directly on the main repo, where `X` really is the letter X,
**not a placeholder**. The development for the major and minor releases of `0.99`
should **also** happen under `0.99.X`. Each release (rc, major, or minor) is a
tag under that branch.
This is done only once, as the major and minor releases happen on the same
branch:
.. prompt:: bash $
# Assuming upstream is an alias for the main scikit-learn repo:
git fetch upstream main
git checkout upstream/main
git checkout -b 0.99.X
git push --set-upstream upstream 0.99.X
Again, `X` is literal here, and `99` is replaced by the release number.
The branches are called ``0.19.X``, ``0.20.X``, etc.
In terms of including changes, the first RC ideally counts as a *feature
freeze*. Each coming release candidate and the final release afterwards will
include only minor documentation changes and bug fixes. Any major enhancement
or feature should be excluded.
Then you can prepare a local branch for the release itself, for instance:
``release-0.99.0rc1``, push it to your github fork and open a PR **to the**
`scikit-learn/0.99.X` **branch**. Copy the :ref:`release_checklist` templates
in the description of the Pull Request to track progress.
This PR will be used to push commits related to the release as explained in
:ref:`making_a_release`.
You can also create a second PR from main and targeting main to increment the
``__version__`` variable in `sklearn/__init__.py` and in `pyproject.toml` to increment
the dev version. This means while we're in the release candidate period, the latest
stable is two versions behind the main branch, instead of one. In this PR targeting
main you should also include a new file for the matching version under the
``doc/whats_new/`` folder so PRs that target the next version can contribute their
changelog entries to this file in parallel to the release process.
Minor version release (also known as bug-fix release)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The minor releases should include bug fixes and some relevant documentation
changes only. Any PR resulting in a behavior change which is not a bug fix
should be excluded. As an example, instructions are given for the `1.2.2` release.
- Create a branch, **on your own fork** (here referred to as `fork`) for the release
from `upstream/main`.
.. prompt:: bash $
git fetch upstream/main
git checkout -b release-1.2.2 upstream/main
git push -u fork release-1.2.2:release-1.2.2
- Create a **draft** PR to the `upstream/1.2.X` branch (not to `upstream/main`)
with all the desired changes.
- Do not push anything on that branch yet.
- Locally rebase `release-1.2.2` from the `upstream/1.2.X` branch using:
.. prompt:: bash $
git rebase -i upstream/1.2.X
This will open an interactive rebase with the `git-rebase-todo` containing all
the latest commit on `main`. At this stage, you have to perform
this interactive rebase with at least someone else (being three people rebasing
is better not to forget something and to avoid any doubt).
- **Do not remove lines but drop commit by replace** ``pick`` **with** ``drop``
- Commits to pick for bug-fix release *generally* are prefixed with: `FIX`, `CI`,
`DOC`. They should at least include all the commits of the merged PRs
that were milestoned for this release on GitHub and/or documented as such in
the changelog. It's likely that some bugfixes were documented in the
changelog of the main major release instead of the next bugfix release,
in which case, the matching changelog entries will need to be moved,
first in the `main` branch then backported in the release PR.
- Commits to drop for bug-fix release *generally* are prefixed with: `FEAT`,
`MAINT`, `ENH`, `API`. Reasons for not including them is to prevent change of
behavior (which only must feature in breaking or major releases).
- After having dropped or picked commit, **do no exit** but paste the content
of the `git-rebase-todo` message in the PR.
This file is located at `.git/rebase-merge/git-rebase-todo`.
- Save and exit, starting the interactive rebase.
- Resolve merge conflicts when they happen.
- Force push the result of the rebase and the extra release commits to the release PR:
.. prompt:: bash $
git push -f fork release-1.2.2:release-1.2.2
- Copy the :ref:`release_checklist` template and paste it in the description of the
Pull Request to track progress.
- Review all the commits included in the release to make sure that they do not
introduce any new feature. We should not blindly trust the commit message prefixes.
- Remove the draft status of the release PR and invite other maintainers to review the
list of included commits.
.. _making_a_release:
Making a release
................
0. Ensure that you have checked out the branch of the release PR as explained
in :ref:`preparing_a_release_pr` above.
1. Update docs. Note that this is for the final release, not necessarily for
the RC releases. These changes should be made in main and cherry-picked
into the release branch, only before the final release.
- Edit the ``doc/whats_new/v0.99.rst`` file to add release title and list of
contributors.
You can retrieve the list of contributor names with:
::
$ git shortlog -s 0.98.33.. | cut -f2- | sort --ignore-case | tr '\n' ';' | sed 's/;/, /g;s/, $//' | fold -s
- For major releases, link the release highlights example from the ``doc/whats_new/v0.99.rst`` file.
- Update the release date in ``whats_new.rst``
- Edit the ``doc/templates/index.html`` to change the 'News' entry of the
front page (with the release month as well). Do not forget to remove
the old entries (two years or three releases are typically good
enough) and to update the on-going development entry.
2. On the branch for releasing, update the version number in ``sklearn/__init__.py``,
the ``__version__`` variable, and in `pyproject.toml`.
