sklearn/doc/api_reference.py

1335 lines
47 KiB
Python
Raw Normal View History

2024-08-05 09:32:03 +02:00
"""Configuration for the API reference documentation."""
def _get_guide(*refs, is_developer=False):
"""Get the rst to refer to user/developer guide.
`refs` is several references that can be used in the :ref:`...` directive.
"""
if len(refs) == 1:
ref_desc = f":ref:`{refs[0]}` section"
elif len(refs) == 2:
ref_desc = f":ref:`{refs[0]}` and :ref:`{refs[1]}` sections"
else:
ref_desc = ", ".join(f":ref:`{ref}`" for ref in refs[:-1])
ref_desc += f", and :ref:`{refs[-1]}` sections"
guide_name = "Developer" if is_developer else "User"
return f"**{guide_name} guide.** See the {ref_desc} for further details."
def _get_submodule(module_name, submodule_name):
"""Get the submodule docstring and automatically add the hook.
`module_name` is e.g. `sklearn.feature_extraction`, and `submodule_name` is e.g.
`image`, so we get the docstring and hook for `sklearn.feature_extraction.image`
submodule. `module_name` is used to reset the current module because autosummary
automatically changes the current module.
"""
lines = [
f".. automodule:: {module_name}.{submodule_name}",
f".. currentmodule:: {module_name}",
]
return "\n\n".join(lines)
"""
CONFIGURING API_REFERENCE
=========================
API_REFERENCE maps each module name to a dictionary that consists of the following
components:
short_summary (required)
The text to be printed on the index page; it has nothing to do the API reference
page of each module.
description (required, `None` if not needed)
The additional description for the module to be placed under the module
docstring, before the sections start.
sections (required)
A list of sections, each of which consists of:
- title (required, `None` if not needed): the section title, commonly it should
not be `None` except for the first section of a module,
- description (optional): the optional additional description for the section,
- autosummary (required): an autosummary block, assuming current module is the
current module name.
Essentially, the rendered page would look like the following:
|---------------------------------------------------------------------------------|
| {{ module_name }} |
| ================= |
| {{ module_docstring }} |
| {{ description }} |
| |
| {{ section_title_1 }} <-------------- Optional if one wants the first |
| --------------------- section to directly follow |
| {{ section_description_1 }} without a second-level heading. |
| {{ section_autosummary_1 }} |
| |
| {{ section_title_2 }} |
| --------------------- |
| {{ section_description_2 }} |
| {{ section_autosummary_2 }} |
| |
| More sections... |
|---------------------------------------------------------------------------------|
Hooks will be automatically generated for each module and each section. For a module,
e.g., `sklearn.feature_extraction`, the hook would be `feature_extraction_ref`; for a
section, e.g., "From text" under `sklearn.feature_extraction`, the hook would be
`feature_extraction_ref-from-text`. However, note that a better way is to refer using
the :mod: directive, e.g., :mod:`sklearn.feature_extraction` for the module and
:mod:`sklearn.feature_extraction.text` for the section. Only in case that a section
is not a particular submodule does the hook become useful, e.g., the "Loaders" section
under `sklearn.datasets`.
