sklearn/doc/whats_new/v1.5.rst

651 lines
28 KiB
ReStructuredText
Raw Permalink Normal View History

2024-08-05 09:32:03 +02:00
.. include:: _contributors.rst
.. currentmodule:: sklearn
.. _release_notes_1_5:
===========
Version 1.5
===========
For a short description of the main highlights of the release, please refer to
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_5_0.py`.
.. include:: changelog_legend.inc
.. _changes_1_5_1:
Version 1.5.1
=============
**July 2024**
Changes impacting many modules
------------------------------
- |Fix| Fixed a regression in the validation of the input data of all estimators where
an unexpected error was raised when passing a DataFrame backed by a read-only buffer.
:pr:`29018` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
- |Fix| Fixed a regression causing a dead-lock at import time in some settings.
:pr:`29235` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
Changelog
---------
:mod:`sklearn.compose`
......................
- |Efficiency| Fix a performance regression in :class:`compose.ColumnTransformer`
where the full input data was copied for each transformer when `n_jobs > 1`.
:pr:`29330` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
:mod:`sklearn.metrics`
......................
- |Fix| Fix a regression in :func:`metrics.r2_score`. Passing torch CPU tensors
with array API dispatched disabled would complain about non-CPU devices
instead of implicitly converting those inputs as regular NumPy arrays.
:pr:`29119` by :user:`Olivier Grisel`.
- |Fix| Fix a regression in :func:`metrics.accuracy_score` and in
:func:`metrics.zero_one_loss` causing an error for Array API dispatch with multilabel
inputs.
:pr:`29269` by :user:`Yaroslav Korobko <Tialo>` and
:pr:`29336` by :user:`Edoardo Abati <EdAbati>`.
:mod:`sklearn.model_selection`
..............................
- |Fix| Fix a regression in :class:`model_selection.GridSearchCV` for parameter
grids that have heterogeneous parameter values.
:pr:`29078` by :user:`Loïc Estève <lesteve>`.
- |Fix| Fix a regression in :class:`model_selection.GridSearchCV` for parameter
grids that have estimators as parameter values.
:pr:`29179` by :user:`Marco Gorelli<MarcoGorelli>`.
- |Fix| Fix a regression in :class:`model_selection.GridSearchCV` for parameter
grids that have arrays of different sizes as parameter values.
:pr:`29314` by :user:`Marco Gorelli<MarcoGorelli>`.
:mod:`sklearn.tree`
...................
- |Fix| Fix an issue in :func:`tree.export_graphviz` and :func:`tree.plot_tree`
that could potentially result in exception or wrong results on 32bit OSes.
:pr:`29327` by :user:`Loïc Estève<lesteve>`.
:mod:`sklearn.utils`
....................
- |API| :func:`utils.validation.check_array` has a new parameter, `force_writeable`, to
control the writeability of the output array. If set to `True`, the output array will
be guaranteed to be writeable and a copy will be made if the input array is read-only.
If set to `False`, no guarantee is made about the writeability of the output array.
:pr:`29018` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
.. _changes_1_5:
Version 1.5.0
=============
**May 2024**
Security
--------
- |Fix| :class:`feature_extraction.text.CountVectorizer` and
:class:`feature_extraction.text.TfidfVectorizer` no longer store discarded
tokens from the training set in their `stop_words_` attribute. This attribute
would hold too frequent (above `max_df`) but also too rare tokens (below
`min_df`). This fixes a potential security issue (data leak) if the discarded
rare tokens hold sensitive information from the training set without the
model developer's knowledge.
Note: users of those classes are encouraged to either retrain their pipelines
with the new scikit-learn version or to manually clear the `stop_words_`
attribute from previously trained instances of those transformers. This
attribute was designed only for model inspection purposes and has no impact
on the behavior of the transformers.
:pr:`28823` by :user:`Olivier Grisel <ogrisel>`.