For major releases, please add a 0 at the end: `0.99.0` instead of `0.99`.
For the first release candidate, use the `rc1` suffix on the expected final
release number: `0.99.0rc1`.
3. Trigger the wheel builder with the ``[cd build]`` commit marker using
the command:
.. prompt:: bash $
git commit --allow-empty -m "Trigger wheel builder workflow: [cd build]"
The wheel building workflow is managed by GitHub Actions and the results be browsed at:
https://github.com/scikit-learn/scikit-learn/actions?query=workflow%3A%22Wheel+builder%22
.. note::
Before building the wheels, make sure that the ``pyproject.toml`` file is
up to date and using the oldest version of ``numpy`` for each Python version
to avoid `ABI <https://en.wikipedia.org/wiki/Application_binary_interface>`_
incompatibility issues. Moreover, a new line have to be included in the
``pyproject.toml`` file for each new supported version of Python.
.. note::
The acronym CD in `[cd build]` stands for `Continuous Delivery
<https://en.wikipedia.org/wiki/Continuous_delivery>`_ and refers to the
automation used to generate the release artifacts (binary and source
packages). This can be seen as an extension to CI which stands for
`Continuous Integration
<https://en.wikipedia.org/wiki/Continuous_integration>`_. The CD workflow on
GitHub Actions is also used to automatically create nightly builds and
publish packages for the development branch of scikit-learn. See
:ref:`install_nightly_builds`.
4. Once all the CD jobs have completed successfully in the PR, merge it,
again with the `[cd build]` marker in the commit message. This time
the results will be uploaded to the staging area.
You should then be able to upload the generated artifacts (.tar.gz and .whl
files) to https://test.pypi.org using the "Run workflow" form for the
following GitHub Actions workflow:
https://github.com/scikit-learn/scikit-learn/actions?query=workflow%3A%22Publish+to+Pypi%22
5. If this went fine, you can proceed with tagging. Proceed with caution.
Ideally, tags should be created when you're almost certain that the release
is ready, since adding a tag to the main repo can trigger certain automated
processes.
Create the tag and push it (if it's an RC, it can be ``0.xx.0rc1`` for
instance):
.. prompt:: bash $
git tag -a 0.99.0 # in the 0.99.X branch
git push git@github.com:scikit-learn/scikit-learn.git 0.99.0
6. Confirm that the bot has detected the tag on the conda-forge feedstock repo:
https://github.com/conda-forge/scikit-learn-feedstock. If not, submit a PR for the
release. If you want to publish an RC release on conda-forge, the PR should target
the `rc` branch as opposed to the `main` branch. The two branches need to be kept
sync together otherwise.
7. Trigger the GitHub Actions workflow again but this time to upload the artifacts
to the real https://pypi.org (replace "testpypi" by "pypi" in the "Run
workflow" form).
8. **Alternative to step 7**: it's possible to collect locally the generated binary
wheel packages and source tarball and upload them all to PyPI by running the
following commands in the scikit-learn source folder (checked out at the
release tag):
.. prompt:: bash $
rm -r dist
pip install -U wheelhouse_uploader twine
python -m wheelhouse_uploader fetch \
--version 0.99.0 \
--local-folder dist \
scikit-learn \
https://pypi.anaconda.org/scikit-learn-wheels-staging/simple/scikit-learn/
This command will download all the binary packages accumulated in the
`staging area on the anaconda.org hosting service
<https://anaconda.org/scikit-learn-wheels-staging/scikit-learn/files>`_ and
put them in your local `./dist` folder.
Check the content of the `./dist` folder: it should contain all the wheels
along with the source tarball ("scikit-learn-RRR.tar.gz").
Make sure that you do not have developer versions or older versions of
the scikit-learn package in that folder.
Before uploading to pypi, you can test upload to test.pypi.org:
.. prompt:: bash $
twine upload --verbose --repository-url https://test.pypi.org/legacy/ dist/*
Upload everything at once to https://pypi.org:
.. prompt:: bash $
twine upload dist/*
9. For major/minor (not bug-fix release or release candidates), update the symlink for
``stable`` and the ``latestStable`` variable in
https://github.com/scikit-learn/scikit-learn.github.io:
.. prompt:: bash $
cd /tmp
git clone --depth 1 --no-checkout git@github.com:scikit-learn/scikit-learn.github.io.git
cd scikit-learn.github.io
echo stable > .git/info/sparse-checkout
git checkout main
rm stable
ln -s 0.999 stable
sed -i "s/latestStable = '.*/latestStable = '0.999';/" versionwarning.js
git add stable versionwarning.js
git commit -m "Update stable to point to 0.999"
git push origin main
10. Update ``SECURITY.md`` to reflect the latest supported version.
.. _release_checklist:
Release checklist
.................
