60 lines
1.6 KiB
Python
60 lines
1.6 KiB
Python
|
"""
|
||
|
=========================================================
|
||
|
Feature agglomeration
|
||
|
=========================================================
|
||
|
|
||
|
These images show how similar features are merged together using
|
||
|
feature agglomeration.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Code source: Gaël Varoquaux
|
||
|
# Modified for documentation by Jaques Grobler
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn import cluster, datasets
|
||
|
from sklearn.feature_extraction.image import grid_to_graph
|
||
|
|
||
|
digits = datasets.load_digits()
|
||
|
images = digits.images
|
||
|
X = np.reshape(images, (len(images), -1))
|
||
|
connectivity = grid_to_graph(*images[0].shape)
|
||
|
|
||
|
agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32)
|
||
|
|
||
|
agglo.fit(X)
|
||
|
X_reduced = agglo.transform(X)
|
||
|
|
||
|
X_restored = agglo.inverse_transform(X_reduced)
|
||
|
images_restored = np.reshape(X_restored, images.shape)
|
||
|
plt.figure(1, figsize=(4, 3.5))
|
||
|
plt.clf()
|
||
|
plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.91)
|
||
|
for i in range(4):
|
||
|
plt.subplot(3, 4, i + 1)
|
||
|
plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest")
|
||
|
plt.xticks(())
|
||
|
plt.yticks(())
|
||
|
if i == 1:
|
||
|
plt.title("Original data")
|
||
|
plt.subplot(3, 4, 4 + i + 1)
|
||
|
plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest")
|
||
|
if i == 1:
|
||
|
plt.title("Agglomerated data")
|
||
|
plt.xticks(())
|
||
|
plt.yticks(())
|
||
|
|
||
|
plt.subplot(3, 4, 10)
|
||
|
plt.imshow(
|
||
|
np.reshape(agglo.labels_, images[0].shape),
|
||
|
interpolation="nearest",
|
||
|
cmap=plt.cm.nipy_spectral,
|
||
|
)
|
||
|
plt.xticks(())
|
||
|
plt.yticks(())
|
||
|
plt.title("Labels")
|
||
|
plt.show()
|