"""
API_REFERENCE = {
"sklearn": {
"short_summary": "Settings and information tools.",
"description": None,
"sections": [
{
"title": None,
"autosummary": [
"config_context",
"get_config",
"set_config",
"show_versions",
],
},
],
},
"sklearn.base": {
"short_summary": "Base classes and utility functions.",
"description": None,
"sections": [
{
"title": None,
"autosummary": [
"BaseEstimator",
"BiclusterMixin",
"ClassNamePrefixFeaturesOutMixin",
"ClassifierMixin",
"ClusterMixin",
"DensityMixin",
"MetaEstimatorMixin",
"OneToOneFeatureMixin",
"OutlierMixin",
"RegressorMixin",
"TransformerMixin",
"clone",
"is_classifier",
"is_regressor",
],
}
],
},
"sklearn.calibration": {
"short_summary": "Probability calibration.",
"description": _get_guide("calibration"),
"sections": [
{
"title": None,
"autosummary": ["CalibratedClassifierCV", "calibration_curve"],
},
{
"title": "Visualization",
"autosummary": ["CalibrationDisplay"],
},
],
},
"sklearn.cluster": {
"short_summary": "Clustering.",
"description": _get_guide("clustering", "biclustering"),
"sections": [
{
"title": None,
"autosummary": [
"AffinityPropagation",
"AgglomerativeClustering",
"Birch",
"BisectingKMeans",
"DBSCAN",
"FeatureAgglomeration",
"HDBSCAN",
"KMeans",
"MeanShift",
"MiniBatchKMeans",
"OPTICS",
"SpectralBiclustering",
"SpectralClustering",
"SpectralCoclustering",
"affinity_propagation",
"cluster_optics_dbscan",
"cluster_optics_xi",
"compute_optics_graph",
"dbscan",
"estimate_bandwidth",
"k_means",
"kmeans_plusplus",
"mean_shift",
"spectral_clustering",
"ward_tree",
],
},
],
},
"sklearn.compose": {
"short_summary": "Composite estimators.",
"description": _get_guide("combining_estimators"),
"sections": [
{
"title": None,
"autosummary": [
"ColumnTransformer",
"TransformedTargetRegressor",
"make_column_selector",
"make_column_transformer",
],
},
],
},
"sklearn.covariance": {
"short_summary": "Covariance estimation.",
"description": _get_guide("covariance"),
"sections": [
{
"title": None,
"autosummary": [
"EllipticEnvelope",
"EmpiricalCovariance",
"GraphicalLasso",
"GraphicalLassoCV",
"LedoitWolf",
"MinCovDet",
"OAS",
"ShrunkCovariance",
"empirical_covariance",
"graphical_lasso",
"ledoit_wolf",
"ledoit_wolf_shrinkage",
"oas",
"shrunk_covariance",
],
},
],
},
"sklearn.cross_decomposition": {
"short_summary": "Cross decomposition.",
"description": _get_guide("cross_decomposition"),
"sections": [
{
"title": None,
"autosummary": ["CCA", "PLSCanonical", "PLSRegression", "PLSSVD"],
},
],
},
"sklearn.datasets": {
"short_summary": "Datasets.",
"description": _get_guide("datasets"),
"sections": [
{
"title": "Loaders",
"autosummary": [
"clear_data_home",
"dump_svmlight_file",
"fetch_20newsgroups",
"fetch_20newsgroups_vectorized",
"fetch_california_housing",
"fetch_covtype",
"fetch_kddcup99",
"fetch_lfw_pairs",
"fetch_lfw_people",
"fetch_olivetti_faces",
"fetch_openml",
"fetch_rcv1",
"fetch_species_distributions",
"get_data_home",
"load_breast_cancer",
"load_diabetes",
"load_digits",
"load_files",
"load_iris",
"load_linnerud",
"load_sample_image",
"load_sample_images",
"load_svmlight_file",
"load_svmlight_files",
"load_wine",
],
},
{
"title": "Sample generators",
"autosummary": [
"make_biclusters",
"make_blobs",
"make_checkerboard",
"make_circles",
"make_classification",
"make_friedman1",
"make_friedman2",
"make_friedman3",
"make_gaussian_quantiles",
"make_hastie_10_2",
"make_low_rank_matrix",
"make_moons",
"make_multilabel_classification",
"make_regression",
"make_s_curve",
"make_sparse_coded_signal",
"make_sparse_spd_matrix",
"make_sparse_uncorrelated",
"make_spd_matrix",
"make_swiss_roll",
],
},
],
},
"sklearn.decomposition": {