Changed models
--------------
- |Efficiency| The subsampling in :class:`preprocessing.QuantileTransformer` is now
more efficient for dense arrays but the fitted quantiles and the results of
`transform` may be slightly different than before (keeping the same statistical
properties).
:pr:`27344` by :user:`Xuefeng Xu <xuefeng-xu>`.
- |Enhancement| :class:`decomposition.PCA`, :class:`decomposition.SparsePCA`
and :class:`decomposition.TruncatedSVD` now set the sign of the `components_`
attribute based on the component values instead of using the transformed data
as reference. This change is needed to be able to offer consistent component
signs across all `PCA` solvers, including the new
`svd_solver="covariance_eigh"` option introduced in this release.
Changes impacting many modules
------------------------------
- |Fix| Raise `ValueError` with an informative error message when passing 1D
sparse arrays to methods that expect 2D sparse inputs.
:pr:`28988` by :user:`Olivier Grisel <ogrisel>`.
- |API| The name of the input of the `inverse_transform` method of estimators has been
standardized to `X`. As a consequence, `Xt` is deprecated and will be removed in
version 1.7 in the following estimators: :class:`cluster.FeatureAgglomeration`,
:class:`decomposition.MiniBatchNMF`, :class:`decomposition.NMF`,
:class:`model_selection.GridSearchCV`, :class:`model_selection.RandomizedSearchCV`,
:class:`pipeline.Pipeline` and :class:`preprocessing.KBinsDiscretizer`.
:pr:`28756` by :user:`Will Dean <wd60622>`.
Support for Array API
---------------------
Additional estimators and functions have been updated to include support for all
`Array API <https://data-apis.org/array-api/latest/>`_ compliant inputs.
See :ref:`array_api` for more details.
**Functions:**
- :func:`sklearn.metrics.r2_score` now supports Array API compliant inputs.
:pr:`27904` by :user:`Eric Lindgren <elindgren>`, :user:`Franck Charras <fcharras>`,
:user:`Olivier Grisel <ogrisel>` and :user:`Tim Head <betatim>`.
**Classes:**
- :class:`linear_model.Ridge` now supports the Array API for the `svd` solver.
See :ref:`array_api` for more details.
:pr:`27800` by :user:`Franck Charras <fcharras>`, :user:`Olivier Grisel <ogrisel>`
and :user:`Tim Head <betatim>`.
Support for building with Meson
-------------------------------
From scikit-learn 1.5 onwards, Meson is the main supported way to build
scikit-learn, see :ref:`Building from source <install_bleeding_edge>` for more
details.
Unless we discover a major blocker, setuptools support will be dropped in
scikit-learn 1.6. The 1.5.x releases will support building scikit-learn with
setuptools.
Meson support for building scikit-learn was added in :pr:`28040` by
:user:`Loïc Estève <lesteve>`
Metadata Routing
----------------
The following models now support metadata routing in one or more or their
methods. Refer to the :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
- |Feature| :class:`impute.IterativeImputer` now supports metadata routing in
its `fit` method. :pr:`28187` by :user:`Stefanie Senger <StefanieSenger>`.
- |Feature| :class:`ensemble.BaggingClassifier` and :class:`ensemble.BaggingRegressor`
now support metadata routing. The fit methods now
accept ``**fit_params`` which are passed to the underlying estimators
via their `fit` methods.
:pr:`28432` by :user:`Adam Li <adam2392>` and
:user:`Benjamin Bossan <BenjaminBossan>`.
- |Feature| :class:`linear_model.RidgeCV` and
:class:`linear_model.RidgeClassifierCV` now support metadata routing in
their `fit` method and route metadata to the underlying
:class:`model_selection.GridSearchCV` object or the underlying scorer.
:pr:`27560` by :user:`Omar Salman <OmarManzoor>`.
- |Feature| :class:`GraphicalLassoCV` now supports metadata routing in it's
`fit` method and routes metadata to the CV splitter.
