sklearn/examples/model_selection/plot_grid_search_text_featu...

267 lines
9.0 KiB
Python
Raw Permalink Normal View History

2024-08-05 09:32:03 +02:00
"""
==========================================================
Sample pipeline for text feature extraction and evaluation
==========================================================
The dataset used in this example is :ref:`20newsgroups_dataset` which will be
automatically downloaded, cached and reused for the document classification
example.
In this example, we tune the hyperparameters of a particular classifier using a
:class:`~sklearn.model_selection.RandomizedSearchCV`. For a demo on the
performance of some other classifiers, see the
:ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
notebook.
"""
# Author: Olivier Grisel <olivier.grisel@ensta.org>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Mathieu Blondel <mathieu@mblondel.org>
# Arturo Amor <david-arturo.amor-quiroz@inria.fr>
# License: BSD 3 clause
# %%
# Data loading
# ------------
# We load two categories from the training set. You can adjust the number of
# categories by adding their names to the list or setting `categories=None` when
# calling the dataset loader :func:`~sklearn.datasets.fetch_20newsgroups` to get
# the 20 of them.
from sklearn.datasets import fetch_20newsgroups
categories = [
"alt.atheism",
"talk.religion.misc",
]
data_train = fetch_20newsgroups(
subset="train",
categories=categories,
shuffle=True,
random_state=42,
remove=("headers", "footers", "quotes"),
)
data_test = fetch_20newsgroups(
subset="test",
categories=categories,
shuffle=True,
random_state=42,
remove=("headers", "footers", "quotes"),
)
print(f"Loading 20 newsgroups dataset for {len(data_train.target_names)} categories:")
print(data_train.target_names)
print(f"{len(data_train.data)} documents")
# %%
# Pipeline with hyperparameter tuning
# -----------------------------------
#
# We define a pipeline combining a text feature vectorizer with a simple
# classifier yet effective for text classification.
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import ComplementNB
from sklearn.pipeline import Pipeline
pipeline = Pipeline(
[
("vect", TfidfVectorizer()),
("clf", ComplementNB()),
]
)
pipeline
# %%
# We define a grid of hyperparameters to be explored by the
# :class:`~sklearn.model_selection.RandomizedSearchCV`. Using a
# :class:`~sklearn.model_selection.GridSearchCV` instead would explore all the
# possible combinations on the grid, which can be costly to compute, whereas the
# parameter `n_iter` of the :class:`~sklearn.model_selection.RandomizedSearchCV`
# controls the number of different random combination that are evaluated. Notice
# that setting `n_iter` larger than the number of possible combinations in a
# grid would lead to repeating already-explored combinations. We search for the
# best parameter combination for both the feature extraction (`vect__`) and the
# classifier (`clf__`).
import numpy as np
parameter_grid = {
"vect__max_df": (0.2, 0.4, 0.6, 0.8, 1.0),
"vect__min_df": (1, 3, 5, 10),
"vect__ngram_range": ((1, 1), (1, 2)), # unigrams or bigrams
"vect__norm": ("l1", "l2"),
"clf__alpha": np.logspace(-6, 6, 13),
}
# %%
# In this case `n_iter=40` is not an exhaustive search of the hyperparameters'
# grid. In practice it would be interesting to increase the parameter `n_iter`
# to get a more informative analysis. As a consequence, the computional time
# increases. We can reduce it by taking advantage of the parallelisation over
# the parameter combinations evaluation by increasing the number of CPUs used
# via the parameter `n_jobs`.
from pprint import pprint
from sklearn.model_selection import RandomizedSearchCV
random_search = RandomizedSearchCV(
estimator=pipeline,
param_distributions=parameter_grid,
n_iter=40,
random_state=0,
n_jobs=2,
verbose=1,
)
print("Performing grid search...")