"short_summary": "Matrix decomposition.",
"description": _get_guide("decompositions"),
"sections": [
{
"title": None,
"autosummary": [
"DictionaryLearning",
"FactorAnalysis",
"FastICA",
"IncrementalPCA",
"KernelPCA",
"LatentDirichletAllocation",
"MiniBatchDictionaryLearning",
"MiniBatchNMF",
"MiniBatchSparsePCA",
"NMF",
"PCA",
"SparseCoder",
"SparsePCA",
"TruncatedSVD",
"dict_learning",
"dict_learning_online",
"fastica",
"non_negative_factorization",
"sparse_encode",
],
},
],
},
"sklearn.discriminant_analysis": {
"short_summary": "Discriminant analysis.",
"description": _get_guide("lda_qda"),
"sections": [
{
"title": None,
"autosummary": [
"LinearDiscriminantAnalysis",
"QuadraticDiscriminantAnalysis",
],
},
],
},
"sklearn.dummy": {
"short_summary": "Dummy estimators.",
"description": _get_guide("model_evaluation"),
"sections": [
{
"title": None,
"autosummary": ["DummyClassifier", "DummyRegressor"],
},
],
},
"sklearn.ensemble": {
"short_summary": "Ensemble methods.",
"description": _get_guide("ensemble"),
"sections": [
{
"title": None,
"autosummary": [
"AdaBoostClassifier",
"AdaBoostRegressor",
"BaggingClassifier",
"BaggingRegressor",
"ExtraTreesClassifier",
"ExtraTreesRegressor",
"GradientBoostingClassifier",
"GradientBoostingRegressor",
"HistGradientBoostingClassifier",
"HistGradientBoostingRegressor",
"IsolationForest",
"RandomForestClassifier",
"RandomForestRegressor",
"RandomTreesEmbedding",
"StackingClassifier",
"StackingRegressor",
"VotingClassifier",
"VotingRegressor",
],
},
],
},
"sklearn.exceptions": {
"short_summary": "Exceptions and warnings.",
"description": None,
"sections": [
{
"title": None,
"autosummary": [
"ConvergenceWarning",
"DataConversionWarning",
"DataDimensionalityWarning",
"EfficiencyWarning",
"FitFailedWarning",
"InconsistentVersionWarning",
"NotFittedError",
"UndefinedMetricWarning",
],
},
],
},
"sklearn.experimental": {
"short_summary": "Experimental tools.",
"description": None,
"sections": [
{
"title": None,
"autosummary": ["enable_halving_search_cv", "enable_iterative_imputer"],
},
],
},
"sklearn.feature_extraction": {
"short_summary": "Feature extraction.",
"description": _get_guide("feature_extraction"),
"sections": [
{
"title": None,
"autosummary": ["DictVectorizer", "FeatureHasher"],
},
{
"title": "From images",
"description": _get_submodule("sklearn.feature_extraction", "image"),
"autosummary": [
"image.PatchExtractor",
"image.extract_patches_2d",
"image.grid_to_graph",
"image.img_to_graph",
"image.reconstruct_from_patches_2d",
],
},
{
"title": "From text",
"description": _get_submodule("sklearn.feature_extraction", "text"),
"autosummary": [
"text.CountVectorizer",
"text.HashingVectorizer",
"text.TfidfTransformer",
"text.TfidfVectorizer",
],
},
],
},
"sklearn.feature_selection": {
"short_summary": "Feature selection.",
"description": _get_guide("feature_selection"),
"sections": [
{
"title": None,
"autosummary": [
"GenericUnivariateSelect",
"RFE",
"RFECV",
"SelectFdr",
"SelectFpr",
"SelectFromModel",
"SelectFwe",
"SelectKBest",
"SelectPercentile",
"SelectorMixin",
"SequentialFeatureSelector",
"VarianceThreshold",
"chi2",
"f_classif",
"f_regression",
"mutual_info_classif",
"mutual_info_regression",
"r_regression",
],
},
],
},
"sklearn.gaussian_process": {
"short_summary": "Gaussian processes.",
"description": _get_guide("gaussian_process"),
"sections": [
{
"title": None,
"autosummary": [
"GaussianProcessClassifier",
"GaussianProcessRegressor",
],
},
{
"title": "Kernels",
"description": _get_submodule("sklearn.gaussian_process", "kernels"),
"autosummary": [
"kernels.CompoundKernel",
"kernels.ConstantKernel",
"kernels.DotProduct",
"kernels.ExpSineSquared",
"kernels.Exponentiation",