:pr:`27566` by :user:`Omar Salman <OmarManzoor>`.
- |Feature| :class:`linear_model.RANSACRegressor` now supports metadata routing
in its ``fit``, ``score`` and ``predict`` methods and route metadata to its
underlying estimator's' ``fit``, ``score`` and ``predict`` methods.
:pr:`28261` by :user:`Stefanie Senger <StefanieSenger>`.
- |Feature| :class:`ensemble.VotingClassifier` and
:class:`ensemble.VotingRegressor` now support metadata routing and pass
``**fit_params`` to the underlying estimators via their `fit` methods.
:pr:`27584` by :user:`Stefanie Senger <StefanieSenger>`.
- |Feature| :class:`pipeline.FeatureUnion` now supports metadata routing in its
``fit`` and ``fit_transform`` methods and route metadata to the underlying
transformers' ``fit`` and ``fit_transform``.
:pr:`28205` by :user:`Stefanie Senger <StefanieSenger>`.
- |Fix| Fix an issue when resolving default routing requests set via class
attributes.
:pr:`28435` by `Adrin Jalali`_.
- |Fix| Fix an issue when `set_{method}_request` methods are used as unbound
methods, which can happen if one tries to decorate them.
:pr:`28651` by `Adrin Jalali`_.
- |FIX| Prevent a `RecursionError` when estimators with the default `scoring`
param (`None`) route metadata.
:pr:`28712` by :user:`Stefanie Senger <StefanieSenger>`.
Changelog
---------
..
Entries should be grouped by module (in alphabetic order) and prefixed with
one of the labels: |MajorFeature|, |Feature|, |Efficiency|, |Enhancement|,
|Fix| or |API| (see whats_new.rst for descriptions).
Entries should be ordered by those labels (e.g. |Fix| after |Efficiency|).
Changes not specific to a module should be listed under *Multiple Modules*
or *Miscellaneous*.
Entries should end with:
:pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
where 123455 is the *pull request* number, not the issue number.
:mod:`sklearn.calibration`
..........................
- |Fix| Fixed a regression in :class:`calibration.CalibratedClassifierCV` where
an error was wrongly raised with string targets.
:pr:`28843` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
:mod:`sklearn.cluster`
......................
- |Fix| The :class:`cluster.MeanShift` class now properly converges for constant data.
:pr:`28951` by :user:`Akihiro Kuno <akikuno>`.
- |FIX| Create copy of precomputed sparse matrix within the `fit` method of
:class:`~cluster.OPTICS` to avoid in-place modification of the sparse matrix.
:pr:`28491` by :user:`Thanh Lam Dang <lamdang2k>`.
- |Fix| :class:`cluster.HDBSCAN` now supports all metrics supported by
:func:`sklearn.metrics.pairwise_distances` when `algorithm="brute"` or `"auto"`.
:pr:`28664` by :user:`Manideep Yenugula <myenugula>`.
:mod:`sklearn.compose`
......................
- |Feature| A fitted :class:`compose.ColumnTransformer` now implements `__getitem__`
which returns the fitted transformers by name. :pr:`27990` by `Thomas Fan`_.
- |Enhancement| :class:`compose.TransformedTargetRegressor` now raises an error in `fit`
if only `inverse_func` is provided without `func` (that would default to identity)
being explicitly set as well.
:pr:`28483` by :user:`Stefanie Senger <StefanieSenger>`.
- |Enhancement| :class:`compose.ColumnTransformer` can now expose the "remainder"
columns in the fitted `transformers_` attribute as column names or boolean
masks, rather than column indices.
:pr:`27657` by :user:`Jérôme Dockès <jeromedockes>`.
- |Fix| Fixed an bug in :class:`compose.ColumnTransformer` with `n_jobs > 1`, where the
intermediate selected columns were passed to the transformers as read-only arrays.
