129 lines
4.5 KiB
Python
129 lines
4.5 KiB
Python
|
"""
|
||
|
================================
|
||
|
Recognizing hand-written digits
|
||
|
================================
|
||
|
|
||
|
This example shows how scikit-learn can be used to recognize images of
|
||
|
hand-written digits, from 0-9.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
# Standard scientific Python imports
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# Import datasets, classifiers and performance metrics
|
||
|
from sklearn import datasets, metrics, svm
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
|
||
|
###############################################################################
|
||
|
# Digits dataset
|
||
|
# --------------
|
||
|
#
|
||
|
# The digits dataset consists of 8x8
|
||
|
# pixel images of digits. The ``images`` attribute of the dataset stores
|
||
|
# 8x8 arrays of grayscale values for each image. We will use these arrays to
|
||
|
# visualize the first 4 images. The ``target`` attribute of the dataset stores
|
||
|
# the digit each image represents and this is included in the title of the 4
|
||
|
# plots below.
|
||
|
#
|
||
|
# Note: if we were working from image files (e.g., 'png' files), we would load
|
||
|
# them using :func:`matplotlib.pyplot.imread`.
|
||
|
|
||
|
digits = datasets.load_digits()
|
||
|
|
||
|
_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
|
||
|
for ax, image, label in zip(axes, digits.images, digits.target):
|
||
|
ax.set_axis_off()
|
||
|
ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
|
||
|
ax.set_title("Training: %i" % label)
|
||
|
|
||
|
###############################################################################
|
||
|
# Classification
|
||
|
# --------------
|
||
|
#
|
||
|
# To apply a classifier on this data, we need to flatten the images, turning
|
||
|
# each 2-D array of grayscale values from shape ``(8, 8)`` into shape
|
||
|
# ``(64,)``. Subsequently, the entire dataset will be of shape
|
||
|
# ``(n_samples, n_features)``, where ``n_samples`` is the number of images and
|
||
|
# ``n_features`` is the total number of pixels in each image.
|
||
|
#
|
||
|
# We can then split the data into train and test subsets and fit a support
|
||
|
# vector classifier on the train samples. The fitted classifier can
|
||
|
# subsequently be used to predict the value of the digit for the samples
|
||
|
# in the test subset.
|
||
|
|
||
|
# flatten the images
|
||
|
n_samples = len(digits.images)
|
||
|
data = digits.images.reshape((n_samples, -1))
|
||
|
|
||
|
# Create a classifier: a support vector classifier
|
||
|
clf = svm.SVC(gamma=0.001)
|
||
|
|
||
|
# Split data into 50% train and 50% test subsets
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
data, digits.target, test_size=0.5, shuffle=False
|
||
|
)
|
||
|
|
||
|
# Learn the digits on the train subset
|
||
|
clf.fit(X_train, y_train)
|
||
|
|
||
|
# Predict the value of the digit on the test subset
|
||
|
predicted = clf.predict(X_test)
|
||
|
|
||
|
###############################################################################
|
||
|
# Below we visualize the first 4 test samples and show their predicted
|
||
|
# digit value in the title.
|
||
|
|
||
|
_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
|
||
|
for ax, image, prediction in zip(axes, X_test, predicted):
|
||
|
ax.set_axis_off()
|
||
|
image = image.reshape(8, 8)
|
||
|
ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
|
||
|
ax.set_title(f"Prediction: {prediction}")
|
||
|
|
||
|
###############################################################################
|
||
|
# :func:`~sklearn.metrics.classification_report` builds a text report showing
|
||
|
# the main classification metrics.
|
||
|
|
||
|
print(
|
||
|
f"Classification report for classifier {clf}:\n"
|
||
|
f"{metrics.classification_report(y_test, predicted)}\n"
|
||
|
)
|
||
|
|
||
|
###############################################################################
|
||
|
# We can also plot a :ref:`confusion matrix <confusion_matrix>` of the
|
||
|
# true digit values and the predicted digit values.
|
||
|
|
||
|
disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, predicted)
|
||
|
disp.figure_.suptitle("Confusion Matrix")
|
||
|
print(f"Confusion matrix:\n{disp.confusion_matrix}")
|
||
|
|
||
|
plt.show()
|
||
|
|
||
|
###############################################################################
|
||
|
# If the results from evaluating a classifier are stored in the form of a
|
||
|
# :ref:`confusion matrix <confusion_matrix>` and not in terms of `y_true` and
|
||
|
# `y_pred`, one can still build a :func:`~sklearn.metrics.classification_report`
|
||
|
# as follows:
|
||
|
|
||
|
|
||
|
# The ground truth and predicted lists
|
||
|
y_true = []
|
||
|
y_pred = []
|
||
|
cm = disp.confusion_matrix
|
||
|
|
||
|
# For each cell in the confusion matrix, add the corresponding ground truths
|
||
|
# and predictions to the lists
|
||
|
for gt in range(len(cm)):
|
||
|
for pred in range(len(cm)):
|
||
|
y_true += [gt] * cm[gt][pred]
|
||
|
y_pred += [pred] * cm[gt][pred]
|
||
|
|
||
|
print(
|
||
|
"Classification report rebuilt from confusion matrix:\n"
|
||
|
f"{metrics.classification_report(y_true, y_pred)}\n"
|
||
|
)
|