"kernels.Hyperparameter",
"kernels.Kernel",
"kernels.Matern",
"kernels.PairwiseKernel",
"kernels.Product",
"kernels.RBF",
"kernels.RationalQuadratic",
"kernels.Sum",
"kernels.WhiteKernel",
],
},
],
},
"sklearn.impute": {
"short_summary": "Imputation.",
"description": _get_guide("impute"),
"sections": [
{
"title": None,
"autosummary": [
"IterativeImputer",
"KNNImputer",
"MissingIndicator",
"SimpleImputer",
],
},
],
},
"sklearn.inspection": {
"short_summary": "Inspection.",
"description": _get_guide("inspection"),
"sections": [
{
"title": None,
"autosummary": ["partial_dependence", "permutation_importance"],
},
{
"title": "Plotting",
"autosummary": ["DecisionBoundaryDisplay", "PartialDependenceDisplay"],
},
],
},
"sklearn.isotonic": {
"short_summary": "Isotonic regression.",
"description": _get_guide("isotonic"),
"sections": [
{
"title": None,
"autosummary": [
"IsotonicRegression",
"check_increasing",
"isotonic_regression",
],
},
],
},
"sklearn.kernel_approximation": {
"short_summary": "Isotonic regression.",
"description": _get_guide("kernel_approximation"),
"sections": [
{
"title": None,
"autosummary": [
"AdditiveChi2Sampler",
"Nystroem",
"PolynomialCountSketch",
"RBFSampler",
"SkewedChi2Sampler",
],
},
],
},
"sklearn.kernel_ridge": {
"short_summary": "Kernel ridge regression.",
"description": _get_guide("kernel_ridge"),
"sections": [
{
"title": None,
"autosummary": ["KernelRidge"],
},
],
},
"sklearn.linear_model": {
"short_summary": "Generalized linear models.",
"description": (
_get_guide("linear_model")
+ "\n\nThe following subsections are only rough guidelines: the same "
"estimator can fall into multiple categories, depending on its parameters."
),
"sections": [
{
"title": "Linear classifiers",
"autosummary": [
"LogisticRegression",
"LogisticRegressionCV",
"PassiveAggressiveClassifier",
"Perceptron",
"RidgeClassifier",
"RidgeClassifierCV",
"SGDClassifier",
"SGDOneClassSVM",
],
},
{
"title": "Classical linear regressors",
"autosummary": ["LinearRegression", "Ridge", "RidgeCV", "SGDRegressor"],
},
{
"title": "Regressors with variable selection",
"description": (
"The following estimators have built-in variable selection fitting "
"procedures, but any estimator using a L1 or elastic-net penalty "
"also performs variable selection: typically "
":class:`~linear_model.SGDRegressor` or "
":class:`~sklearn.linear_model.SGDClassifier` with an appropriate "
"penalty."
),
"autosummary": [
"ElasticNet",
"ElasticNetCV",
"Lars",
"LarsCV",
"Lasso",
"LassoCV",
"LassoLars",
"LassoLarsCV",
"LassoLarsIC",
"OrthogonalMatchingPursuit",
"OrthogonalMatchingPursuitCV",
],
},
{
"title": "Bayesian regressors",
"autosummary": ["ARDRegression", "BayesianRidge"],
},
{
"title": "Multi-task linear regressors with variable selection",
"description": (
"These estimators fit multiple regression problems (or tasks)"
" jointly, while inducing sparse coefficients. While the inferred"
" coefficients may differ between the tasks, they are constrained"
" to agree on the features that are selected (non-zero"
" coefficients)."
),
"autosummary": [
"MultiTaskElasticNet",
"MultiTaskElasticNetCV",
"MultiTaskLasso",
"MultiTaskLassoCV",
],
},
{
"title": "Outlier-robust regressors",
"description": (
"Any estimator using the Huber loss would also be robust to "
"outliers, e.g., :class:`~linear_model.SGDRegressor` with "
"``loss='huber'``."
),
"autosummary": [
"HuberRegressor",
"QuantileRegressor",
"RANSACRegressor",
"TheilSenRegressor",
],
},
{
"title": "Generalized linear models (GLM) for regression",
"description": (
"These models allow for response variables to have error "
"distributions other than a normal distribution."
