285 lines
8.3 KiB
Python
285 lines
8.3 KiB
Python
|
"""
|
||
|
=========================================================
|
||
|
Comparing different clustering algorithms on toy datasets
|
||
|
=========================================================
|
||
|
|
||
|
This example shows characteristics of different
|
||
|
clustering algorithms on datasets that are "interesting"
|
||
|
but still in 2D. With the exception of the last dataset,
|
||
|
the parameters of each of these dataset-algorithm pairs
|
||
|
has been tuned to produce good clustering results. Some
|
||
|
algorithms are more sensitive to parameter values than
|
||
|
others.
|
||
|
|
||
|
The last dataset is an example of a 'null' situation for
|
||
|
clustering: the data is homogeneous, and there is no good
|
||
|
clustering. For this example, the null dataset uses the
|
||
|
same parameters as the dataset in the row above it, which
|
||
|
represents a mismatch in the parameter values and the
|
||
|
data structure.
|
||
|
|
||
|
While these examples give some intuition about the
|
||
|
algorithms, this intuition might not apply to very high
|
||
|
dimensional data.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import time
|
||
|
import warnings
|
||
|
from itertools import cycle, islice
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn import cluster, datasets, mixture
|
||
|
from sklearn.neighbors import kneighbors_graph
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
|
||
|
# ============
|
||
|
# Generate datasets. We choose the size big enough to see the scalability
|
||
|
# of the algorithms, but not too big to avoid too long running times
|
||
|
# ============
|
||
|
n_samples = 500
|
||
|
seed = 30
|
||
|
noisy_circles = datasets.make_circles(
|
||
|
n_samples=n_samples, factor=0.5, noise=0.05, random_state=seed
|
||
|
)
|
||
|
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05, random_state=seed)
|
||
|
blobs = datasets.make_blobs(n_samples=n_samples, random_state=seed)
|
||
|
rng = np.random.RandomState(seed)
|
||
|
no_structure = rng.rand(n_samples, 2), None
|
||
|
|
||
|
# Anisotropicly distributed data
|
||
|
random_state = 170
|
||
|
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
|
||
|
transformation = [[0.6, -0.6], [-0.4, 0.8]]
|
||
|
X_aniso = np.dot(X, transformation)
|
||
|
aniso = (X_aniso, y)
|
||
|
|
||
|
# blobs with varied variances
|
||
|
varied = datasets.make_blobs(
|
||
|
n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
|
||
|
)
|
||
|
|
||
|
# ============
|
||
|
# Set up cluster parameters
|
||
|
# ============
|
||
|
plt.figure(figsize=(9 * 2 + 3, 13))
|
||
|
plt.subplots_adjust(
|
||
|
left=0.02, right=0.98, bottom=0.001, top=0.95, wspace=0.05, hspace=0.01
|
||
|
)
|
||
|
|
||
|
plot_num = 1
|
||
|
|
||
|
default_base = {
|
||
|
"quantile": 0.3,
|
||
|
"eps": 0.3,
|
||
|
"damping": 0.9,
|
||
|
"preference": -200,
|
||
|
"n_neighbors": 3,
|
||
|
"n_clusters": 3,
|
||
|
"min_samples": 7,
|
||
|
"xi": 0.05,
|
||
|
"min_cluster_size": 0.1,
|
||
|
"allow_single_cluster": True,
|
||
|
"hdbscan_min_cluster_size": 15,
|
||
|
"hdbscan_min_samples": 3,
|
||
|
"random_state": 42,
|
||
|
}
|
||
|
|
||
|
datasets = [
|
||
|
(
|
||
|
noisy_circles,
|
||
|
{
|
||
|
"damping": 0.77,
|
||
|
"preference": -240,
|
||
|
"quantile": 0.2,
|
||
|
"n_clusters": 2,
|
||
|
"min_samples": 7,
|
||
|
"xi": 0.08,
|
||
|
},
|
||
|
),
|
||
|
(
|
||
|
noisy_moons,
|
||
|
{
|
||
|
"damping": 0.75,
|
||
|
"preference": -220,
|
||
|
"n_clusters": 2,
|
||
|
"min_samples": 7,
|
||
|
"xi": 0.1,
|
||
|
},
|
||
|
),
|
||
|
(
|
||
|
varied,
|
||
|
{
|
||
|
"eps": 0.18,
|
||
|
"n_neighbors": 2,
|
||
|
"min_samples": 7,
|
||
|
"xi": 0.01,
|
||
|
"min_cluster_size": 0.2,
|
||
|
},
|
||
|
),
|
||
|
(
|
||
|
aniso,
|
||
|
{
|
||
|
"eps": 0.15,
|
||
|
"n_neighbors": 2,
|
||
|
"min_samples": 7,
|
||
|
"xi": 0.1,
|
||
|
"min_cluster_size": 0.2,
|
||
|
},
|
||
|
),
|
||
|
(blobs, {"min_samples": 7, "xi": 0.1, "min_cluster_size": 0.2}),
|
||
|
(no_structure, {}),
|
||
|
]
|
||
|
|
||
|
for i_dataset, (dataset, algo_params) in enumerate(datasets):
|
||
|
# update parameters with dataset-specific values
|
||
|
params = default_base.copy()
|
||
|
params.update(algo_params)
|
||
|
|
||
|
X, y = dataset
|
||
|
|
||
|
# normalize dataset for easier parameter selection
|