:pr:`28822` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
:mod:`sklearn.cross_decomposition`
..................................
- |Fix| The `coef_` fitted attribute of :class:`cross_decomposition.PLSRegression`
now takes into account both the scale of `X` and `Y` when `scale=True`. Note that
the previous predicted values were not affected by this bug.
:pr:`28612` by :user:`Guillaume Lemaitre <glemaitre>`.
- |API| Deprecates `Y` in favor of `y` in the methods fit, transform and
inverse_transform of:
:class:`cross_decomposition.PLSRegression`.
:class:`cross_decomposition.PLSCanonical`,
:class:`cross_decomposition.CCA`,
and :class:`cross_decomposition.PLSSVD`.
`Y` will be removed in version 1.7.
:pr:`28604` by :user:`David Leon <davidleon123>`.
:mod:`sklearn.datasets`
.......................
- |Enhancement| Adds optional arguments `n_retries` and `delay` to functions
:func:`datasets.fetch_20newsgroups`,
:func:`datasets.fetch_20newsgroups_vectorized`,
:func:`datasets.fetch_california_housing`,
:func:`datasets.fetch_covtype`,
:func:`datasets.fetch_kddcup99`,
:func:`datasets.fetch_lfw_pairs`,
:func:`datasets.fetch_lfw_people`,
:func:`datasets.fetch_olivetti_faces`,
:func:`datasets.fetch_rcv1`,
and :func:`datasets.fetch_species_distributions`.
By default, the functions will retry up to 3 times in case of network failures.
:pr:`28160` by :user:`Zhehao Liu <MaxwellLZH>` and
:user:`Filip Karlo Došilović <fkdosilovic>`.
:mod:`sklearn.decomposition`
............................
- |Efficiency| :class:`decomposition.PCA` with `svd_solver="full"` now assigns
a contiguous `components_` attribute instead of an non-contiguous slice of
the singular vectors. When `n_components << n_features`, this can save some
memory and, more importantly, help speed-up subsequent calls to the `transform`
method by more than an order of magnitude by leveraging cache locality of
BLAS GEMM on contiguous arrays.
:pr:`27491` by :user:`Olivier Grisel <ogrisel>`.
- |Enhancement| :class:`~decomposition.PCA` now automatically selects the ARPACK solver
for sparse inputs when `svd_solver="auto"` instead of raising an error.
:pr:`28498` by :user:`Thanh Lam Dang <lamdang2k>`.
- |Enhancement| :class:`decomposition.PCA` now supports a new solver option
named `svd_solver="covariance_eigh"` which offers an order of magnitude
speed-up and reduced memory usage for datasets with a large number of data
points and a small number of features (say, `n_samples >> 1000 >
n_features`). The `svd_solver="auto"` option has been updated to use the new
solver automatically for such datasets. This solver also accepts sparse input
data.
:pr:`27491` by :user:`Olivier Grisel <ogrisel>`.
- |Fix| :class:`decomposition.PCA` fit with `svd_solver="arpack"`,
`whiten=True` and a value for `n_components` that is larger than the rank of
the training set, no longer returns infinite values when transforming
hold-out data.
:pr:`27491` by :user:`Olivier Grisel <ogrisel>`.
:mod:`sklearn.dummy`
....................
- |Enhancement| :class:`dummy.DummyClassifier` and :class:`dummy.DummyRegressor` now
have the `n_features_in_` and `feature_names_in_` attributes after `fit`.
:pr:`27937` by :user:`Marco vd Boom <tvdboom>`.
:mod:`sklearn.ensemble`
.......................
- |Efficiency| Improves runtime of `predict` of
:class:`ensemble.HistGradientBoostingClassifier` by avoiding to call `predict_proba`.
:pr:`27844` by :user:`Christian Lorentzen <lorentzenchr>`.