),
"autosummary": [
"GammaRegressor",
"PoissonRegressor",
"TweedieRegressor",
],
},
{
"title": "Miscellaneous",
"autosummary": [
"PassiveAggressiveRegressor",
"enet_path",
"lars_path",
"lars_path_gram",
"lasso_path",
"orthogonal_mp",
"orthogonal_mp_gram",
"ridge_regression",
],
},
],
},
"sklearn.manifold": {
"short_summary": "Manifold learning.",
"description": _get_guide("manifold"),
"sections": [
{
"title": None,
"autosummary": [
"Isomap",
"LocallyLinearEmbedding",
"MDS",
"SpectralEmbedding",
"TSNE",
"locally_linear_embedding",
"smacof",
"spectral_embedding",
"trustworthiness",
],
},
],
},
"sklearn.metrics": {
"short_summary": "Metrics.",
"description": _get_guide("model_evaluation", "metrics"),
"sections": [
{
"title": "Model selection interface",
"description": _get_guide("scoring_parameter"),
"autosummary": [
"check_scoring",
"get_scorer",
"get_scorer_names",
"make_scorer",
],
},
{
"title": "Classification metrics",
"description": _get_guide("classification_metrics"),
"autosummary": [
"accuracy_score",
"auc",
"average_precision_score",
"balanced_accuracy_score",
"brier_score_loss",
"class_likelihood_ratios",
"classification_report",
"cohen_kappa_score",
"confusion_matrix",
"d2_log_loss_score",
"dcg_score",
"det_curve",
"f1_score",
"fbeta_score",
"hamming_loss",
"hinge_loss",
"jaccard_score",
"log_loss",
"matthews_corrcoef",
"multilabel_confusion_matrix",
"ndcg_score",
"precision_recall_curve",
"precision_recall_fscore_support",
"precision_score",
"recall_score",
"roc_auc_score",
"roc_curve",
"top_k_accuracy_score",
"zero_one_loss",
],
},
{
"title": "Regression metrics",
"description": _get_guide("regression_metrics"),
"autosummary": [
"d2_absolute_error_score",
"d2_pinball_score",
"d2_tweedie_score",
"explained_variance_score",
"max_error",
"mean_absolute_error",
"mean_absolute_percentage_error",
"mean_gamma_deviance",
"mean_pinball_loss",
"mean_poisson_deviance",
"mean_squared_error",
"mean_squared_log_error",
"mean_tweedie_deviance",
"median_absolute_error",
"r2_score",
"root_mean_squared_error",
"root_mean_squared_log_error",
],
},
{
"title": "Multilabel ranking metrics",
"description": _get_guide("multilabel_ranking_metrics"),
"autosummary": [
"coverage_error",
"label_ranking_average_precision_score",
"label_ranking_loss",
],
},
{
"title": "Clustering metrics",
"description": (
_get_submodule("sklearn.metrics", "cluster")
+ "\n\n"
+ _get_guide("clustering_evaluation")
),
"autosummary": [
"adjusted_mutual_info_score",
"adjusted_rand_score",
"calinski_harabasz_score",
"cluster.contingency_matrix",
"cluster.pair_confusion_matrix",
"completeness_score",
"davies_bouldin_score",
"fowlkes_mallows_score",
"homogeneity_completeness_v_measure",
"homogeneity_score",
"mutual_info_score",
"normalized_mutual_info_score",
"rand_score",
"silhouette_samples",
"silhouette_score",
"v_measure_score",
],
},
{
"title": "Biclustering metrics",
"description": _get_guide("biclustering_evaluation"),
"autosummary": ["consensus_score"],
},
{
"title": "Distance metrics",
"autosummary": ["DistanceMetric"],
},
{
"title": "Pairwise metrics",
"description": (
_get_submodule("sklearn.metrics", "pairwise")
+ "\n\n"
+ _get_guide("metrics")
),
"autosummary": [
"pairwise.additive_chi2_kernel",
"pairwise.chi2_kernel",
"pairwise.cosine_distances",
"pairwise.cosine_similarity",
"pairwise.distance_metrics",
"pairwise.euclidean_distances",
"pairwise.haversine_distances",
"pairwise.kernel_metrics",
"pairwise.laplacian_kernel",
