# ruff: noqa """ ======================================= Release Highlights for scikit-learn 1.3 ======================================= .. currentmodule:: sklearn We are pleased to announce the release of scikit-learn 1.3! Many bug fixes and improvements were added, as well as some new key features. We detail below a few of the major features of this release. **For an exhaustive list of all the changes**, please refer to the :ref:`release notes `. To install the latest version (with pip):: pip install --upgrade scikit-learn or with conda:: conda install -c conda-forge scikit-learn """ # %% # Metadata Routing # ---------------- # We are in the process of introducing a new way to route metadata such as # ``sample_weight`` throughout the codebase, which would affect how # meta-estimators such as :class:`pipeline.Pipeline` and # :class:`model_selection.GridSearchCV` route metadata. While the # infrastructure for this feature is already included in this release, the work # is ongoing and not all meta-estimators support this new feature. You can read # more about this feature in the :ref:`Metadata Routing User Guide # `. Note that this feature is still under development and # not implemented for most meta-estimators. # # Third party developers can already start incorporating this into their # meta-estimators. For more details, see # :ref:`metadata routing developer guide # `. # %% # HDBSCAN: hierarchical density-based clustering # ---------------------------------------------- # Originally hosted in the scikit-learn-contrib repository, :class:`cluster.HDBSCAN` # has been adpoted into scikit-learn. It's missing a few features from the original # implementation which will be added in future releases. # By performing a modified version of :class:`cluster.DBSCAN` over multiple epsilon # values simultaneously, :class:`cluster.HDBSCAN` finds clusters of varying densities # making it more robust to parameter selection than :class:`cluster.DBSCAN`. # More details in the :ref:`User Guide `. import numpy as np from sklearn.cluster import HDBSCAN from sklearn.datasets import load_digits from sklearn.metrics import v_measure_score X, true_labels = load_digits(return_X_y=True) print(f"number of digits: {len(np.unique(true_labels))}") hdbscan = HDBSCAN(min_cluster_size=15).fit(X) non_noisy_labels = hdbscan.labels_[hdbscan.labels_ != -1] print(f"number of clusters found: {len(np.unique(non_noisy_labels))}") print(v_measure_score(true_labels[hdbscan.labels_ != -1], non_noisy_labels)) # %% # TargetEncoder: a new category encoding strategy # ----------------------------------------------- # Well suited for categorical features with high cardinality, # :class:`preprocessing.TargetEncoder` encodes the categories based on a shrunk # estimate of the average target values for observations belonging to that category. # More details in the :ref:`User Guide `. import numpy as np from sklearn.preprocessing import TargetEncoder X = np.array([["cat"] * 30 + ["dog"] * 20 + ["snake"] * 38], dtype=object).T y = [90.3] * 30 + [20.4] * 20 + [21.2] * 38 enc = TargetEncoder(random_state=0) X_trans = enc.fit_transform(X, y) enc.encodings_ # %% # Missing values support in decision trees # ---------------------------------------- # The classes :class:`tree.DecisionTreeClassifier` and # :class:`tree.DecisionTreeRegressor` now support missing values. For each potential # threshold on the non-missing data, the splitter will evaluate the split with all the # missing values going to the left node or the right node. # See more details in the :ref:`User Guide ` or see # :ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` for a usecase # example of this feature in :class:`~ensemble.HistGradientBoostingRegressor`. import numpy as np from sklearn.tree import DecisionTreeClassifier X = np.array([0, 1, 6, np.nan]).reshape(-1, 1) y = [0, 0, 1, 1] tree = DecisionTreeClassifier(random_state=0).fit(X, y) tree.predict(X) # %% # New display :class:`~model_selection.ValidationCurveDisplay` # ------------------------------------------------------------ # :class:`model_selection.ValidationCurveDisplay` is now available to plot results # from :func:`model_selection.validation_curve`. from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.model_selection import ValidationCurveDisplay X, y = make_classification(1000, 10, random_state=0) _ = ValidationCurveDisplay.from_estimator( LogisticRegression(), X, y, param_name="C", param_range=np.geomspace(1e-5, 1e3, num=9), score_type="both", score_name="Accuracy", ) # %% # Gamma loss for gradient boosting # -------------------------------- # The class :class:`ensemble.HistGradientBoostingRegressor` supports the # Gamma deviance loss function via `loss="gamma"`. This loss function is useful for # modeling strictly positive targets with a right-skewed distribution. import numpy as np from sklearn.model_selection import cross_val_score from sklearn.datasets import make_low_rank_matrix from sklearn.ensemble import HistGradientBoostingRegressor n_samples, n_features = 500, 10 rng = np.random.RandomState(0) X = make_low_rank_matrix(n_samples, n_features, random_state=rng) coef = rng.uniform(low=-10, high=20, size=n_features) y = rng.gamma(shape=2, scale=np.exp(X @ coef) / 2) gbdt = HistGradientBoostingRegressor(loss="gamma") cross_val_score(gbdt, X, y).mean() # %% # Grouping infrequent categories in :class:`~preprocessing.OrdinalEncoder` # ------------------------------------------------------------------------ # Similarly to :class:`preprocessing.OneHotEncoder`, the class # :class:`preprocessing.OrdinalEncoder` now supports aggregating infrequent categories # into a single output for each feature. The parameters to enable the gathering of # infrequent categories are `min_frequency` and `max_categories`. # See the :ref:`User Guide ` for more details. from sklearn.preprocessing import OrdinalEncoder import numpy as np X = np.array( [["dog"] * 5 + ["cat"] * 20 + ["rabbit"] * 10 + ["snake"] * 3], dtype=object ).T enc = OrdinalEncoder(min_frequency=6).fit(X) enc.infrequent_categories_