- |Efficiency| :class:`ensemble.HistGradientBoostingClassifier` and
:class:`ensemble.HistGradientBoostingRegressor` are now a tiny bit faster by
pre-sorting the data before finding the thresholds for binning.
:pr:`28102` by :user:`Christian Lorentzen <lorentzenchr>`.
- |Fix| Fixes a bug in :class:`ensemble.HistGradientBoostingClassifier` and
:class:`ensemble.HistGradientBoostingRegressor` when `monotonic_cst` is specified
for non-categorical features.
:pr:`28925` by :user:`Xiao Yuan <yuanx749>`.
:mod:`sklearn.feature_extraction`
.................................
- |Efficiency| :class:`feature_extraction.text.TfidfTransformer` is now faster
and more memory-efficient by using a NumPy vector instead of a sparse matrix
for storing the inverse document frequency.
:pr:`18843` by :user:`Paolo Montesel <thebabush>`.
- |Enhancement| :class:`feature_extraction.text.TfidfTransformer` now preserves
the data type of the input matrix if it is `np.float64` or `np.float32`.
:pr:`28136` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.feature_selection`
................................
- |Enhancement| :func:`feature_selection.mutual_info_regression` and
:func:`feature_selection.mutual_info_classif` now support `n_jobs` parameter.
:pr:`28085` by :user:`Neto Menoci <netomenoci>` and
:user:`Florin Andrei <FlorinAndrei>`.
- |Enhancement| The `cv_results_` attribute of :class:`feature_selection.RFECV` has
a new key, `n_features`, containing an array with the number of features selected
at each step.
:pr:`28670` by :user:`Miguel Silva <miguelcsilva>`.
:mod:`sklearn.impute`
.....................
- |Enhancement| :class:`impute.SimpleImputer` now supports custom strategies
by passing a function in place of a strategy name.
:pr:`28053` by :user:`Mark Elliot <mark-thm>`.
:mod:`sklearn.inspection`
.........................
- |Fix| :meth:`inspection.DecisionBoundaryDisplay.from_estimator` no longer
warns about missing feature names when provided a `polars.DataFrame`.
:pr:`28718` by :user:`Patrick Wang <patrickkwang>`.
:mod:`sklearn.linear_model`
...........................
- |Enhancement| Solver `"newton-cg"` in :class:`linear_model.LogisticRegression` and
:class:`linear_model.LogisticRegressionCV` now emits information when `verbose` is
set to positive values.
:pr:`27526` by :user:`Christian Lorentzen <lorentzenchr>`.
- |Fix| :class:`linear_model.ElasticNet`, :class:`linear_model.ElasticNetCV`,
:class:`linear_model.Lasso` and :class:`linear_model.LassoCV` now explicitly don't
accept large sparse data formats.
:pr:`27576` by :user:`Stefanie Senger <StefanieSenger>`.
- |Fix| :class:`linear_model.RidgeCV` and :class:`RidgeClassifierCV` correctly pass
`sample_weight` to the underlying scorer when `cv` is None.
:pr:`27560` by :user:`Omar Salman <OmarManzoor>`.
- |Fix| `n_nonzero_coefs_` attribute in :class:`linear_model.OrthogonalMatchingPursuit`
will now always be `None` when `tol` is set, as `n_nonzero_coefs` is ignored in
this case. :pr:`28557` by :user:`Lucy Liu <lucyleeow>`.
- |API| :class:`linear_model.RidgeCV` and :class:`linear_model.RidgeClassifierCV`
will now allow `alpha=0` when `cv != None`, which is consistent with
:class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`.
:pr:`28425` by :user:`Lucy Liu <lucyleeow>`.
- |API| Passing `average=0` to disable averaging is deprecated in
:class:`linear_model.PassiveAggressiveClassifier`,
:class:`linear_model.PassiveAggressiveRegressor`,
:class:`linear_model.SGDClassifier`, :class:`linear_model.SGDRegressor` and
:class:`linear_model.SGDOneClassSVM`. Pass `average=False` instead.
