87 lines
2.6 KiB
Python
87 lines
2.6 KiB
Python
|
"""
|
||
|
=========================================================
|
||
|
Pipelining: chaining a PCA and a logistic regression
|
||
|
=========================================================
|
||
|
|
||
|
The PCA does an unsupervised dimensionality reduction, while the logistic
|
||
|
regression does the prediction.
|
||
|
|
||
|
We use a GridSearchCV to set the dimensionality of the PCA
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Code source: Gaël Varoquaux
|
||
|
# Modified for documentation by Jaques Grobler
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
import polars as pl
|
||
|
|
||
|
from sklearn import datasets
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
from sklearn.model_selection import GridSearchCV
|
||
|
from sklearn.pipeline import Pipeline
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
|
||
|
# Define a pipeline to search for the best combination of PCA truncation
|
||
|
# and classifier regularization.
|
||
|
pca = PCA()
|
||
|
# Define a Standard Scaler to normalize inputs
|
||
|
scaler = StandardScaler()
|
||
|
|
||
|
# set the tolerance to a large value to make the example faster
|
||
|
logistic = LogisticRegression(max_iter=10000, tol=0.1)
|
||
|
pipe = Pipeline(steps=[("scaler", scaler), ("pca", pca), ("logistic", logistic)])
|
||
|
|
||
|
X_digits, y_digits = datasets.load_digits(return_X_y=True)
|
||
|
# Parameters of pipelines can be set using '__' separated parameter names:
|
||
|
param_grid = {
|
||
|
"pca__n_components": [5, 15, 30, 45, 60],
|
||
|
"logistic__C": np.logspace(-4, 4, 4),
|
||
|
}
|
||
|
search = GridSearchCV(pipe, param_grid, n_jobs=2)
|
||
|
search.fit(X_digits, y_digits)
|
||
|
print("Best parameter (CV score=%0.3f):" % search.best_score_)
|
||
|
print(search.best_params_)
|
||
|
|
||
|
# Plot the PCA spectrum
|
||
|
pca.fit(X_digits)
|
||
|
|
||
|
fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6))
|
||
|
ax0.plot(
|
||
|
np.arange(1, pca.n_components_ + 1), pca.explained_variance_ratio_, "+", linewidth=2
|
||
|
)
|
||
|
ax0.set_ylabel("PCA explained variance ratio")
|
||
|
|
||
|
ax0.axvline(
|
||
|
search.best_estimator_.named_steps["pca"].n_components,
|
||
|
linestyle=":",
|
||
|
label="n_components chosen",
|
||
|
)
|
||
|
ax0.legend(prop=dict(size=12))
|
||
|
|
||
|
# For each number of components, find the best classifier results
|
||
|
components_col = "param_pca__n_components"
|
||
|
is_max_test_score = pl.col("mean_test_score") == pl.col("mean_test_score").max()
|
||
|
best_clfs = (
|
||
|
pl.LazyFrame(search.cv_results_)
|
||
|
.filter(is_max_test_score.over(components_col))
|
||
|
.unique(components_col)
|
||
|
.sort(components_col)
|
||
|
.collect()
|
||
|
)
|
||
|
ax1.errorbar(
|
||
|
best_clfs[components_col],
|
||
|
best_clfs["mean_test_score"],
|
||
|
yerr=best_clfs["std_test_score"],
|
||
|
)
|
||
|
ax1.set_ylabel("Classification accuracy (val)")
|
||
|
ax1.set_xlabel("n_components")
|
||
|
|
||
|
plt.xlim(-1, 70)
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|