""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ # %% # Generate the data # ----------------- # # We start by generating the blobs of data to be clustered. import numpy as np from sklearn.datasets import make_blobs np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) # %% # Compute clustering with KMeans # ------------------------------ import time from sklearn.cluster import KMeans k_means = KMeans(init="k-means++", n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 # %% # Compute clustering with MiniBatchKMeans # --------------------------------------- from sklearn.cluster import MiniBatchKMeans mbk = MiniBatchKMeans( init="k-means++", n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0, ) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 # %% # Establishing parity between clusters # ------------------------------------ # # We want to have the same color for the same cluster from both the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. from sklearn.metrics.pairwise import pairwise_distances_argmin k_means_cluster_centers = k_means.cluster_centers_ order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_) mbk_means_cluster_centers = mbk.cluster_centers_[order] k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) # %% # Plotting the results # -------------------- import matplotlib.pyplot as plt fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ["#4EACC5", "#FF9C34", "#4E9A06"] # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".") ax.plot( cluster_center[0], cluster_center[1], "o", markerfacecolor=col, markeredgecolor="k", markersize=6, ) ax.set_title("KMeans") ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, "train time: %.2fs\ninertia: %f" % (t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == k cluster_center = mbk_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".") ax.plot( cluster_center[0], cluster_center[1], "o", markerfacecolor=col, markeredgecolor="k", markersize=6, ) ax.set_title("MiniBatchKMeans") ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, "train time: %.2fs\ninertia: %f" % (t_mini_batch, mbk.inertia_)) # Initialize the different array to all False different = mbk_means_labels == 4 ax = fig.add_subplot(1, 3, 3) for k in range(n_clusters): different += (k_means_labels == k) != (mbk_means_labels == k) identical = np.logical_not(different) ax.plot(X[identical, 0], X[identical, 1], "w", markerfacecolor="#bbbbbb", marker=".") ax.plot(X[different, 0], X[different, 1], "w", markerfacecolor="m", marker=".") ax.set_title("Difference") ax.set_xticks(()) ax.set_yticks(()) plt.show()