sklearn/doc/visualizations.rst

87 lines
3.0 KiB
ReStructuredText
Raw Permalink Normal View History

2024-08-05 09:32:03 +02:00
.. _visualizations:
==============
Visualizations
==============
Scikit-learn defines a simple API for creating visualizations for machine
learning. The key feature of this API is to allow for quick plotting and
visual adjustments without recalculation. We provide `Display` classes that
expose two methods for creating plots: `from_estimator` and
`from_predictions`. The `from_estimator` method will take a fitted estimator
and some data (`X` and `y`) and create a `Display` object. Sometimes, we would
like to only compute the predictions once and one should use `from_predictions`
instead. In the following example, we plot a ROC curve for a fitted support
vector machine:
.. plot::
:context: close-figs
:align: center
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import RocCurveDisplay
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
y = y == 2 # make binary
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
svc = SVC(random_state=42)
svc.fit(X_train, y_train)
svc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test)
The returned `svc_disp` object allows us to continue using the already computed
ROC curve for SVC in future plots. In this case, the `svc_disp` is a
:class:`~sklearn.metrics.RocCurveDisplay` that stores the computed values as
attributes called `roc_auc`, `fpr`, and `tpr`. Be aware that we could get
the predictions from the support vector machine and then use `from_predictions`
instead of `from_estimator`. Next, we train a random forest classifier and plot
the previously computed roc curve again by using the `plot` method of the
`Display` object.
.. plot::
:context: close-figs
:align: center
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=10, random_state=42)
rfc.fit(X_train, y_train)
ax = plt.gca()
rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=ax, alpha=0.8)
svc_disp.plot(ax=ax, alpha=0.8)
Notice that we pass `alpha=0.8` to the plot functions to adjust the alpha
values of the curves.
.. rubric:: Examples
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py`
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py`
* :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py`
Available Plotting Utilities
============================
Display Objects
---------------
.. currentmodule:: sklearn
.. autosummary::
calibration.CalibrationDisplay
inspection.PartialDependenceDisplay
inspection.DecisionBoundaryDisplay
metrics.ConfusionMatrixDisplay
metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.PredictionErrorDisplay
metrics.RocCurveDisplay
model_selection.LearningCurveDisplay
model_selection.ValidationCurveDisplay