sklearn/examples/tree/plot_tree_regression_multio...

66 lines
1.9 KiB
Python
Raw Normal View History

2024-08-05 09:32:03 +02:00
"""
===================================================================
Multi-output Decision Tree Regression
===================================================================
An example to illustrate multi-output regression with decision tree.
The :ref:`decision trees <tree>`
is used to predict simultaneously the noisy x and y observations of a circle
given a single underlying feature. As a result, it learns local linear
regressions approximating the circle.
We can see that if the maximum depth of the tree (controlled by the
`max_depth` parameter) is set too high, the decision trees learn too fine
details of the training data and learn from the noise, i.e. they overfit.
"""
import matplotlib.pyplot as plt
import numpy as np
from sklearn.tree import DecisionTreeRegressor
# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y[::5, :] += 0.5 - rng.rand(20, 2)
# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_3 = DecisionTreeRegressor(max_depth=8)
regr_1.fit(X, y)
regr_2.fit(X, y)
regr_3.fit(X, y)
# Predict
X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
y_3 = regr_3.predict(X_test)
# Plot the results
plt.figure()
s = 25
plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, edgecolor="black", label="data")
plt.scatter(
y_1[:, 0],
y_1[:, 1],
c="cornflowerblue",
s=s,
edgecolor="black",
label="max_depth=2",
)
plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s, edgecolor="black", label="max_depth=5")
plt.scatter(
y_3[:, 0], y_3[:, 1], c="orange", s=s, edgecolor="black", label="max_depth=8"
)
plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("target 1")
plt.ylabel("target 2")
plt.title("Multi-output Decision Tree Regression")
plt.legend(loc="best")
plt.show()