""" ============================================== Plot randomly generated classification dataset ============================================== This example plots several randomly generated classification datasets. For easy visualization, all datasets have 2 features, plotted on the x and y axis. The color of each point represents its class label. The first 4 plots use the :func:`~sklearn.datasets.make_classification` with different numbers of informative features, clusters per class and classes. The final 2 plots use :func:`~sklearn.datasets.make_blobs` and :func:`~sklearn.datasets.make_gaussian_quantiles`. """ import matplotlib.pyplot as plt from sklearn.datasets import make_blobs, make_classification, make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=0.05, top=0.9, left=0.05, right=0.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize="small") X1, Y1 = make_classification( n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1 ) plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k") plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize="small") X1, Y1 = make_classification( n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1 ) plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k") plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize="small") X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker="o", c=Y2, s=25, edgecolor="k") plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize="small") X1, Y1 = make_classification( n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3 ) plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k") plt.subplot(325) plt.title("Three blobs", fontsize="small") X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k") plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize="small") X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k") plt.show()