:pr:`28582` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
- |API| Parameter `multi_class` was deprecated in
:class:`linear_model.LogisticRegression` and
:class:`linear_model.LogisticRegressionCV`. `multi_class` will be removed in 1.7,
and internally, for 3 and more classes, it will always use multinomial.
If you still want to use the one-vs-rest scheme, you can use
`OneVsRestClassifier(LogisticRegression(..))`.
:pr:`28703` by :user:`Christian Lorentzen <lorentzenchr>`.
- |API| `store_cv_values` and `cv_values_` are deprecated in favor of
`store_cv_results` and `cv_results_` in `~linear_model.RidgeCV` and
`~linear_model.RidgeClassifierCV`.
:pr:`28915` by :user:`Lucy Liu <lucyleeow>`.
:mod:`sklearn.manifold`
.......................
- |API| Deprecates `n_iter` in favor of `max_iter` in :class:`manifold.TSNE`.
`n_iter` will be removed in version 1.7. This makes :class:`manifold.TSNE`
consistent with the rest of the estimators. :pr:`28471` by
:user:`Lucy Liu <lucyleeow>`
:mod:`sklearn.metrics`
......................
- |Feature| :func:`metrics.pairwise_distances` accepts calculating pairwise distances
for non-numeric arrays as well. This is supported through custom metrics only.
:pr:`27456` by :user:`Venkatachalam N <venkyyuvy>`, :user:`Kshitij Mathur <Kshitij68>`
and :user:`Julian Libiseller-Egger <julibeg>`.
- |Feature| :func:`sklearn.metrics.check_scoring` now returns a multi-metric scorer
when `scoring` as a `dict`, `set`, `tuple`, or `list`. :pr:`28360` by `Thomas Fan`_.
- |Feature| :func:`metrics.d2_log_loss_score` has been added which
calculates the D^2 score for the log loss.
:pr:`28351` by :user:`Omar Salman <OmarManzoor>`.
- |Efficiency| Improve efficiency of functions :func:`~metrics.brier_score_loss`,
:func:`~calibration.calibration_curve`, :func:`~metrics.det_curve`,
:func:`~metrics.precision_recall_curve`,
:func:`~metrics.roc_curve` when `pos_label` argument is specified.
Also improve efficiency of methods `from_estimator`
and `from_predictions` in :class:`~metrics.RocCurveDisplay`,
:class:`~metrics.PrecisionRecallDisplay`, :class:`~metrics.DetCurveDisplay`,
:class:`~calibration.CalibrationDisplay`.
:pr:`28051` by :user:`Pierre de Fréminville <pidefrem>`.
- |Fix|:class:`metrics.classification_report` now shows only accuracy and not
micro-average when input is a subset of labels.
:pr:`28399` by :user:`Vineet Joshi <vjoshi253>`.
- |Fix| Fix OpenBLAS 0.3.26 dead-lock on Windows in pairwise distances
computation. This is likely to affect neighbor-based algorithms.
:pr:`28692` by :user:`Loïc Estève <lesteve>`.
- |API| :func:`metrics.precision_recall_curve` deprecated the keyword argument
`probas_pred` in favor of `y_score`. `probas_pred` will be removed in version 1.7.
:pr:`28092` by :user:`Adam Li <adam2392>`.
- |API| :func:`metrics.brier_score_loss` deprecated the keyword argument `y_prob`
in favor of `y_proba`. `y_prob` will be removed in version 1.7.
:pr:`28092` by :user:`Adam Li <adam2392>`.
- |API| For classifiers and classification metrics, labels encoded as bytes
is deprecated and will raise an error in v1.7.
:pr:`18555` by :user:`Kaushik Amar Das <cozek>`.
:mod:`sklearn.mixture`
......................