||
|
X = StandardScaler().fit_transform(X)
|
||
|
|
||
|
# estimate bandwidth for mean shift
|
||
|
bandwidth = cluster.estimate_bandwidth(X, quantile=params["quantile"])
|
||
|
|
||
|
# connectivity matrix for structured Ward
|
||
|
connectivity = kneighbors_graph(
|
||
|
X, n_neighbors=params["n_neighbors"], include_self=False
|
||
|
)
|
||
|
# make connectivity symmetric
|
||
|
connectivity = 0.5 * (connectivity + connectivity.T)
|
||
|
|
||
|
# ============
|
||
|
# Create cluster objects
|
||
|
# ============
|
||
|
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
|
||
|
two_means = cluster.MiniBatchKMeans(
|
||
|
n_clusters=params["n_clusters"],
|
||
|
random_state=params["random_state"],
|
||
|
)
|
||
|
ward = cluster.AgglomerativeClustering(
|
||
|
n_clusters=params["n_clusters"], linkage="ward", connectivity=connectivity
|
||
|
)
|
||
|
spectral = cluster.SpectralClustering(
|
||
|
n_clusters=params["n_clusters"],
|
||
|
eigen_solver="arpack",
|
||
|
affinity="nearest_neighbors",
|
||
|
random_state=params["random_state"],
|
||
|
)
|
||
|
dbscan = cluster.DBSCAN(eps=params["eps"])
|
||
|
hdbscan = cluster.HDBSCAN(
|
||
|
min_samples=params["hdbscan_min_samples"],
|
||
|
min_cluster_size=params["hdbscan_min_cluster_size"],
|
||
|
allow_single_cluster=params["allow_single_cluster"],
|
||
|
)
|
||
|
optics = cluster.OPTICS(
|
||
|
min_samples=params["min_samples"],
|
||
|
xi=params["xi"],
|
||
|
min_cluster_size=params["min_cluster_size"],
|
||
|
)
|
||
|
affinity_propagation = cluster.AffinityPropagation(
|
||
|
damping=params["damping"],
|
||
|
preference=params["preference"],
|
||
|
random_state=params["random_state"],
|
||
|
)
|
||
|
average_linkage = cluster.AgglomerativeClustering(
|
||
|
linkage="average",
|
||
|
metric="cityblock",
|
||
|
n_clusters=params["n_clusters"],
|
||
|
connectivity=connectivity,
|
||
|
)
|
||
|
birch = cluster.Birch(n_clusters=params["n_clusters"])
|
||
|
gmm = mixture.GaussianMixture(
|
||
|
n_components=params["n_clusters"],
|
||
|
covariance_type="full",
|
||
|
random_state=params["random_state"],
|
||
|
)
|
||
|
|
||
|
clustering_algorithms = (
|
||
|
("MiniBatch\nKMeans", two_means),
|
||
|
("Affinity\nPropagation", affinity_propagation),
|
||
|
("MeanShift", ms),
|
||
|
("Spectral\nClustering", spectral),
|
||
|
("Ward", ward),
|
||
|
("Agglomerative\nClustering", average_linkage),
|
||
|
("DBSCAN", dbscan),
|
||
|
("HDBSCAN", hdbscan),
|
||
|
("OPTICS", optics),
|
||
|
("BIRCH", birch),
|
||
|
("Gaussian\nMixture", gmm),
|
||
|
)
|
||
|
|
||
|
for name, algorithm in clustering_algorithms:
|
||
|
t0 = time.time()
|
||
|
|
||
|
# catch warnings related to kneighbors_graph
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings(
|
||
|
"ignore",
|
||
|
message="the number of connected components of the "
|
||
|
+ "connectivity matrix is [0-9]{1,2}"
|
||
|
+ " > 1. Completing it to avoid stopping the tree early.",
|
||
|
category=UserWarning,
|
||
|
)
|
||
|
warnings.filterwarnings(
|
||
|
"ignore",
|
||
|
message="Graph is not fully connected, spectral embedding"
|
||
|
+ " may not work as expected.",
|
||
|
category=UserWarning,
|
||
|
)
|
||
|
algorithm.fit(X)
|
||
|
|
||
|
t1 = time.time()
|
||
|
if hasattr(algorithm, "labels_"):
|
||
|
y_pred = algorithm.labels_.astype(int)
|
||
|
else:
|
||
|
y_pred = algorithm.predict(X)
|
||
|
|
||
|
plt.subplot(len(datasets), len(clustering_algorithms), plot_num)
|
||
|
if i_dataset == 0:
|
||
|
plt.title(name, size=18)
|
||
|
|
||
|
colors = np.array(
|
||
|
list(
|
||
|
islice(
|
||
|
cycle(
|
||
|
[
|
||
|
"#377eb8",
|
||
|
"#ff7f00",
|
||
|
"#4daf4a",
|
||
|
"#f781bf",
|
||
|
"#a65628",
|
||
|
"#984ea3",
|
||
|
"#999999",
|
||
|
"#e41a1c",
|
||
|
"#dede00",
|
||
|
]
|
||
|
),
|
||
|
int(max(y_pred) + 1),
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
# add black color for outliers (if any)
|
||
|
colors = np.append(colors, ["#000000"])
|
||
|
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])
|
||
|
|
||
|
plt.xlim(-2.5, 2.5)
|
||
|
plt.ylim(-2.5, 2.5)
|
||
|
plt.xticks(())
|
||
|
plt.yticks(())
|
||
|
plt.text(
|
||
|
0.99,
|
||
|
0.01,
|
||
|
("%.2fs" % (t1 - t0)).lstrip("0"),
|
||
|
transform=plt.gca().transAxes,
|
||
|
size=15,
|
||
|
horizontalalignment="right",
|
||
|
)
|
||
|
plot_num += 1
|
||
|
|
||
|
plt.show()
|