131 lines
4.0 KiB
Python
131 lines
4.0 KiB
Python
|
"""
|
||
|
=========================
|
||
|
Multilabel classification
|
||
|
=========================
|
||
|
|
||
|
This example simulates a multi-label document classification problem. The
|
||
|
dataset is generated randomly based on the following process:
|
||
|
|
||
|
- pick the number of labels: n ~ Poisson(n_labels)
|
||
|
- n times, choose a class c: c ~ Multinomial(theta)
|
||
|
- pick the document length: k ~ Poisson(length)
|
||
|
- k times, choose a word: w ~ Multinomial(theta_c)
|
||
|
|
||
|
In the above process, rejection sampling is used to make sure that n is more
|
||
|
than 2, and that the document length is never zero. Likewise, we reject classes
|
||
|
which have already been chosen. The documents that are assigned to both
|
||
|
classes are plotted surrounded by two colored circles.
|
||
|
|
||
|
The classification is performed by projecting to the first two principal
|
||
|
components found by PCA and CCA for visualisation purposes, followed by using
|
||
|
the :class:`~sklearn.multiclass.OneVsRestClassifier` metaclassifier using two
|
||
|
SVCs with linear kernels to learn a discriminative model for each class.
|
||
|
Note that PCA is used to perform an unsupervised dimensionality reduction,
|
||
|
while CCA is used to perform a supervised one.
|
||
|
|
||
|
Note: in the plot, "unlabeled samples" does not mean that we don't know the
|
||
|
labels (as in semi-supervised learning) but that the samples simply do *not*
|
||
|
have a label.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Authors: Vlad Niculae, Mathieu Blondel
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.cross_decomposition import CCA
|
||
|
from sklearn.datasets import make_multilabel_classification
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.multiclass import OneVsRestClassifier
|
||
|
from sklearn.svm import SVC
|
||
|
|
||
|
|
||
|
def plot_hyperplane(clf, min_x, max_x, linestyle, label):
|
||
|
# get the separating hyperplane
|
||
|
w = clf.coef_[0]
|
||
|
a = -w[0] / w[1]
|
||
|
xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough
|
||
|
yy = a * xx - (clf.intercept_[0]) / w[1]
|
||
|
plt.plot(xx, yy, linestyle, label=label)
|
||
|
|
||
|
|
||
|
def plot_subfigure(X, Y, subplot, title, transform):
|
||
|
if transform == "pca":
|
||
|
X = PCA(n_components=2).fit_transform(X)
|
||
|
elif transform == "cca":
|
||
|
X = CCA(n_components=2).fit(X, Y).transform(X)
|
||
|
else:
|
||
|
raise ValueError
|
||
|
|
||
|
min_x = np.min(X[:, 0])
|
||
|
max_x = np.max(X[:, 0])
|
||
|
|
||
|
min_y = np.min(X[:, 1])
|
||
|
max_y = np.max(X[:, 1])
|
||
|
|
||
|
classif = OneVsRestClassifier(SVC(kernel="linear"))
|
||
|
classif.fit(X, Y)
|
||
|
|
||
|
plt.subplot(2, 2, subplot)
|
||
|
plt.title(title)
|
||
|
|
||
|
zero_class = np.where(Y[:, 0])
|
||
|
one_class = np.where(Y[:, 1])
|
||
|
plt.scatter(X[:, 0], X[:, 1], s=40, c="gray", edgecolors=(0, 0, 0))
|
||
|
plt.scatter(
|
||
|
X[zero_class, 0],
|
||
|
X[zero_class, 1],
|
||
|
s=160,
|
||
|
edgecolors="b",
|
||
|
facecolors="none",
|
||
|
linewidths=2,
|
||
|
label="Class 1",
|
||
|
)
|
||
|
plt.scatter(
|
||
|
X[one_class, 0],
|
||
|
X[one_class, 1],
|
||
|
s=80,
|
||
|
edgecolors="orange",
|
||
|
facecolors="none",
|
||
|
linewidths=2,
|
||
|
label="Class 2",
|
||
|
)
|
||
|
|
||
|
plot_hyperplane(
|
||
|
classif.estimators_[0], min_x, max_x, "k--", "Boundary\nfor class 1"
|
||
|
)
|
||
|
plot_hyperplane(
|
||
|
classif.estimators_[1], min_x, max_x, "k-.", "Boundary\nfor class 2"
|
||
|
)
|
||
|
plt.xticks(())
|
||
|
plt.yticks(())
|
||
|
|
||
|
plt.xlim(min_x - 0.5 * max_x, max_x + 0.5 * max_x)
|
||
|
plt.ylim(min_y - 0.5 * max_y, max_y + 0.5 * max_y)
|
||
|
if subplot == 2:
|
||
|
plt.xlabel("First principal component")
|
||
|
plt.ylabel("Second principal component")
|
||
|
plt.legend(loc="upper left")
|
||
|
|
||
|
|
||
|
plt.figure(figsize=(8, 6))
|
||
|
|
||
|
X, Y = make_multilabel_classification(
|
||
|
n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1
|
||
|
)
|
||
|
|
||
|
plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca")
|
||
|
plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca")
|
||
|
|
||
|
X, Y = make_multilabel_classification(
|
||
|
n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1
|
||
|
)
|
||
|
|
||
|
plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca")
|
||
|
plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca")
|
||
|
|
||
|
plt.subplots_adjust(0.04, 0.02, 0.97, 0.94, 0.09, 0.2)
|
||
|
plt.show()
|