""" ============================= Recursive feature elimination ============================= This example demonstrates how Recursive Feature Elimination (:class:`~sklearn.feature_selection.RFE`) can be used to determine the importance of individual pixels for classifying handwritten digits. :class:`~sklearn.feature_selection.RFE` recursively removes the least significant features, assigning ranks based on their importance, where higher `ranking_` values denote lower importance. The ranking is visualized using both shades of blue and pixel annotations for clarity. As expected, pixels positioned at the center of the image tend to be more predictive than those near the edges. .. note:: See also :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py` """ # noqa: E501 import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler # Load the digits dataset digits = load_digits() X = digits.images.reshape((len(digits.images), -1)) y = digits.target pipe = Pipeline( [ ("scaler", MinMaxScaler()), ("rfe", RFE(estimator=LogisticRegression(), n_features_to_select=1, step=1)), ] ) pipe.fit(X, y) ranking = pipe.named_steps["rfe"].ranking_.reshape(digits.images[0].shape) # Plot pixel ranking plt.matshow(ranking, cmap=plt.cm.Blues) # Add annotations for pixel numbers for i in range(ranking.shape[0]): for j in range(ranking.shape[1]): plt.text(j, i, str(ranking[i, j]), ha="center", va="center", color="black") plt.colorbar() plt.title("Ranking of pixels with RFE\n(Logistic Regression)") plt.show()