print("Hyperparameters to be evaluated:")
pprint(parameter_grid)
# %%
from time import time
t0 = time()
random_search.fit(data_train.data, data_train.target)
print(f"Done in {time() - t0:.3f}s")
# %%
print("Best parameters combination found:")
best_parameters = random_search.best_estimator_.get_params()
for param_name in sorted(parameter_grid.keys()):
print(f"{param_name}: {best_parameters[param_name]}")
# %%
test_accuracy = random_search.score(data_test.data, data_test.target)
print(
"Accuracy of the best parameters using the inner CV of "
f"the random search: {random_search.best_score_:.3f}"
)
print(f"Accuracy on test set: {test_accuracy:.3f}")
# %%
# The prefixes `vect` and `clf` are required to avoid possible ambiguities in
# the pipeline, but are not necessary for visualizing the results. Because of
# this, we define a function that will rename the tuned hyperparameters and
# improve the readability.
import pandas as pd
def shorten_param(param_name):
"""Remove components' prefixes in param_name."""
if "__" in param_name:
return param_name.rsplit("__", 1)[1]
return param_name
cv_results = pd.DataFrame(random_search.cv_results_)
cv_results = cv_results.rename(shorten_param, axis=1)
# %%
# We can use a `plotly.express.scatter
# <https://plotly.com/python-api-reference/generated/plotly.express.scatter.html>`_
# to visualize the trade-off between scoring time and mean test score (i.e. "CV
# score"). Passing the cursor over a given point displays the corresponding
# parameters. Error bars correspond to one standard deviation as computed in the
# different folds of the cross-validation.
import plotly.express as px
param_names = [shorten_param(name) for name in parameter_grid.keys()]
labels = {
"mean_score_time": "CV Score time (s)",
"mean_test_score": "CV score (accuracy)",
}
fig = px.scatter(
cv_results,
x="mean_score_time",
y="mean_test_score",
error_x="std_score_time",
error_y="std_test_score",
hover_data=param_names,
labels=labels,
)
fig.update_layout(
title={
"text": "trade-off between scoring time and mean test score",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
}
)
fig
# %%
# Notice that the cluster of models in the upper-left corner of the plot have
# the best trade-off between accuracy and scoring time. In this case, using
# bigrams increases the required scoring time without improving considerably the
# accuracy of the pipeline.
#
# .. note:: For more information on how to customize an automated tuning to
# maximize score and minimize scoring time, see the example notebook
# :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`.
#
# We can also use a `plotly.express.parallel_coordinates
# <https://plotly.com/python-api-reference/generated/plotly.express.parallel_coordinates.html>`_
# to further visualize the mean test score as a function of the tuned
# hyperparameters. This helps finding interactions between more than two
# hyperparameters and provide intuition on their relevance for improving the
# performance of a pipeline.
#
# We apply a `math.log10` transformation on the `alpha` axis to spread the
# active range and improve the readability of the plot. A value :math:`x` on
# said axis is to be understood as :math:`10^x`.
import math
column_results = param_names + ["mean_test_score", "mean_score_time"]
transform_funcs = dict.fromkeys(column_results, lambda x: x)
# Using a logarithmic scale for alpha
transform_funcs["alpha"] = math.log10
# L1 norms are mapped to index 1, and L2 norms to index 2
transform_funcs["norm"] = lambda x: 2 if x == "l2" else 1
# Unigrams are mapped to index 1 and bigrams to index 2
transform_funcs["ngram_range"] = lambda x: x[1]
fig = px.parallel_coordinates(
cv_results[column_results].apply(transform_funcs),
color="mean_test_score",
color_continuous_scale=px.colors.sequential.Viridis_r,
labels=labels,
)
fig.update_layout(
title={
"text": "Parallel coordinates plot of text classifier pipeline",
"y": 0.99,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
}
)
fig
# %%
# The parallel coordinates plot displays the values of the hyperparameters on
# different columns while the performance metric is color coded. It is possible
# to select a range of results by clicking and holding on any axis of the
# parallel coordinate plot. You can then slide (move) the range selection and
# cross two selections to see the intersections. You can undo a selection by
# clicking once again on the same axis.
#
# In particular for this hyperparameter search, it is interesting to notice that
# the top performing models do not seem to depend on the regularization `norm`,
# but they do depend on a trade-off between `max_df`, `min_df` and the
# regularization strength `alpha`. The reason is that including noisy features
# (i.e. `max_df` close to :math:`1.0` or `min_df` close to :math:`0`) tend to
# overfit and therefore require a stronger regularization to compensate. Having
# less features require less regularization and less scoring time.
#
# The best accuracy scores are obtained when `alpha` is between :math:`10^{-6}`
# and :math:`10^0`, regardless of the hyperparameter `norm`.