- |Fix| The `converged_` attribute of :class:`mixture.GaussianMixture` and
:class:`mixture.BayesianGaussianMixture` now reflects the convergence status of
the best fit whereas it was previously `True` if any of the fits converged.
:pr:`26837` by :user:`Krsto Proroković <krstopro>`.
:mod:`sklearn.model_selection`
..............................
- |MajorFeature| :class:`model_selection.TunedThresholdClassifierCV` finds
the decision threshold of a binary classifier that maximizes a
classification metric through cross-validation.
:class:`model_selection.FixedThresholdClassifier` is an alternative when one wants
to use a fixed decision threshold without any tuning scheme.
:pr:`26120` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Enhancement| :term:`CV splitters <CV splitter>` that ignores the group parameter now
raises a warning when groups are passed in to :term:`split`. :pr:`28210` by
`Thomas Fan`_.
- |Enhancement| The HTML diagram representation of
:class:`~model_selection.GridSearchCV`,
:class:`~model_selection.RandomizedSearchCV`,
:class:`~model_selection.HalvingGridSearchCV`, and
:class:`~model_selection.HalvingRandomSearchCV` will show the best estimator when
`refit=True`. :pr:`28722` by :user:`Yao Xiao <Charlie-XIAO>` and `Thomas Fan`_.
- |Fix| the ``cv_results_`` attribute (of :class:`model_selection.GridSearchCV`) now
returns masked arrays of the appropriate NumPy dtype, as opposed to always returning
dtype ``object``. :pr:`28352` by :user:`Marco Gorelli<MarcoGorelli>`.
- |Fix| :func:`model_selection.train_test_split` works with Array API inputs.
Previously indexing was not handled correctly leading to exceptions when using strict
implementations of the Array API like CuPY.
:pr:`28407` by :user:`Tim Head <betatim>`.
:mod:`sklearn.multioutput`
..........................
- |Enhancement| `chain_method` parameter added to :class:`multioutput.ClassifierChain`.
:pr:`27700` by :user:`Lucy Liu <lucyleeow>`.
:mod:`sklearn.neighbors`
........................
- |Fix| Fixes :class:`neighbors.NeighborhoodComponentsAnalysis` such that
`get_feature_names_out` returns the correct number of feature names.
:pr:`28306` by :user:`Brendan Lu <brendanlu>`.
:mod:`sklearn.pipeline`
.......................
- |Feature| :class:`pipeline.FeatureUnion` can now use the
`verbose_feature_names_out` attribute. If `True`, `get_feature_names_out`
will prefix all feature names with the name of the transformer
that generated that feature. If `False`, `get_feature_names_out` will not
prefix any feature names and will error if feature names are not unique.
:pr:`25991` by :user:`Jiawei Zhang <jiawei-zhang-a>`.
:mod:`sklearn.preprocessing`
............................
- |Enhancement| :class:`preprocessing.QuantileTransformer` and
:func:`preprocessing.quantile_transform` now supports disabling
subsampling explicitly.
:pr:`27636` by :user:`Ralph Urlus <rurlus>`.
:mod:`sklearn.tree`
...................
- |Enhancement| Plotting trees in matplotlib via :func:`tree.plot_tree` now
show a "True/False" label to indicate the directionality the samples traverse
given the split condition.
:pr:`28552` by :user:`Adam Li <adam2392>`.
:mod:`sklearn.utils`
....................
- |Fix| :func:`~utils._safe_indexing` now works correctly for polars DataFrame when
`axis=0` and supports indexing polars Series.
:pr:`28521` by :user:`Yao Xiao <Charlie-XIAO>`.
- |API| :data:`utils.IS_PYPY` is deprecated and will be removed in version 1.7.
:pr:`28768` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
- |API| :func:`utils.tosequence` is deprecated and will be removed in version 1.7.
:pr:`28763` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
- |API| :class:`utils.parallel_backend` and :func:`utils.register_parallel_backend` are
deprecated and will be removed in version 1.7. Use `joblib.parallel_backend` and
`joblib.register_parallel_backend` instead.