"pairwise.linear_kernel",
"pairwise.manhattan_distances",
"pairwise.nan_euclidean_distances",
"pairwise.paired_cosine_distances",
"pairwise.paired_distances",
"pairwise.paired_euclidean_distances",
"pairwise.paired_manhattan_distances",
"pairwise.pairwise_kernels",
"pairwise.polynomial_kernel",
"pairwise.rbf_kernel",
"pairwise.sigmoid_kernel",
"pairwise_distances",
"pairwise_distances_argmin",
"pairwise_distances_argmin_min",
"pairwise_distances_chunked",
],
},
{
"title": "Plotting",
"description": _get_guide("visualizations"),
"autosummary": [
"ConfusionMatrixDisplay",
"DetCurveDisplay",
"PrecisionRecallDisplay",
"PredictionErrorDisplay",
"RocCurveDisplay",
],
},
],
},
"sklearn.mixture": {
"short_summary": "Gaussian mixture models.",
"description": _get_guide("mixture"),
"sections": [
{
"title": None,
"autosummary": ["BayesianGaussianMixture", "GaussianMixture"],
},
],
},
"sklearn.model_selection": {
"short_summary": "Model selection.",
"description": _get_guide("cross_validation", "grid_search", "learning_curve"),
"sections": [
{
"title": "Splitters",
"autosummary": [
"GroupKFold",
"GroupShuffleSplit",
"KFold",
"LeaveOneGroupOut",
"LeaveOneOut",
"LeavePGroupsOut",
"LeavePOut",
"PredefinedSplit",
"RepeatedKFold",
"RepeatedStratifiedKFold",
"ShuffleSplit",
"StratifiedGroupKFold",
"StratifiedKFold",
"StratifiedShuffleSplit",
"TimeSeriesSplit",
"check_cv",
"train_test_split",
],
},
{
"title": "Hyper-parameter optimizers",
"autosummary": [
"GridSearchCV",
"HalvingGridSearchCV",
"HalvingRandomSearchCV",
"ParameterGrid",
"ParameterSampler",
"RandomizedSearchCV",
],
},
{
"title": "Post-fit model tuning",
"autosummary": [
"FixedThresholdClassifier",
"TunedThresholdClassifierCV",
],
},
{
"title": "Model validation",
"autosummary": [
"cross_val_predict",
"cross_val_score",
"cross_validate",
"learning_curve",
"permutation_test_score",
"validation_curve",
],
},
{
"title": "Visualization",
"autosummary": ["LearningCurveDisplay", "ValidationCurveDisplay"],
},
],
},
"sklearn.multiclass": {
"short_summary": "Multiclass classification.",
"description": _get_guide("multiclass_classification"),
"sections": [
{
"title": None,
"autosummary": [
"OneVsOneClassifier",
"OneVsRestClassifier",
"OutputCodeClassifier",
],
},
],
},
"sklearn.multioutput": {
"short_summary": "Multioutput regression and classification.",
"description": _get_guide(
"multilabel_classification",
"multiclass_multioutput_classification",
"multioutput_regression",
),
"sections": [
{
"title": None,
"autosummary": [
"ClassifierChain",
"MultiOutputClassifier",
"MultiOutputRegressor",
"RegressorChain",
],
},
],
},
"sklearn.naive_bayes": {
"short_summary": "Naive Bayes.",
"description": _get_guide("naive_bayes"),
"sections": [
{
"title": None,
"autosummary": [
"BernoulliNB",
"CategoricalNB",
"ComplementNB",
"GaussianNB",
"MultinomialNB",
],
},
],
},
"sklearn.neighbors": {
"short_summary": "Nearest neighbors.",
"description": _get_guide("neighbors"),
"sections": [
{
"title": None,
"autosummary": [
"BallTree",
"KDTree",
"KNeighborsClassifier",
"KNeighborsRegressor",
"KNeighborsTransformer",
"KernelDensity",
"LocalOutlierFactor",
"NearestCentroid",
"NearestNeighbors",
"NeighborhoodComponentsAnalysis",
"RadiusNeighborsClassifier",
"RadiusNeighborsRegressor",
"RadiusNeighborsTransformer",
"kneighbors_graph",
"radius_neighbors_graph",
"sort_graph_by_row_values",
],
},
],
},
"sklearn.neural_network": {
"short_summary": "Neural network models.",
"description": _get_guide(