The following GitHub checklist might be helpful in a release PR::
* [ ] update news and what's new date in release branch
* [ ] update news and what's new date and sklearn dev0 version in main branch
* [ ] check that the wheels for the release can be built successfully
* [ ] merge the PR with `[cd build]` commit message to upload wheels to the staging repo
* [ ] upload the wheels and source tarball to https://test.pypi.org
* [ ] create tag on the main github repo
* [ ] confirm bot detected at
https://github.com/conda-forge/scikit-learn-feedstock and wait for merge
* [ ] upload the wheels and source tarball to PyPI
* [ ] https://github.com/scikit-learn/scikit-learn/releases publish (except for RC)
* [ ] announce on mailing list and on Twitter, and LinkedIn
* [ ] update symlink for stable in
https://github.com/scikit-learn/scikit-learn.github.io (only major/minor)
* [ ] update SECURITY.md in main branch (except for RC)
Merging Pull Requests
---------------------
Individual commits are squashed when a Pull Request (PR) is merged on Github.
Before merging,
- the resulting commit title can be edited if necessary. Note
that this will rename the PR title by default.
- the detailed description, containing the titles of all the commits, can
be edited or deleted.
- for PRs with multiple code contributors care must be taken to keep
the `Co-authored-by: name <name@example.com>` tags in the detailed
description. This will mark the PR as having `multiple co-authors
<https://help.github.com/en/github/committing-changes-to-your-project/creating-a-commit-with-multiple-authors>`_.
Whether code contributions are significantly enough to merit co-authorship is
left to the maintainer's discretion, same as for the "what's new" entry.
The scikit-learn.org web site
-----------------------------
The scikit-learn web site (https://scikit-learn.org) is hosted at GitHub,
but should rarely be updated manually by pushing to the
https://github.com/scikit-learn/scikit-learn.github.io repository. Most
updates can be made by pushing to master (for /dev) or a release branch
like 0.99.X, from which Circle CI builds and uploads the documentation
automatically.
Experimental features
---------------------
The :mod:`sklearn.experimental` module was introduced in 0.21 and contains
experimental features / estimators that are subject to change without
deprecation cycle.
To create an experimental module, you can just copy and modify the content of
`enable_halving_search_cv.py
<https://github.com/scikit-learn/scikit-learn/blob/362cb92bb2f5b878229ea4f59519ad31c2fcee76/sklearn/experimental/enable_halving_search_cv.py>`__,
or
`enable_iterative_imputer.py
<https://github.com/scikit-learn/scikit-learn/blob/c9c89cfc85dd8dfefd7921c16c87327d03140a06/sklearn/experimental/enable_iterative_imputer.py>`_.
.. note::
These are permalink as in 0.24, where these estimators are still
experimental. They might be stable at the time of reading - hence the
permalink. See below for instructions on the transition from experimental
to stable.
Note that the public import path must be to a public subpackage (like
``sklearn/ensemble`` or ``sklearn/impute``), not just a ``.py`` module.
Also, the (private) experimental features that are imported must be in a
submodule/subpackage of the public subpackage, e.g.
``sklearn/ensemble/_hist_gradient_boosting/`` or
``sklearn/impute/_iterative.py``. This is needed so that pickles still work
in the future when the features aren't experimental anymore.
To avoid type checker (e.g. mypy) errors a direct import of experimental
estimators should be done in the parent module, protected by the
``if typing.TYPE_CHECKING`` check. See `sklearn/ensemble/__init__.py
<https://github.com/scikit-learn/scikit-learn/blob/c9c89cfc85dd8dfefd7921c16c87327d03140a06/sklearn/ensemble/__init__.py>`_,
or `sklearn/impute/__init__.py
<https://github.com/scikit-learn/scikit-learn/blob/c9c89cfc85dd8dfefd7921c16c87327d03140a06/sklearn/impute/__init__.py>`_
for an example.
Please also write basic tests following those in
`test_enable_hist_gradient_boosting.py
<https://github.com/scikit-learn/scikit-learn/blob/c9c89cfc85dd8dfefd7921c16c87327d03140a06/sklearn/experimental/tests/test_enable_hist_gradient_boosting.py>`__.
Make sure every user-facing code you write explicitly mentions that the feature
is experimental, and add a ``# noqa`` comment to avoid pep8-related warnings::
# To use this experimental feature, we need to explicitly ask for it:
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor
For the docs to render properly, please also import
``enable_my_experimental_feature`` in ``doc/conf.py``, else sphinx won't be
able to import the corresponding modules. Note that using ``from
sklearn.experimental import *`` **does not work**.
Note that some experimental classes / functions are not included in the
:mod:`sklearn.experimental` module: ``sklearn.datasets.fetch_openml``.
Once the feature become stable, remove all `enable_my_experimental_feature`
in the scikit-learn code (even feature highlights etc.) and make the
`enable_my_experimental_feature` a no-op that just raises a warning:
`enable_hist_gradient_boosting.py
<https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/experimental/enable_hist_gradient_boosting.py>`__.
The file should stay there indefinitely as we don't want to break users code:
we just incentivize them to remove that import with the warning.
Also update the tests accordingly: `test_enable_hist_gradient_boosting.py
<https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/experimental/tests/test_enable_hist_gradient_boosting.py>`__.