:pr:`28847` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
- |API| Raise informative warning message in :func:`~utils.multiclass.type_of_target`
when represented as bytes. For classifiers and classification metrics, labels encoded
as bytes is deprecated and will raise an error in v1.7.
:pr:`18555` by :user:`Kaushik Amar Das <cozek>`.
- |API| :func:`utils.estimator_checks.check_estimator_sparse_data` was split into two
functions: :func:`utils.estimator_checks.check_estimator_sparse_matrix` and
:func:`utils.estimator_checks.check_estimator_sparse_array`.
:pr:`27576` by :user:`Stefanie Senger <StefanieSenger>`.
.. rubric:: Code and documentation contributors
Thanks to everyone who has contributed to the maintenance and improvement of
the project since version 1.4, including:
101AlexMartin, Abdulaziz Aloqeely, Adam J. Stewart, Adam Li, Adarsh Wase, Adrin
Jalali, Advik Sinha, Akash Srivastava, Akihiro Kuno, Alan Guedes, Alexis
IMBERT, Ana Paula Gomes, Anderson Nelson, Andrei Dzis, Arnaud Capitaine, Arturo
Amor, Aswathavicky, Bharat Raghunathan, Brendan Lu, Bruno, Cemlyn, Christian
Lorentzen, Christian Veenhuis, Cindy Liang, Claudio Salvatore Arcidiacono,
Connor Boyle, Conrad Stevens, crispinlogan, davidleon123, DerWeh, Dipan Banik,
Duarte São José, DUONG, Eddie Bergman, Edoardo Abati, Egehan Gunduz, Emad
Izadifar, Erich Schubert, Filip Karlo Došilović, Franck Charras, Gael
Varoquaux, Gönül Aycı, Guillaume Lemaitre, Gyeongjae Choi, Harmanan Kohli,
Hong Xiang Yue, Ian Faust, itsaphel, Ivan Wiryadi, Jack Bowyer, Javier Marin
Tur, Jérémie du Boisberranger, Jérôme Dockès, Jiawei Zhang, Joel Nothman,
Johanna Bayer, John Cant, John Hopfensperger, jpcars, jpienaar-tuks, Julian
Libiseller-Egger, Julien Jerphanion, KanchiMoe, Kaushik Amar Das, keyber,
Koustav Ghosh, kraktus, Krsto Proroković, ldwy4, LeoGrin, lihaitao, Linus
Sommer, Loic Esteve, Lucy Liu, Lukas Geiger, manasimj, Manuel Labbé, Manuel
Morales, Marco Edward Gorelli, Maren Westermann, Marija Vlajic, Mark Elliot,
Mateusz Sokół, Mavs, Michael Higgins, Michael Mayer, miguelcsilva, Miki
Watanabe, Mohammed Hamdy, myenugula, Nathan Goldbaum, Naziya Mahimkar, Neto,
Olivier Grisel, Omar Salman, Patrick Wang, Pierre de Fréminville, Priyash
Shah, Puneeth K, Rahil Parikh, raisadz, Raj Pulapakura, Ralf Gommers, Ralph
Urlus, Randolf Scholz, Reshama Shaikh, Richard Barnes, Rodrigo Romero, Saad
Mahmood, Salim Dohri, Sandip Dutta, SarahRemus, scikit-learn-bot, Shaharyar
Choudhry, Shubham, sperret6, Stefanie Senger, Suha Siddiqui, Thanh Lam DANG,
thebabush, Thomas J. Fan, Thomas Lazarus, Thomas Li, Tialo, Tim Head, Tuhin
Sharma, VarunChaduvula, Vineet Joshi, virchan, Waël Boukhobza, Weyb, Will
Dean, Xavier Beltran, Xiao Yuan, Xuefeng Xu, Yao Xiao