48 lines
1.4 KiB
Python
48 lines
1.4 KiB
Python
|
"""
|
||
|
===============================
|
||
|
Nearest Centroid Classification
|
||
|
===============================
|
||
|
|
||
|
Sample usage of Nearest Centroid classification.
|
||
|
It will plot the decision boundaries for each class.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from matplotlib.colors import ListedColormap
|
||
|
|
||
|
from sklearn import datasets
|
||
|
from sklearn.inspection import DecisionBoundaryDisplay
|
||
|
from sklearn.neighbors import NearestCentroid
|
||
|
|
||
|
# import some data to play with
|
||
|
iris = datasets.load_iris()
|
||
|
# we only take the first two features. We could avoid this ugly
|
||
|
# slicing by using a two-dim dataset
|
||
|
X = iris.data[:, :2]
|
||
|
y = iris.target
|
||
|
|
||
|
# Create color maps
|
||
|
cmap_light = ListedColormap(["orange", "cyan", "cornflowerblue"])
|
||
|
cmap_bold = ListedColormap(["darkorange", "c", "darkblue"])
|
||
|
|
||
|
for shrinkage in [None, 0.2]:
|
||
|
# we create an instance of Nearest Centroid Classifier and fit the data.
|
||
|
clf = NearestCentroid(shrink_threshold=shrinkage)
|
||
|
clf.fit(X, y)
|
||
|
y_pred = clf.predict(X)
|
||
|
print(shrinkage, np.mean(y == y_pred))
|
||
|
|
||
|
_, ax = plt.subplots()
|
||
|
DecisionBoundaryDisplay.from_estimator(
|
||
|
clf, X, cmap=cmap_light, ax=ax, response_method="predict"
|
||
|
)
|
||
|
|
||
|
# Plot also the training points
|
||
|
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor="k", s=20)
|
||
|
plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage)
|
||
|
plt.axis("tight")
|
||
|
|
||
|
plt.show()
|