49 lines
1.1 KiB
Python
49 lines
1.1 KiB
Python
|
"""
|
||
|
=========================================
|
||
|
SVM: Maximum margin separating hyperplane
|
||
|
=========================================
|
||
|
|
||
|
Plot the maximum margin separating hyperplane within a two-class
|
||
|
separable dataset using a Support Vector Machine classifier with
|
||
|
linear kernel.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from sklearn import svm
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.inspection import DecisionBoundaryDisplay
|
||
|
|
||
|
# we create 40 separable points
|
||
|
X, y = make_blobs(n_samples=40, centers=2, random_state=6)
|
||
|
|
||
|
# fit the model, don't regularize for illustration purposes
|
||
|
clf = svm.SVC(kernel="linear", C=1000)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
|
||
|
|
||
|
# plot the decision function
|
||
|
ax = plt.gca()
|
||
|
DecisionBoundaryDisplay.from_estimator(
|
||
|
clf,
|
||
|
X,
|
||
|
plot_method="contour",
|
||
|
colors="k",
|
||
|
levels=[-1, 0, 1],
|
||
|
alpha=0.5,
|
||
|
linestyles=["--", "-", "--"],
|
||
|
ax=ax,
|
||
|
)
|
||
|
# plot support vectors
|
||
|
ax.scatter(
|
||
|
clf.support_vectors_[:, 0],
|
||
|
clf.support_vectors_[:, 1],
|
||
|
s=100,
|
||
|
linewidth=1,
|
||
|
facecolors="none",
|
||
|
edgecolors="k",
|
||
|
)
|
||
|
plt.show()
|