"neural_networks_supervised", "neural_networks_unsupervised"
),
"sections": [
{
"title": None,
"autosummary": ["BernoulliRBM", "MLPClassifier", "MLPRegressor"],
},
],
},
"sklearn.pipeline": {
"short_summary": "Pipeline.",
"description": _get_guide("combining_estimators"),
"sections": [
{
"title": None,
"autosummary": [
"FeatureUnion",
"Pipeline",
"make_pipeline",
"make_union",
],
},
],
},
"sklearn.preprocessing": {
"short_summary": "Preprocessing and normalization.",
"description": _get_guide("preprocessing"),
"sections": [
{
"title": None,
"autosummary": [
"Binarizer",
"FunctionTransformer",
"KBinsDiscretizer",
"KernelCenterer",
"LabelBinarizer",
"LabelEncoder",
"MaxAbsScaler",
"MinMaxScaler",
"MultiLabelBinarizer",
"Normalizer",
"OneHotEncoder",
"OrdinalEncoder",
"PolynomialFeatures",
"PowerTransformer",
"QuantileTransformer",
"RobustScaler",
"SplineTransformer",
"StandardScaler",
"TargetEncoder",
"add_dummy_feature",
"binarize",
"label_binarize",
"maxabs_scale",
"minmax_scale",
"normalize",
"power_transform",
"quantile_transform",
"robust_scale",
"scale",
],
},
],
},
"sklearn.random_projection": {
"short_summary": "Random projection.",
"description": _get_guide("random_projection"),
"sections": [
{
"title": None,
"autosummary": [
"GaussianRandomProjection",
"SparseRandomProjection",
"johnson_lindenstrauss_min_dim",
],
},
],
},
"sklearn.semi_supervised": {
"short_summary": "Semi-supervised learning.",
"description": _get_guide("semi_supervised"),
"sections": [
{
"title": None,
"autosummary": [
"LabelPropagation",
"LabelSpreading",
"SelfTrainingClassifier",
],
},
],
},
"sklearn.svm": {
"short_summary": "Support vector machines.",
"description": _get_guide("svm"),
"sections": [
{
"title": None,
"autosummary": [
"LinearSVC",
"LinearSVR",
"NuSVC",
"NuSVR",
"OneClassSVM",
"SVC",
"SVR",
"l1_min_c",
],
},
],
},
"sklearn.tree": {
"short_summary": "Decision trees.",
"description": _get_guide("tree"),
"sections": [
{
"title": None,
"autosummary": [
"DecisionTreeClassifier",
"DecisionTreeRegressor",
"ExtraTreeClassifier",
"ExtraTreeRegressor",
],
},
{
"title": "Exporting",
"autosummary": ["export_graphviz", "export_text"],
},
{
"title": "Plotting",
"autosummary": ["plot_tree"],
},
],
},
"sklearn.utils": {
"short_summary": "Utilities.",
"description": _get_guide("developers-utils", is_developer=True),
"sections": [
{
"title": None,
"autosummary": [
"Bunch",
"_safe_indexing",
"as_float_array",
"assert_all_finite",
"deprecated",
"estimator_html_repr",
"gen_batches",
"gen_even_slices",
"indexable",
"murmurhash3_32",
"resample",
"safe_mask",
"safe_sqr",
"shuffle",
],
},
{
"title": "Input and parameter validation",
"description": _get_submodule("sklearn.utils", "validation"),
"autosummary": [
"check_X_y",
"check_array",
"check_consistent_length",
"check_random_state",
"check_scalar",
"validation.check_is_fitted",
"validation.check_memory",
"validation.check_symmetric",
"validation.column_or_1d",
"validation.has_fit_parameter",
],
},
{
"title": "Meta-estimators",
"description": _get_submodule("sklearn.utils", "metaestimators"),
"autosummary": ["metaestimators.available_if"],
},
{
"title": "Weight handling based on class labels",
"description": _get_submodule("sklearn.utils", "class_weight"),
"autosummary": [
"class_weight.compute_class_weight",
"class_weight.compute_sample_weight",
],
},
{
"title": "Dealing with multiclass target in classifiers",
"description": _get_submodule("sklearn.utils", "multiclass"),
"autosummary": [
