100 lines
2.9 KiB
Python
100 lines
2.9 KiB
Python
|
"""
|
||
|
=================================================================
|
||
|
Iso-probability lines for Gaussian Processes classification (GPC)
|
||
|
=================================================================
|
||
|
|
||
|
A two-dimensional classification example showing iso-probability lines for
|
||
|
the predicted probabilities.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Author: Vincent Dubourg <vincent.dubourg@gmail.com>
|
||
|
# Adapted to GaussianProcessClassifier:
|
||
|
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
from matplotlib import cm
|
||
|
from matplotlib import pyplot as plt
|
||
|
|
||
|
from sklearn.gaussian_process import GaussianProcessClassifier
|
||
|
from sklearn.gaussian_process.kernels import ConstantKernel as C
|
||
|
from sklearn.gaussian_process.kernels import DotProduct
|
||
|
|
||
|
# A few constants
|
||
|
lim = 8
|
||
|
|
||
|
|
||
|
def g(x):
|
||
|
"""The function to predict (classification will then consist in predicting
|
||
|
whether g(x) <= 0 or not)"""
|
||
|
return 5.0 - x[:, 1] - 0.5 * x[:, 0] ** 2.0
|
||
|
|
||
|
|
||
|
# Design of experiments
|
||
|
X = np.array(
|
||
|
[
|
||
|
[-4.61611719, -6.00099547],
|
||
|
[4.10469096, 5.32782448],
|
||
|
[0.00000000, -0.50000000],
|
||
|
[-6.17289014, -4.6984743],
|
||
|
[1.3109306, -6.93271427],
|
||
|
[-5.03823144, 3.10584743],
|
||
|
[-2.87600388, 6.74310541],
|
||
|
[5.21301203, 4.26386883],
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# Observations
|
||
|
y = np.array(g(X) > 0, dtype=int)
|
||
|
|
||
|
# Instantiate and fit Gaussian Process Model
|
||
|
kernel = C(0.1, (1e-5, np.inf)) * DotProduct(sigma_0=0.1) ** 2
|
||
|
gp = GaussianProcessClassifier(kernel=kernel)
|
||
|
gp.fit(X, y)
|
||
|
print("Learned kernel: %s " % gp.kernel_)
|
||
|
|
||
|
# Evaluate real function and the predicted probability
|
||
|
res = 50
|
||
|
x1, x2 = np.meshgrid(np.linspace(-lim, lim, res), np.linspace(-lim, lim, res))
|
||
|
xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T
|
||
|
|
||
|
y_true = g(xx)
|
||
|
y_prob = gp.predict_proba(xx)[:, 1]
|
||
|
y_true = y_true.reshape((res, res))
|
||
|
y_prob = y_prob.reshape((res, res))
|
||
|
|
||
|
# Plot the probabilistic classification iso-values
|
||
|
fig = plt.figure(1)
|
||
|
ax = fig.gca()
|
||
|
ax.axes.set_aspect("equal")
|
||
|
plt.xticks([])
|
||
|
plt.yticks([])
|
||
|
ax.set_xticklabels([])
|
||
|
ax.set_yticklabels([])
|
||
|
plt.xlabel("$x_1$")
|
||
|
plt.ylabel("$x_2$")
|
||
|
|
||
|
cax = plt.imshow(y_prob, cmap=cm.gray_r, alpha=0.8, extent=(-lim, lim, -lim, lim))
|
||
|
norm = plt.matplotlib.colors.Normalize(vmin=0.0, vmax=0.9)
|
||
|
cb = plt.colorbar(cax, ticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], norm=norm)
|
||
|
cb.set_label(r"${\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\right]$")
|
||
|
plt.clim(0, 1)
|
||
|
|
||
|
plt.plot(X[y <= 0, 0], X[y <= 0, 1], "r.", markersize=12)
|
||
|
|
||
|
plt.plot(X[y > 0, 0], X[y > 0, 1], "b.", markersize=12)
|
||
|
|
||
|
plt.contour(x1, x2, y_true, [0.0], colors="k", linestyles="dashdot")
|
||
|
|
||
|
cs = plt.contour(x1, x2, y_prob, [0.666], colors="b", linestyles="solid")
|
||
|
plt.clabel(cs, fontsize=11)
|
||
|
|
||
|
cs = plt.contour(x1, x2, y_prob, [0.5], colors="k", linestyles="dashed")
|
||
|
plt.clabel(cs, fontsize=11)
|
||
|
|
||
|
cs = plt.contour(x1, x2, y_prob, [0.334], colors="r", linestyles="solid")
|
||
|
plt.clabel(cs, fontsize=11)
|
||
|
|
||
|
plt.show()
|