95 lines
2.9 KiB
Python
95 lines
2.9 KiB
Python
|
"""
|
||
|
===========================================================
|
||
|
Plot class probabilities calculated by the VotingClassifier
|
||
|
===========================================================
|
||
|
|
||
|
.. currentmodule:: sklearn
|
||
|
|
||
|
Plot the class probabilities of the first sample in a toy dataset predicted by
|
||
|
three different classifiers and averaged by the
|
||
|
:class:`~ensemble.VotingClassifier`.
|
||
|
|
||
|
First, three exemplary classifiers are initialized
|
||
|
(:class:`~linear_model.LogisticRegression`, :class:`~naive_bayes.GaussianNB`,
|
||
|
and :class:`~ensemble.RandomForestClassifier`) and used to initialize a
|
||
|
soft-voting :class:`~ensemble.VotingClassifier` with weights `[1, 1, 5]`, which
|
||
|
means that the predicted probabilities of the
|
||
|
:class:`~ensemble.RandomForestClassifier` count 5 times as much as the weights
|
||
|
of the other classifiers when the averaged probability is calculated.
|
||
|
|
||
|
To visualize the probability weighting, we fit each classifier on the training
|
||
|
set and plot the predicted class probabilities for the first sample in this
|
||
|
example dataset.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
from sklearn.naive_bayes import GaussianNB
|
||
|
|
||
|
clf1 = LogisticRegression(max_iter=1000, random_state=123)
|
||
|
clf2 = RandomForestClassifier(n_estimators=100, random_state=123)
|
||
|
clf3 = GaussianNB()
|
||
|
X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
|
||
|
y = np.array([1, 1, 2, 2])
|
||
|
|
||
|
eclf = VotingClassifier(
|
||
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
|
||
|
voting="soft",
|
||
|
weights=[1, 1, 5],
|
||
|
)
|
||
|
|
||
|
# predict class probabilities for all classifiers
|
||
|
probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)]
|
||
|
|
||
|
# get class probabilities for the first sample in the dataset
|
||
|
class1_1 = [pr[0, 0] for pr in probas]
|
||
|
class2_1 = [pr[0, 1] for pr in probas]
|
||
|
|
||
|
|
||
|
# plotting
|
||
|
|
||
|
N = 4 # number of groups
|
||
|
ind = np.arange(N) # group positions
|
||
|
width = 0.35 # bar width
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
|
||
|
# bars for classifier 1-3
|
||
|
p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color="green", edgecolor="k")
|
||
|
p2 = ax.bar(
|
||
|
ind + width,
|
||
|
np.hstack(([class2_1[:-1], [0]])),
|
||
|
width,
|
||
|
color="lightgreen",
|
||
|
edgecolor="k",
|
||
|
)
|
||
|
|
||
|
# bars for VotingClassifier
|
||
|
p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color="blue", edgecolor="k")
|
||
|
p4 = ax.bar(
|
||
|
ind + width, [0, 0, 0, class2_1[-1]], width, color="steelblue", edgecolor="k"
|
||
|
)
|
||
|
|
||
|
# plot annotations
|
||
|
plt.axvline(2.8, color="k", linestyle="dashed")
|
||
|
ax.set_xticks(ind + width)
|
||
|
ax.set_xticklabels(
|
||
|
[
|
||
|
"LogisticRegression\nweight 1",
|
||
|
"GaussianNB\nweight 1",
|
||
|
"RandomForestClassifier\nweight 5",
|
||
|
"VotingClassifier\n(average probabilities)",
|
||
|
],
|
||
|
rotation=40,
|
||
|
ha="right",
|
||
|
)
|
||
|
plt.ylim([0, 1])
|
||
|
plt.title("Class probabilities for sample 1 by different classifiers")
|
||
|
plt.legend([p1[0], p2[0]], ["class 1", "class 2"], loc="upper left")
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|