sklearn/examples/cluster/plot_kmeans_assumptions.py

180 lines
6.5 KiB
Python
Raw Permalink Normal View History

2024-08-05 09:32:03 +02:00
"""
====================================
Demonstration of k-means assumptions
====================================
This example is meant to illustrate situations where k-means produces
unintuitive and possibly undesirable clusters.
"""
# Author: Phil Roth <mr.phil.roth@gmail.com>
# Arturo Amor <david-arturo.amor-quiroz@inria.fr>
# License: BSD 3 clause
# %%
# Data generation
# ---------------
#
# The function :func:`~sklearn.datasets.make_blobs` generates isotropic
# (spherical) gaussian blobs. To obtain anisotropic (elliptical) gaussian blobs
# one has to define a linear `transformation`.
import numpy as np
from sklearn.datasets import make_blobs
n_samples = 1500
random_state = 170
transformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
X, y = make_blobs(n_samples=n_samples, random_state=random_state)
X_aniso = np.dot(X, transformation) # Anisotropic blobs
X_varied, y_varied = make_blobs(
n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
) # Unequal variance
X_filtered = np.vstack(
(X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])
) # Unevenly sized blobs
y_filtered = [0] * 500 + [1] * 100 + [2] * 10
# %%
# We can visualize the resulting data:
import matplotlib.pyplot as plt
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 12))
axs[0, 0].scatter(X[:, 0], X[:, 1], c=y)
axs[0, 0].set_title("Mixture of Gaussian Blobs")
axs[0, 1].scatter(X_aniso[:, 0], X_aniso[:, 1], c=y)
axs[0, 1].set_title("Anisotropically Distributed Blobs")
axs[1, 0].scatter(X_varied[:, 0], X_varied[:, 1], c=y_varied)
axs[1, 0].set_title("Unequal Variance")
axs[1, 1].scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_filtered)
axs[1, 1].set_title("Unevenly Sized Blobs")
plt.suptitle("Ground truth clusters").set_y(0.95)
plt.show()
# %%
# Fit models and plot results
# ---------------------------
#
# The previously generated data is now used to show how
# :class:`~sklearn.cluster.KMeans` behaves in the following scenarios:
#
# - Non-optimal number of clusters: in a real setting there is no uniquely
# defined **true** number of clusters. An appropriate number of clusters has
# to be decided from data-based criteria and knowledge of the intended goal.
# - Anisotropically distributed blobs: k-means consists of minimizing sample's
# euclidean distances to the centroid of the cluster they are assigned to. As
# a consequence, k-means is more appropriate for clusters that are isotropic
# and normally distributed (i.e. spherical gaussians).
# - Unequal variance: k-means is equivalent to taking the maximum likelihood
# estimator for a "mixture" of k gaussian distributions with the same
# variances but with possibly different means.
# - Unevenly sized blobs: there is no theoretical result about k-means that
# states that it requires similar cluster sizes to perform well, yet
# minimizing euclidean distances does mean that the more sparse and
# high-dimensional the problem is, the higher is the need to run the algorithm
# with different centroid seeds to ensure a global minimal inertia.
from sklearn.cluster import KMeans
common_params = {
"n_init": "auto",
"random_state": random_state,
}
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 12))
y_pred = KMeans(n_clusters=2, **common_params).fit_predict(X)
axs[0, 0].scatter(X[:, 0], X[:, 1], c=y_pred)
axs[0, 0].set_title("Non-optimal Number of Clusters")
y_pred = KMeans(n_clusters=3, **common_params).fit_predict(X_aniso)
axs[0, 1].scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
axs[0, 1].set_title("Anisotropically Distributed Blobs")
y_pred = KMeans(n_clusters=3, **common_params).fit_predict(X_varied)
axs[1, 0].scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
axs[1, 0].set_title("Unequal Variance")
y_pred = KMeans(n_clusters=3, **common_params).fit_predict(X_filtered)
axs[1, 1].scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
axs[1, 1].set_title("Unevenly Sized Blobs")
plt.suptitle("Unexpected KMeans clusters").set_y(0.95)
plt.show()
# %%
# Possible solutions
# ------------------
#
# For an example on how to find a correct number of blobs, see
# :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_silhouette_analysis.py`.
# In this case it suffices to set `n_clusters=3`.
y_pred = KMeans(n_clusters=3, **common_params).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Optimal Number of Clusters")
plt.show()
# %%
# To deal with unevenly sized blobs one can increase the number of random
# initializations. In this case we set `n_init=10` to avoid finding a
# sub-optimal local minimum. For more details see :ref:`kmeans_sparse_high_dim`.
y_pred = KMeans(n_clusters=3, n_init=10, random_state=random_state).fit_predict(
X_filtered
)
plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
plt.title("Unevenly Sized Blobs \nwith several initializations")
plt.show()
# %%
# As anisotropic and unequal variances are real limitations of the k-means
# algorithm, here we propose instead the use of
# :class:`~sklearn.mixture.GaussianMixture`, which also assumes gaussian
# clusters but does not impose any constraints on their variances. Notice that
# one still has to find the correct number of blobs (see
# :ref:`sphx_glr_auto_examples_mixture_plot_gmm_selection.py`).
#
# For an example on how other clustering methods deal with anisotropic or
# unequal variance blobs, see the example
# :ref:`sphx_glr_auto_examples_cluster_plot_cluster_comparison.py`.
from sklearn.mixture import GaussianMixture
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
y_pred = GaussianMixture(n_components=3).fit_predict(X_aniso)
ax1.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
ax1.set_title("Anisotropically Distributed Blobs")
y_pred = GaussianMixture(n_components=3).fit_predict(X_varied)
ax2.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
ax2.set_title("Unequal Variance")
plt.suptitle("Gaussian mixture clusters").set_y(0.95)
plt.show()
# %%
# Final remarks
# -------------
#
# In high-dimensional spaces, Euclidean distances tend to become inflated
# (not shown in this example). Running a dimensionality reduction algorithm
# prior to k-means clustering can alleviate this problem and speed up the
# computations (see the example
# :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`).
#
# In the case where clusters are known to be isotropic, have similar variance
# and are not too sparse, the k-means algorithm is quite effective and is one of
# the fastest clustering algorithms available. This advantage is lost if one has
# to restart it several times to avoid convergence to a local minimum.