""" ==================================================== Plot multinomial and One-vs-Rest Logistic Regression ==================================================== Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the three One-vs-Rest (OVR) classifiers are represented by the dashed lines. """ # Authors: Tom Dupre la Tour # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.inspection import DecisionBoundaryDisplay from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier # make 3-class dataset for classification centers = [[-5, 0], [0, 1.5], [5, -1]] X, y = make_blobs(n_samples=1000, centers=centers, random_state=40) transformation = [[0.4, 0.2], [-0.4, 1.2]] X = np.dot(X, transformation) for multi_class in ("multinomial", "ovr"): clf = LogisticRegression(solver="sag", max_iter=100, random_state=42) if multi_class == "ovr": clf = OneVsRestClassifier(clf) clf.fit(X, y) # print the training scores print("training score : %.3f (%s)" % (clf.score(X, y), multi_class)) _, ax = plt.subplots() DecisionBoundaryDisplay.from_estimator( clf, X, response_method="predict", cmap=plt.cm.Paired, ax=ax ) plt.title("Decision surface of LogisticRegression (%s)" % multi_class) plt.axis("tight") # Plot also the training points colors = "bry" for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, edgecolor="black", s=20) # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() if multi_class == "ovr": coef = np.concatenate([est.coef_ for est in clf.estimators_]) intercept = np.concatenate([est.intercept_ for est in clf.estimators_]) else: coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.show()