""" ====================================================================== A demo of structured Ward hierarchical clustering on an image of coins ====================================================================== Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece. """ # Author : Vincent Michel, 2010 # Alexandre Gramfort, 2011 # License: BSD 3 clause # %% # Generate data # ------------- from skimage.data import coins orig_coins = coins() # %% # Resize it to 20% of the original size to speed up the processing # Applying a Gaussian filter for smoothing prior to down-scaling # reduces aliasing artifacts. import numpy as np from scipy.ndimage import gaussian_filter from skimage.transform import rescale smoothened_coins = gaussian_filter(orig_coins, sigma=2) rescaled_coins = rescale( smoothened_coins, 0.2, mode="reflect", anti_aliasing=False, ) X = np.reshape(rescaled_coins, (-1, 1)) # %% # Define structure of the data # ---------------------------- # # Pixels are connected to their neighbors. from sklearn.feature_extraction.image import grid_to_graph connectivity = grid_to_graph(*rescaled_coins.shape) # %% # Compute clustering # ------------------ import time as time from sklearn.cluster import AgglomerativeClustering print("Compute structured hierarchical clustering...") st = time.time() n_clusters = 27 # number of regions ward = AgglomerativeClustering( n_clusters=n_clusters, linkage="ward", connectivity=connectivity ) ward.fit(X) label = np.reshape(ward.labels_, rescaled_coins.shape) print(f"Elapsed time: {time.time() - st:.3f}s") print(f"Number of pixels: {label.size}") print(f"Number of clusters: {np.unique(label).size}") # %% # Plot the results on an image # ---------------------------- # # Agglomerative clustering is able to segment each coin however, we have had to # use a ``n_cluster`` larger than the number of coins because the segmentation # is finding a large in the background. import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) plt.imshow(rescaled_coins, cmap=plt.cm.gray) for l in range(n_clusters): plt.contour( label == l, colors=[ plt.cm.nipy_spectral(l / float(n_clusters)), ], ) plt.axis("off") plt.show()