"multiclass.is_multilabel",
"multiclass.type_of_target",
"multiclass.unique_labels",
],
},
{
"title": "Optimal mathematical operations",
"description": _get_submodule("sklearn.utils", "extmath"),
"autosummary": [
"extmath.density",
"extmath.fast_logdet",
"extmath.randomized_range_finder",
"extmath.randomized_svd",
"extmath.safe_sparse_dot",
"extmath.weighted_mode",
],
},
{
"title": "Working with sparse matrices and arrays",
"description": _get_submodule("sklearn.utils", "sparsefuncs"),
"autosummary": [
"sparsefuncs.incr_mean_variance_axis",
"sparsefuncs.inplace_column_scale",
"sparsefuncs.inplace_csr_column_scale",
"sparsefuncs.inplace_row_scale",
"sparsefuncs.inplace_swap_column",
"sparsefuncs.inplace_swap_row",
"sparsefuncs.mean_variance_axis",
],
},
{
"title": None,
"description": _get_submodule("sklearn.utils", "sparsefuncs_fast"),
"autosummary": [
"sparsefuncs_fast.inplace_csr_row_normalize_l1",
"sparsefuncs_fast.inplace_csr_row_normalize_l2",
],
},
{
"title": "Working with graphs",
"description": _get_submodule("sklearn.utils", "graph"),
"autosummary": ["graph.single_source_shortest_path_length"],
},
{
"title": "Random sampling",
"description": _get_submodule("sklearn.utils", "random"),
"autosummary": ["random.sample_without_replacement"],
},
{
"title": "Auxiliary functions that operate on arrays",
"description": _get_submodule("sklearn.utils", "arrayfuncs"),
"autosummary": ["arrayfuncs.min_pos"],
},
{
"title": "Metadata routing",
"description": (
_get_submodule("sklearn.utils", "metadata_routing")
+ "\n\n"
+ _get_guide("metadata_routing")
),
"autosummary": [
"metadata_routing.MetadataRequest",
"metadata_routing.MetadataRouter",
"metadata_routing.MethodMapping",
"metadata_routing.get_routing_for_object",
"metadata_routing.process_routing",
],
},
{
"title": "Discovering scikit-learn objects",
"description": _get_submodule("sklearn.utils", "discovery"),
"autosummary": [
"discovery.all_displays",
"discovery.all_estimators",
"discovery.all_functions",
],
},
{
"title": "API compatibility checkers",
"description": _get_submodule("sklearn.utils", "estimator_checks"),
"autosummary": [
"estimator_checks.check_estimator",
"estimator_checks.parametrize_with_checks",
],
},
{
"title": "Parallel computing",
"description": _get_submodule("sklearn.utils", "parallel"),
"autosummary": [
"parallel.Parallel",
"parallel.delayed",
],
},
],
},
}
"""
CONFIGURING DEPRECATED_API_REFERENCE
====================================
DEPRECATED_API_REFERENCE maps each deprecation target version to a corresponding
autosummary block. It will be placed at the bottom of the API index page under the
"Recently deprecated" section. Essentially, the rendered section would look like the
following:
|------------------------------------------|
| To be removed in {{ version_1 }} |
| -------------------------------- |
| {{ autosummary_1 }} |
| |
| To be removed in {{ version_2 }} |
| -------------------------------- |
| {{ autosummary_2 }} |
| |
| More versions... |
|------------------------------------------|
Note that the autosummary here assumes that the current module is `sklearn`, i.e., if
`sklearn.utils.Memory` is deprecated, one should put `utils.Memory` in the "entries"
slot of the autosummary block.
Example:
DEPRECATED_API_REFERENCE = {
"0.24": [
"model_selection.fit_grid_point",
"utils.safe_indexing",
],
}
"""
DEPRECATED_API_REFERENCE = {
"1.7": [
"utils.parallel_backend",
"utils.register_parallel_backend",
]
} # type: ignore