""" ========================================================= Logistic function ========================================================= Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logistic curve. """ # Code source: Gael Varoquaux # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from scipy.special import expit from sklearn.linear_model import LinearRegression, LogisticRegression # Generate a toy dataset, it's just a straight line with some Gaussian noise: xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(float) X[X > 0] *= 4 X += 0.3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # Fit the classifier clf = LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, label="example data", color="black", zorder=20) X_test = np.linspace(-5, 10, 300) loss = expit(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, label="Logistic Regression Model", color="red", linewidth=3) ols = LinearRegression() ols.fit(X, y) plt.plot( X_test, ols.coef_ * X_test + ols.intercept_, label="Linear Regression Model", linewidth=1, ) plt.axhline(0.5, color=".5") plt.ylabel("y") plt.xlabel("X") plt.xticks(range(-5, 10)) plt.yticks([0, 0.5, 1]) plt.ylim(-0.25, 1.25) plt.xlim(-4, 10) plt.legend( loc="lower right", fontsize="small", ) plt.tight_layout() plt.show()